Parçacık Fiziğine Giriş

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Parçacık Fiziğine Giriş"

Transkript

1 Parçacık Fiziğine Giriş Orhan ÇAKIR Ankara Universitesi UPHDYO7

2 Bazı Başlıklar Parçacık fiziğinde birimler Tarihsel giriş Doğanın kuvvetleri Parçacık fiziğinde simetriler Temel parçacıklar ve etkileşmeler Çarpışma ve tesir kesiti Parçacık bozunumu Standart Model ve ötesi 2

3 Parçacık Fiziğinde Birimler S.I. Birimleri: kg, m, s günlük karşılaşılan cisimler için doğal bir seçimdir, fakat parçacık fiziği için oldukça büyük birimlerdir. Atom fizikçileri electron volt (ev) kullandılar (ev) 1 volt potansiyel farkında hızlandırılan elektronun kinetik enerjisi: 1 ev=1.6x10-19 joule. Parçacık Fiziğinde doğal birimler kullanılmaktadır: kuantum mekaniğinden eylemin birimi: ħ görelilikten ışığın hızı: c parçacık fiziğinden enerji birimi: GeV (protonun durgun kütlesi~938 MeV/c2=1.67x10-24 g) Bu derste doğal birimler kullanılacaktır. 3

4 Parçacık Fiziğinde Birimler - 2 Birimler (boyutlu) Enerji(E): GeV Zaman: (GeV/ħ)-1 Momentum: GeV/c Uzunluk(L): (GeV/ħc)-1 Kütle: GeV/c2 Alan: (GeV/ħc)-2 Dönüştürme işlemleri, ħ=c=1 yazarak basitleştirilebilir! Böylece, bütün fiziksel nicelikler GeV'in kuvvetleri cinsinden ifade edilir. S.I. birimlerine geri dönüştürme için, ħ and c nin gerekli çarpanları kullanılır. Heaviside-Lorentz birimlerinde ise ħ=c=ε0=µ0=1 alınır, bu 2 1 q durumda Coulomb yasası F= 4 r2 Elektrik yükü (q) boyutu: (FL2)1/2=(EL)1/2=(ħc)1/2 4

5 Tarihsel Giriş Hava Ateş Toprak İnsanlar uzun süre aşağıdaki soruları sordular: Dünya neden yapılmıştır? onu birarada tutan nedir? dünyada birçok şey neden aynı karakteristiği paylaşırlar? Su Empedocles İÖ İnsanlar, maddenin bir kaç temel yapı taşından (basit ve yapısız nesneler - daha küçük bir şeyden yapılmayan) oluştuğu fikrine vardılar. "...gerçekte atomlar ve boşluk vardır." (Democritus 400 İÖ). 5

6 Tarihsel Giriş - 2 Benzer kimyasal özellikleri paylaşan atom gruplarını kategori yapma (periyodik elementler tablosu) çalışmaları (Mendeleev,1869). Moseley'in çalışması: modern periyodik tablo, elementlerin (atomik kütleleri yerine) atom numaralarına dayanır. dayanır Bilim insanlarının atomların küçük fakat yoğun, pozitif çekirdeğe (N+) ve negatif elektron (e-) bulutuna sahip olduğunu belirlemelerinde deneyciler önemli rol almıştır. 6

7 Tarihsel Giriş - 3 Temel Parçacık Fiziği, 1897'de J.J.Thomson'ın elektronu ( corpuscules ) keşfetmesiyle başlar. Sıcak bir filamandan yayılan katot ışınlarının (parçacık demeti) bir mıknatıs ile saptırılabilmesi ile bunların elektrik yükü taşıdığı, ve bükülme yönünden de bu yükün negatif olduğu belirlenmiştir. 'elektron' kelimesi ilk olarak 1891'de G. Johnstone Stoney tarafından bir elektro-kimya deneyinde yükün birimini belirtmek için kullanıldı. 7

8 Tarihsel Giriş - 4 Ernest Rutherford, 1909'da teorinin geçerliliğini test etmek için bir deney hazırlamıştı. Bununla fizikçiler ilk kez mikroskopla göremedikleri küçük parçacıkların içini araştırıyorlardı. Alfa parçacıklarının bazıları altın levhadan büyük açılarda saçılmışlardı; bazıları ise levhanın önündeki ekrana çarpmıştı! Açıkçası yeni açıklama gerekliydi! Rutherford, alfa parçacıklarının geri saçılması için atomun içinde küçük, yoğun ve pozitif yüklü birşey (çekirdek) olduğu sonucuna vardı. 8

9 Tarihsel Giriş - 5 Foton ( ) M.Planck, siyah cisim ışımasını açıklar (1900), ışıma kuantumludur. A.Einstein, parçacık gibi davranan ışık kuantumu önerir (1905), fotoelektrik olay (E hν-w), kütle ve enerjinin eşdeğerliği, özel görelilik. A.H.Compton, durgun bir parçacıktan saçılan ışığın dalgaboyunda kayma meydana gelir (1923), λ'-λ=λc(1-cosθ), burada λc hedef parçacığın Compton dalgaboyudur. Foton ismi kimyacı Gilbert Lewis (1926) tarafından önerilir. 9

10 keşifler ve zaman çizgisi özeti 10

11 Araştırma için araçlar bakteri 0.01 mm virus mm DNA'da atomlar mm Maddenin en derin yapısına bakmak için parçacık hızlandırıcılarına hızlandırıcıları ve dedektörlerine dedektörleri ihtiyacımız var. 11

12 Doğanın temel yapı taşlarının araştırılması yansıma Yüksek demet enerjisi Etrafında bükülme Daha kısa dalgaboyu Daha iyi çözünürlük elektron α parçacığı çekirdek α parçacığı E.Rutherford, Deney,

13 Düşük Enerji / Yüksek Enerji Küçük Klasik Mekanik Kuantum Mekaniği Göreli Mekanik Kuantum Alan Teorisi Hızlı Hem hızlı hem de küçük cisimler (parçacıklar) için görelilik ve kuantum prensiplerine uyan bir teori: Kuantum Alan Teorisi. Diğer taraftan, deneysel bilgimizin çoğu 3 ana kaynaktan gelmektedir: 1) saçılma olayları, 2) bozunumlar, 3) bağlı durumlar. 13

14 Simetriler/Korunum yasaları Fizik yasaları zamanda ötelemeye göre simetriktir (dün olduğu gibi bu gün de aynı biçimdedir): Noether (1971) teoremi bu değişmezliği enerji korunumu ile ilşkilendirir. Genel anlamda simetrilere korunum yasaları eşlik eder. Simetri zamanda öteleme uzayda öteleme dönme ayar dönüşümü Korunum yasası enerji momentum açısal momentum yük 14

15 Doğanın Kuvvetleri Kuvvetler, parçacıklar arasında bozon değiş-tokuşu olarak açıklanabilir, bozonun tipi kuvveti tanımlar. 15

16 Parçacık Fiziği Madde (spin-1/2 parçacıklar): evrenin temel elemanları temel parçacıklar Kuvvet (spin-1 parçacıklar): evrenin temel kuvvetleri temel parçacıklar arasındaki etkileşmeler Mümkün olduğu kadar basit ve temel anlamda Parçacıkları ve Kuvvetleri kategorilemeye çalışır 16

17 Temel Parçacıklar Kütle--> Yük--> Spin--> 16'

18 Parçacık Fiziğinde Simetriler Parçacık fiziğinin hedeflerinden biri evrenin simetrilerini keşfetmektir. Parçacık fiziğinde önemli rol üstlenen simetri grupları U(1), SU(2) ve SU(3) dür. Bu dönüşüm altında fiziğin değişmez kaldığını varsayalım: (koordinat eksenlerin döndürülmesi gibi) Olasılık normalizasyonunun korunması için uniter olmalı! 17

19 Parçacık Fiziğinde Simetriler - 2 Simetri dönüşümleri ile fiziksel tahminlerin değişmez kalması, ve bütün QM matris elemanlarının değişmez kalması Sonsuz küçük dönüşüm düşünelim (ε küçük) burada uniterlik gereği G korunumludur. 18

20 Parçacık Fiziğinde Simetriler - 3 Simetriler hayatımızda önemli rol oynar! QFT'de ise özel bir anlamı vardır: her bir kuvvet iç simetri prensibinden türetilebilir yerel ayar değişmezliği ayar bozonlarını tahmin eder. Ψ' e-iθψ Ψ' e-iθ(x)ψ 19

21 C Simetrisi Yük eşleniği (C) Klasik elektrodinamik C altında değişmez kalır, potansiyeller ve alanlar işaret değiştirir ancak kuvvet yük çarpanı nedeniyle değişmez kalır. C p>= p>=± p>, bütün iç kuantum sayıları nın (yük, baryon sayısı, lepton sayısı, acayiplik, vs.) işareti değişir, ve kütle, enerji, momentum, spin, dokunmadan kalır. Sınırlı özduruma sahiptir (photon, rho, eta vb.). Zayıf etkileşmelerin simetrisi değildir ( νl yoktur!) Genişletilmiş dönüşüm G-parite, G=CR2 burada R2=eiπI(2). Örnek: pionlar G' nin özdurumlarıdır. 20

22 P Simetrisi Parite (P) Lee ve Yang (1956) zayıf etkileşmelerde parite için bir test önerdiler. 60Co-->60Ni+e+νe sürecinde beta bozunmasında elektronların çoğu çekirdek spinine zıt yönde yayınlanır. Parite, güçlü ve elektromagnetik etkileşmelerin bir simetrisidir, fakat zayıf etkileşmelerde bozulur. Skaler Sözde-skaler Vektör Sözde-vektör (eksensel vektor) P(s)=s P(p)=-p P(v)=-v P(a)=a nötrinolar sol-el, antinötrinolar ise sağ-el davranırlar. 21

23 Hadronlar Hadronlar kuarkların renk birlisi bağlı durumlarıdır. Mezonlar, kuark ve anti-kuarkların bağlı durumlarıdır (qiqj). Baryonlar, 3 kuark bağlı durumlarıdır (q q q ). i j k Kuarklar, hadronlar içine hapsolmuştur. Yükler birbirinden ayrıldığında Elektrik alan çizgileri seyrekleşir. Kuarklar birbirinden ayrıldığında renk kuvveti çizgileri bir tüp içinde yoğunlaşır. Yeterli kuvvet uygulandığında bu ikiye ayrılacaktır. 22

24 Mezonlar Yörünge açısal momentumu l ise, parite P=(-1)l+1 ile verilir. Mezonlar qq için yük eşleniği C=(-1)l+s ve G-parite (-1)I+l+s ile verilir. SU(4) sınıflandırmasında 4 x 4= yapısı elde edilir. Spektroskopik gösterim: n2s+1lj (JPC) l=0: sözde-skaler (0-+) ve vektor (1--) l=1: skaler (0++), eksensel vektor (1++) ve (1+-), tensor (2++). örn: 1 1S0(0-+)-->K-mezon ηc 23

25 Baryonlar Baryonlar, renk birlisi durumlar, baryon sayısı B=1 taşıyan fermiyonlardır. qqq > A= renk > A uzay, spin, çeşni >S Baryonları, aynı uyarılma kuantum sayısına göre bandlar üstünde sınıflandırmak kullanışlıdır. 24

26 Etkileşmeler Ayar bozonlarının fermiyonlarla etkileşmeleri köşeler ile tanımlanır. Ayar bozonlarının tipi ve etkileşmenin doğası etkileşmenin özelliklerini belirler. 25

27 Etkileşme Lagrangian'i Köşe Faktörleri QED etkileşme terimi burada 3 alan gelen fermiyon giden fermiyon foton (ψ, ψ, A) bir noktada etkileşir, ve etkileşme köşesi tanımlanır. Alanlara göre türetildiğinde kalan kısım köşe faktörünü verir -igeqγµ. QCD etkileşme terimi gelen kuark giden kuark - gluon (q, q,g) bir noktada etkileşir, köşe faktörü -igsλ/2γµ. 26

28 Feynman Kuralları Serbest Lagrangian propagator Etkileşme terimleri köşe faktorleri 27

29 Feynman Diyagramları Yüksek enerji fiziği süreçleri genelde karmaşıktır, bunlar ışımalar, halkalar, vb. yapılar içerir. Bununla birlikte, LO süreçler temel parçacıklar (leptonlar, kuarklar ve ayar bozonları) arasındaki etkileşmelere ilk yaklaşım (en düşük mertebe) olarak düşünülebilir. Feynman diyagramları parçacık fiziği süreçlerinin grafiksel gösterimidir. e+e-- Z q q gg H0 b b 28

30 Fermiyonların Electrozayıf Etkileşmeleri SM Belli bir süreç için genlik ve diferensiyel tesir kesitinin diyagramlarla gösterimi 29

31 Örnek: e+e- γ/z0 µ+µ süreci Toplam genlik: M=M γ +M Z Sembolik Hesap: REDUCE, Mathematica, vb. 30

32 Etkileşme Tesir Kesiti Diferensiyel tesir kesiti aşağıdaki gibi yazılabilir 4 d = 2 2 M fi d n p 1 p 2 ; p 3, p 4,..., p n p1 p 2 m m Kütle merkezi çerçevesinde 2 p p m m = p 1cm s Mandelstam değişkenlerini kullanmak faydalıdır. s= p 1 p 2 2= p 3 p =m m 2 E 1 E 2 2 p 1 p t= p1 p 3 = p 2 p =m 1 m 3 2 E 1 E 3 p 1 p u= p 1 p 4 = p 2 p =m 1 m 4 2 E1 E 4 2 p 1 p 4 p1 p3 p2 p4 iki-cisim saçılma tesir kesiti d 1 M 2 = d t 64 s p 1cm 2 31

33 Parçacık Bozunumları M kütleli bir parçacığın durgun p1 P çerçevesinde n cisime p2... bozunması oranı pn d = M fi d n P ; p 1, p 2,..., p n 2M ile verilir, burada çok-parçacık faz uzayı elemanı n n d n P ; p1, p 2,..., pn = P i =1 p i i=1 4 3 d pi E i Mfi ilk durumdan son duruma geçişte sürece özgü olan Lorentz değişmezi genliktir. 32

34 Otomatik Hesaplama Araçları CompHEP/CalcHEP[*] program paketi, ağaç-seviyesi yaklaşımda temel parçacıkların bozunma ve çarpışma süreçlerinin hesapları için kullanılmaktadır. Yüksek seviyeli otomatikleştirme ile Lagrangian'den son dağılımlara geçişi sağlar. Farklı amaçlar için başka program paketleri de bulunmaktadır. 33

35 Örnek: e e W W süreci CompHEP, sembolik çalıştırma'da genlik 2 ifadelerçalıştırma ini hesaplar ve çıktıyı Reduce/Mathematica dosyası olarak yazar. Sayısal çalıştırma bozunma genişliği, dallanma oranları, tesir kesitleri, kinematik dağılımlar, olay üretimi hesabı için kullanılır. Dağılımlar ise Root gibi programlar ile analiz edilir. Olay bilgisi LHE formatında yazılabilir. 34

36 Kinematik Dağılımlar e+e- W+W-, GeV Eşik enerjisi bölgesi taraması yapılabilir. Burada eşik enerjisinden (~160 GeV) sonra tesir kesiti artar ve s~190 GeV'de maksimuma ulaşır. Enerjiyi daha da artırmak bu süreç için tesir kesiti açısından faydalı değildir. 35

37 Çarpıştırıcılarda Çift Üretim Çarpıştırıcılarda, madde ve kuvvetler çalışılabilir. Hatta çarpışan parçacıkların enerjisi kütleye dönüştürülerek kuvvetler aracılığıyla yeni ve ağır madde üretilebilir. Şekilde hadron çarpıştırıcılarında üst kuarkın çift üretim (t ve tbar) süreci görülmektedir. Birinci diyagramla üretim Tevatron'da baskın iken, ikinci diyagramla üretim LHC'de baskındır. 36

38 Kayıp Enine Enerji Gelen hadron enerjisinin önemli bir kısmı demet borusuna gider. Doğrudan algılanamayan parçacıklar (nötrinolar) için, demet doğrultusuna dik düzlemde enine momentum bileşeni hesaplanabilir. ν Son durumdaki algılanabilen parçacıkların enine momentumlarının toplamı MET verir. 37

39 Parçacıkların Dedektörde Algılanması 38

40 Duyarlı ölçümlerin durumu EW fit

41 The Standart Model (SM) Standart grubu model'in ayar SU(3)C x SU(2)W x U(1)Y burada C renk gösterir, W zaıf izospini ve Y hiperyükü gösterir. Karşı gelen ayar alanları Gma(a=1,8), Wmi(i=1,3) ve Bm. Elektrozayıf simetri kendiliğinden kırılır: SU(2)W x U(1)Y-->U(1)em *Madde: 3 lepton ve 3 kuark ailesi gözlendi. *henüz gözlenmemiş olan Higgs alanının önemli rolu var: 1 skaler alan ikilisi diğer alanlarla etkileşir boşluk beklenen değeri kazanır (~246 GeV) kuark ve leptonlar, W/Z bozonları ve Higgs kendisi bu mekanizmadan kütle kazanır 40

42 Parçacıkların Kuantum Sayıları Temel parçacıkların kuantum sayıları SU(3) X SU(2) X U(1) grup yapısına göre belirlenir. Lagrangian: Ayar etkileşmeleri Madde fermiyonları Yukawa etkileşmeleri Higgs potansiyeli 41

43 Alan Teorileri Klasik mekanikta Lagrangian konum, hız ve zamanın fonksiyonudur L(q,q.,t), kinetik ve potansiyel enerji cinsinden L=T-V. Hareket denklemi böylece Lagrangian'da açıkça bulunmayan koordinata karşı gelen konjuge momentum korunur. Newton yasaları alan teori 'de bir alan fonksiyonu φ(x,y,z,t) ile çalışırız. Göreli teoride (4D uzay-zaman) EulerLagrange denklemi spin-0: KleinGordon denklemi; spin-1/2: Dirac denklemi; spin-1: Proca denklemi. 42

44 Global ve Yerel Faz Dönüşümleri Serbest Dirac lagrangian'ı Yerel faz dönüşümü Dalga fonksiyonunun türevi G lobal faz dönüşümü ψ(x) >e-iqαψ(x) ek bir terime yol açar Dirac lagrangian'ı bu dönüşüm Bu durumda Lagrangian altında değişmez kalır. Dalga fonksiyonunun mutlak Toplam Lagrangian bu dönüşüm fazı ölçülebilir değildir (keyfi altında değişmez kalmalı, kalır). böylece serbest Dirac LagrangiGirişimdeki bağıl fazlar bu faz an'ında ayar bozonunun hem kindönüşümünden etkilenmezler. etik hem de etkileşme terimini Simmetri-->yük korunumu bulundurmalıyız. Bu işlem etkileşmenin ayar bozonunu otomatik olarak ortaya çıkarır. 43

45 U(1) Ayar Simetrisi Elektromagnetik Lagrangian yerel U(1) ayar dönüşümü altında değişmez kalır. burada vektör alanı dönüşümü ve kovaryant türev aşağıdaki gibidir Etkileşmenin tipi yerel ayar dönüşümünden elde edilir, Kuantum elektrodinamiği U(1) faz simetrisine uyan bir ayar teorisidir.

46 QED Lagrangian 45

47 Yang-Mills Teori Yang ve Mills yerel simetriyi abelyen-olmayan duruma genişletmişlerdir. Dönüşüm matrisinin (S) determinantı 1 dir. Lagrangian SU(2) global faz dönüşümü altında değişmez kalır. Yerel dönüşüm için ek terimler gelecektir, bunları yok etmek için ek alan ve etkileşme terimi eklemeliyiz. Kovaryant türev aşağıdaki gibi yazılabilir skaler çarpım ise aşağıdaki gibi dönüşür Böylece, yerel SU(2) ayar dönüşümü altında değişmez kalan Lagrangian 46

48 Kendiliğinden Simetri Kırılması Skaler alan için Lagrangian burada φ >-φ için, Lagrangian değişmez kalır. Potansiyel φ=±µ/λ için minimumlara sahiptir. Yeni bir değişken η=φ±µ/λ bu minimumdan bir sapma cinsinden ifade edilebilir, bu durumda Lagrangian V( V(φφ)) φφ Yeni Lagrangian artık η >-η için simetrik değildir, simetri kendiliğinden kırılmıştır (SSB). 47

49 Kırılan Simetri Bazı simetriler tam değildir, yani kırılırlar! Bu çok önemli bir özellik! Kendiliğinden simetri kırılması yoluyla fermiyonların ve kütleli ayar bozonlarının kütleleri için bir formulasyon elde edilir. Bir başka kütleli parçacık daha tahmin edilir (ancak henüz gözlenmemiştir!): Higgs bozonu, kütle kazanmadan sorumlu Standart model'in henüz keşfedilmemiş ve çok istenen parçacığı! 48

50 Higgs Mekanizması Kompleks alan ve skaler alan Lagrangian'ı bu Lagrangian'ın yerel dönüşüm altında değişmez kalmasını istiyoruz, sistemin minimum enerji durumunda bulunacağı bir dönüşüm yapabiliriz

51 Ayar Bozonu Kütleleri Ayar bozonu kütle ifadeleri Dµφ 2 teriminden elde edilir. Burada kovaryant türev skaler alan ve ayar alanı kütle özdurumları,, kütle terimleri, 50

52 Fermiyon kütleleri Fermiyon kütleleri sol-el fermiyon (fl) ve sağ-el fermiyonun (fr) skaler alan (φ) ile etkileşmesinden elde edilir, fermiyon kütleleri Yukawa bağlaşımı ve vakum beklenen değerinden (v=246 GeV) elde edilir

53 SM Parametreleri 3 ayar bağlaşımı (g1, g2, g3) 2 Higgs parametresi (µ, λ) 6 kuark kütlesi 3 kuark karışım açısı + 1 faz 3 (+3) lepton kütlesi (3 lepton karışım açısı + 1 faz) ()=Dirac nötrino durumu CKM matris PMNS matris Ç eş ni pa ra m etreleri 52

54 Çeşni Problemi Hadronları oluş turan ağır kuarklar b ve c kuarklarıdır. B u hadronlar (mezonlar / baryonlar) etkin bir ş ekilde algılanabilir. Kütle hiyerarşisi 1.aile 2.aile 3.aile Yüklü zayıf akım çeşni karışımına yol açar. 1/1000 Proton kütlesi 1000 Electro-zayıf simetri kırılması parçacıkların nasıl kütle kazanacağını açıklayabilir, fakat kütlelerin değerinin ne olduğunu açıklamaz. n çeş ğişi i de r 53

55 Fermiyon Kütleleri ve Çeşni Fiziği Ölçeği md 5 MeV ms 100 MeV mν MeV mν MeV mν MeV mc 1270 MeV Me 0.5 MeV mb 4200 MeV mt MeV mµ 100 MeV mτ 1800 MeV Çok ağır kuark Hafif kuarklar (m ΛQCD) Hafif leptonlar Tau (EDM/MDM) lepton mu 3 MeV Nötrinolar (Nötrino-feno) 54

56 Skaler alana bağlanma sabiti Higgs'e bağlaşım ve kütle ilişkisi? tanα=1/v v 246 GeV Kütle (GeV) 55

57 SM'de CP Bozulması Lagrangian terimleri içinde sabitleri CP kaynaklarıdır, kompleks bağlaşım Yüklü akım bağlaşımları dışında, kütle bazında SM'nin bütün bağlaşımları gerçel yapılabilir. Önemli bir özellik SM'de karışım matrisindeki 1 faz, zayıf etkileşmelerdeki CP bozulmasından sorumludur. 56

58 CKM SM'de CP bozulması küçüktür (δexp=0.0001), çeşni fiziği ve CP bozulması duyarlı hesaplar/ölçümler gerektirir. 57

59 Kuarklar için Karışım Parametreleri Sol-el ul ve dl kuarkları ile bağlaşımı olan yüklü akım W+/- etkileşmeleri için karışım matrisi Parametrelerin standart seçimi Elemanların büyüklükleri: Vud , Vus , Vub , Vcd 0.230, Vcs 1.023, Vcb , Vtd , Vts , Vtb

60 Nötrinolar 1970'lerde formule edilen SM'de nötrinolar kütlesiz varsayılmıştı, bu durumda nötrinolar için sadece bir helisite durumu vardır (sol-el). 1960'larda Pontecorvo, Maki, Nakagaya ve Sakata (PMNS) nötrinoların, süreçlerde çeşni özdurumlarında (νe,νµ,ντ) üretilip yok olabileceğini, ve kütle özdurumları (ν1,ν2,ν3) uzayında hareket edebileceğini önermişlerdir. U 11 U 12 U 13 1 e = U 21 U 22 U 23 2 U 31 U 32 U

61 Nötrino Karışımı Muon nötrinosu (νµ) ve tau nötrinosunun (ντ) karışımı ν2 ve ν3 (atmosferik nötrinolar) cinsinden yazılabilir, burada θ karışım açısıdır. Dalga genlikleri = 2 cos 3 sin = 2 sin 3 cos Nötrino enerjisi Ei olmak üzere, kütle özdeğerleri zamana bağlıdır 2 t = 2 0 exp i E 2 t 3 t = 3 0 exp i E 3 t 60

62 Nötrino Karışımı - 2 İlk durumda muon nötrinoları ile başlarsak 2 0 = 0 cos 3 0 = 0 sin zamana bağlılık t = 2 t cos 3 t sin ve genlik A t = t / 0 =cos 2 exp ie 2 t sin 2 exp ie 3 t Yoğunluk/şiddet fonksiyonu I t / I 0 =1 sin2 2 sin 2 [ E 3 E 2 t /2] 61

63 Nötrino Kütleleri Nötrinolar Dirac parçacıkları ise: nötrino ve anti-nötrino ayrı parçacıklardır sol-el durum ve kütlesiz Nötrinolar Majorana parçacıkları ise: Parçacık ve anti-parçacık aynıdır ν=νc. Genelde, lepton kütleleri hem Dirac hem de Majorana kütle terimlerinden kaynaklanır. ml md md mr Burada ml ve mr, sırasıyla sol-el ve sağel durumlar için Majorana kütleleridir. md Dirac kütlesini gösterir. 62

64 Nötrino Kütleleri - 2 Kütle matrisini köşegenleştirebiliriz, bu durumda özdeğerler 2 2 m1,2 =[ mr m L ± m R ml 4 md ]/2 burada ml çok küçük olduğu varsayılır; ve mr=m ise Dirac ölçeğinden çok daha büyüktür (GUT ölçeği civarında). Fiziksel nötrino kütlesi aşağıdaki gibi yazılabilir Bu Bu mekanizma mekanizma (see-saw) (see-saw) ile, ile, m2d sağ-el m 1, m2 M sağ-el nötrino nötrino kütlesi kütlesi çok çok M büyük, büyük, sol-el sol-el Majorana Majorana nötrino nötrino kütlesi kütlesiçok çokküçük küçükalınabilir. alınabilir. 63

65 CP ve BAU Evrendeki baryon asimetrisi (BAU) KM CP durumundan hesaplanabilir: (nb-nb)/nγ nb/nγ JPuPd/M12 Jarlskog parametresi (J~O(10-5) kuark sektöründe CP bozulmasının bir parametrizasyonudur. Electrozayıf ölçekte O(100 GeV) kütle parametresi için hesaplanan asimetri O(10-17), gözlenen değerin O(10-10) çok altındadır. Bu nedenle CP bozulması için daha fazla kaynağa ihtiyaç vardır! 64

66 +

67 Test 1) Parçacık Fiziğinin standart modelinde çeşni değiştiren etkileşme türü hangisidir? a) Elektromagnetik etkileşme b) Güçlü etkileşme c) Yüklü zayıf etkileşme d) Yüksüz zayıf etkileşme 2) Kuarkların ölçülen kütlelerinin büyükten küçüğe doğru sıralanmış listesi aşağıdakilerden hangisidir? a) üst, alt, yukarı, aşağı, tılsım, acayip b) alt, üst, aşağı, yukarı, acayip, tılsım c) üst, alt, tılsım, acayip, yukarı, aşağı d) aşağı, yukarı, acayip, tılsım, alt, üst

68 Ödevler 1) Temel fermiyonların kütlelerini ve hatalarını PDG10'dan alarak, Yukawa bağlaşımlarını - kütleye göre grafiğini çiziniz. Verilere bir eğri fit edildiğinde fit parametrelerini belirleyiniz ve sonucu yorumlayınız. 2) Drell-Yan süreci ile (s-kanalı) üst kuark çift üretiminde ileri-yön/geri-yön asimetrisinin hangi tür etkileşmeden kaynaklanacağını yazınız. Bu süreç için son durumda dedektörde nasıl sinyaller algılanabileceğini yazınız, bunların oranlarını yaklaşık olarak hesaplayınız.

69 Bazı Kaynaklar D. Griffiths, Introduction to Elementary Particles, WILEY-VCH Verlag GmbH & Co. KgaA, C. Burgess and G. Moore, The Standard Model: A Primer, Cambridge University Press, J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model, Cambridge University Press, M. Dine, Supersymmetry and String Theory, Beyond the Standard Model, Cambridge University Press, P. Ramond, Journeys Beyond The Standard Model, Lightning Source Inc., 2003.

Parçacık Fiziğine Giriş

Parçacık Fiziğine Giriş Parçacık Fiziğine Giriş Orhan ÇAKIR Ankara Üniversitesi HPFBU 2014, 3-10 Şubat 2014, Gaziosmanpaşa Univ., Tokat Konu Başlıkları Tarihsel giriş Doğanın kuvvetleri Parçacık fiziğinde simetriler Temel parçacıklar

Detaylı

Parçacık Fiziği Söyleşisi

Parçacık Fiziği Söyleşisi Parçacık Fiziği Söyleşisi Saleh Sultansoy - TOBB ETÜ Gökhan Ünel - UC Irvine HPFBU2012 12-19 Şubat, Kars, Kafkas Üniversitesi 1 Parçacık fiziği Maddenin ve etkileşimlerin alt yapısını anlamak 2 Büyük Patlama

Detaylı

Standard Modele Giriş

Standard Modele Giriş Standard Modele Giriş Orhan ÇAKIR AU & IAU HPFBUIV, 1-8 Şubat 015, Anadolu Univ., Eskişehir Konu Başlıkları Parçacık Fiziği Simetriler Standart Model Süreçler Çarpışma tesir kesitleri Parçacık bozunumları

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ314 Fizikte Güncel Konular 2015-2016 Bahar Yarıyılı Bölüm-8 23.05.2016 Ankara A. OZANSOY 23.05.2016 A.Ozansoy, 2016 1 Bölüm 8: Parçacık Fiziği 1. Temel Olmayan Parçacıklardan Temel Parçacıklara 2. 4

Detaylı

Temel Parçacık Dinamikleri. Sunum İçeriği

Temel Parçacık Dinamikleri. Sunum İçeriği 1 Sunum İçeriği 2 Genel Tekrar Leptonlar Örnek: elektron Fermionlar Kuarklar Örnek: u kuark Bozonlar Örnek: foton Kuarklar serbest halde görülmezler. Kuarklardan oluşan yapılar ise genel olarak şu şekilde

Detaylı

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN Göreli olmayan kuantum mekaniği 1923-1926 yıllarında tamamlandı. Göreli kuantum mekaniğinin ilk başarılı uygulaması 1927 de Dirac tarafından gerçekleştirildi. Dirac denklemi serbest elektronlar için uygulandığında

Detaylı

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN Geometrodynamics: Genel Görelilik Teorisi Gravitasyon parçacık fiziğinde önemli bir etki oluşturacak düzeyde değildir. Çok zayıftır. Elektrodinamiğin kuantum teorisi Tomonaga, Feynman ve Schwinger tarafında

Detaylı

Temel Sabitler ve Birimler

Temel Sabitler ve Birimler Temel Sabitler ve Birimler Işığın boşluktaki hızı: c=299792458 m/s ~3x10 8 m/s Planck sabiti: h= 6.62606957(29)x10-34 Js İndirgenmiş Planck sabiti ħ = h/2π Temel elektrik yükü : e=1.60218x10-19 C İnce

Detaylı

STANDART MODEL VE ÖTESİ. : Özge Biltekin

STANDART MODEL VE ÖTESİ. : Özge Biltekin STANDART MODEL VE ÖTESİ : Özge Biltekin Standart model, bilim tarihi boyunca keşfedilmiş parçacıkların birleşimidir. Uzay zamanda bir nokta en, boy, yükseklik ve zaman ile tanımlanır. Alanlar da uzay zamanda

Detaylı

Parçacık Fiziğine Giriş ve Simulasyonlar

Parçacık Fiziğine Giriş ve Simulasyonlar Parçacık Fiziğine Giriş ve Simulasyonlar Orhan Çakır Ankara Üniversitesi 5. Uluslararası Katılımlı Parçacık Hızlandırıcı ve Dedektörleri Yaz Okulu, 9/08-03/09/009, Bodrum Özet 1 Madde nedir? Temel Parçacık

Detaylı

ALIfiTIRMALARIN ÇÖZÜMÜ

ALIfiTIRMALARIN ÇÖZÜMÜ ATOMLARDAN KUARKLARA ALIfiTIRMALARIN ÇÖZÜMÜ 1. Parçac klar spinlerine göre Fermiyonlar ve Bozonlar olmak üzere iki gruba ayr l r. a) Fermiyonlar: Spin kuantum say lar 1/2, 3/2, 5/2... gibi olan parçac

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

Parçacıkların Standart Modeli ve BHÇ

Parçacıkların Standart Modeli ve BHÇ Parçacıkların Standart Modeli ve BHÇ Prof. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü Parçacık Fiziği Maddeyi oluşturan temel yapı taşlarını ve onların temel etkileşimlerini arar Democritus (460 MÖ - 370 MÖ)

Detaylı

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli NÜKLEER FİZİK Bu sunumun büyük bir bölümünü aşağıdaki siteden indirebilir veya fotokopiciden fotokopisini alabilirsiniz. http://s3.dosya.tc/server11/efgmzh/fotokopi.pdf.html Nükleer Fizikte Kullanışlı

Detaylı

Parçacık Fiziğinde Korunum Yasaları

Parçacık Fiziğinde Korunum Yasaları Parçacık Fiziğinde Korunum Yasaları I. Elektrik Yükünün Korunumu II. Lepton Sayılarının Korunumu III. Baryon Sayısının Korunumu IV. Renk Yükünün Korunumu V. Göreli Mekanik i. Göreli Konum ii. Lorentz Denklemleri

Detaylı

TURKFAB Tesisinin Araş0rma Potansiyeli, Kullanıcı Profili ve Üreteceği Katma Değer

TURKFAB Tesisinin Araş0rma Potansiyeli, Kullanıcı Profili ve Üreteceği Katma Değer THM- YUUP Projesi Genel Değerlendirme Çalıştayı 19-20 MART 2015 HTE, ANKARA ÜNİVERSİTESİ TURKFAB Tesisinin Araş0rma Potansiyeli, Kullanıcı Profili ve Üreteceği Katma Değer Orhan Çakır Ankara Univ. & I

Detaylı

Temel Sabitler ve Birimler

Temel Sabitler ve Birimler Temel Sabitler ve Birimler Işığın boşluktaki hızı: c=299792458 m/s ~3x10 8 m/s Planck sabiti: h= 6.62606957(29)x10-34 Js İndirgenmiş Planck sabiti ħ = h/2π Elektron yükü : e=1.602176565(35)x10-19 C İnce

Detaylı

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziği Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziğinin Standard Modeli fermion boson Dönü 2 Spin/Dönü Bir parçacık özelliğidir (kütle, yük

Detaylı

TÖÇ-5. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Şubat 2016

TÖÇ-5. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Şubat 2016 TÖÇ-5 Parçacık Fiziğine giriş Gökhan ÜNEL / UCI - Şubat 2016 1 Çıkış noktası Yaşadığım bu yerde bir sebep-sonuç ilişkisi var. Bilinçliyken deneyimlediklerime gerçek diyorum. Yaşadığım bu yeri anlayabilirim.

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016 TÖÇ-6 Parçacık Fiziğine giriş Gökhan ÜNEL / UCI - Haziran 2016 1 Çıkış noktası Yaşadığım bu yerde bir sebep-sonuç ilişkisi var. Bilinçliyken deneyimlediklerime gerçek diyorum. Yaşadığım bu yeri anlayabilirim.

Detaylı

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET BÖLÜM : NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET Atomdaki elektronların hareketini kontrol eden kuvvetler elektromanyetik kuvvettir. Elektromanyetik kuvvet atomları ve molekülleri bir arada tutar. Çekirdekteki

Detaylı

Bölüm 1: Lagrange Kuramı... 1

Bölüm 1: Lagrange Kuramı... 1 İÇİNDEKİLER Bölüm 1: Lagrange Kuramı... 1 1.1. Giriş... 1 1.2. Genelleştirilmiş Koordinatlar... 2 1.3. Koordinat Dönüşüm Denklemleri... 3 1.4. Mekanik Dizgelerin Bağ Koşulları... 4 1.5. Mekanik Dizgelerin

Detaylı

Uluslararası Lineer Çarpıştırıcı'da (ILC) Ayar Aracı Bozonları ile Süpersimetri Kırılması

Uluslararası Lineer Çarpıştırıcı'da (ILC) Ayar Aracı Bozonları ile Süpersimetri Kırılması Uluslararası Lineer Çarpıştırıcı'da (ILC) Ayar Aracı Bozonları ile Süpersimetri Kırılması Hale Sert 04 Eylül 2012 İÇERİK Giriş Büyük Hadron Çarpıştırıcısı (LHC) ve Uluslararası Lineer Çarpıştırıcı (ILC)

Detaylı

Parçacık Fiziği: Söyleşi

Parçacık Fiziği: Söyleşi HPFBU-2012, Kafkas Üniversitesi, 12-19 Şubat 2012 Parçacık Fiziği: Söyleşi Saleh Sultansoy, TOBB ETÜ, Ankara & AMEA Fizika İnstitutu, Bakı Gökhan Ünel, UC Irvine Rutherford, Mehmet Akif ve CERN Biraz daha

Detaylı

Mezon Molekülleri ve X(3872)

Mezon Molekülleri ve X(3872) Mezon Molekülleri ve X(3872) A. Özpineci Fizik Bölümü ORTA DOĞU TEKNİK ÜNİVERSİTESİ İZYEF 2013 Yeni fizik olduğundan emin miyiz? Yeni fizik olduğundan emin miyiz? = Yeni fizik olmasını istiyoruz, ama

Detaylı

8.04 Kuantum Fiziği Ders V ( ) 2. = dk φ k

8.04 Kuantum Fiziği Ders V ( ) 2. = dk φ k Geçen Derste ψ( x) 2 ve φ( k) 2 sırasıyla konum ve momentum uzayındaki olasılık yoğunlukları Parseval teoremi: dxψ( x) 2 = dk φ k ( ) 2 Normalizasyon: 1 = dxψ( x) 2 = dk φ k ( ) 2 Ölçüm: x alet < x çözünürlüğü

Detaylı

STANDART MODEL ÖTESİ YENİ FİZİK

STANDART MODEL ÖTESİ YENİ FİZİK STANDART MODEL ÖTESİ YENİ FİZİK MUSA ÖZCAN TTP 8 (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI 8) 21-27 OCAK 2018 1 Bugünü anlamak için, geçmişe bakmak. Büyüğü anlamak için, en küçüğe bakmak. *TTP 8 Güncel sorunlar Gökhan

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler.

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Schrödinger denklemi Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Köşeli parantez içindeki terim, dalga fonksiyonuna etki eden bir işlemci olup, Hamilton

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi 125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi CMS Deneyi, CERN 4 Temmuz 2012 Özet Bugün, CERN deki Büyük Hadron Çarpıştırıcısı'ndaki (BHÇ) CMS deneyi araştırmacıları, CERN de ve Melbourne daki ICHEP 2012

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

Parçacık kinematiği. Gökhan Ünel - Univ. Irvine UPHDYO V

Parçacık kinematiği. Gökhan Ünel - Univ. Irvine UPHDYO V Parçacık kinematiği Gökhan Ünel - Univ. CaIifornia @ Irvine UPHDYO V 9.08.009-03.09.009 Giriş İnsan etrafını merak eder, gözlemlerini açıklamak ister. kedi bile merak eder! Doğayı mantıkla anyabileceğimizi

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017 CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017 2 CERN CERN; Fransızca Avrupa Nükleer Araştırma Konseyi kelimelerinin

Detaylı

ÖZET Doktora Tezi GLUON KUTUPLANMASININ ÜST KUARK SON DURUMLARIYLA İNCELENMESİ Ahmet Alper BİLLUR Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik An

ÖZET Doktora Tezi GLUON KUTUPLANMASININ ÜST KUARK SON DURUMLARIYLA İNCELENMESİ Ahmet Alper BİLLUR Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik An ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ GLUON KUTUPLANMASININ ÜST KUARK SON DURUMLARIYLA İNCELENMESİ Ahmet Alper BİLLUR FİZİK ANABİLİMDALI ANKARA 011 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30 Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, 2006 11:00-12:30 SOYADI ADI Öğrenci No. Talimat: 1. TÜM ÇABANIZI GÖSTERİN. Tüm cevaplar sınav kitapçığında gösterilmelidir? 2. Bu kapalı bir sınavdır.

Detaylı

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K - K - Kara delik: Kütlesel çekim kuvvetinin çok büyük olduğu hatta ışığı bile kendine çekebilen çok küçük kütleli sönmüş yıldızlardır. - Kalori:1 gram suyun sıcaklığını 1 Celcius artırmak için gerekli

Detaylı

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0 Hardronlar neden böyle ilginç şekillere uyarlar? Cevap Gell-Mann ve Zweig tarafından (birbirinden bağımsız olarak) Verildi: Tüm hardronlar KUARK denilen daha temel bileşenlerden oluşmuştur! Kuarklar bir

Detaylı

Maddenin içine yaptığımız yolculukta...

Maddenin içine yaptığımız yolculukta... HİGGS NEDİR? Maddenin içine yaptığımız yolculukta... madde atom elektron proton quark çekirdek nötron Standart Model Standart Model Atomun İçi Doğadaki Temel Kuvvetler Temel Kuvvetler Değişim Parçacıkları

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. LEPTONİK FOTONLARIN ÖZELLİKLERİ ve DENEYSEL ARANMASI. Seyit Okan KARA FİZİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. LEPTONİK FOTONLARIN ÖZELLİKLERİ ve DENEYSEL ARANMASI. Seyit Okan KARA FİZİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ LEPTONİK FOTONLARIN ÖZELLİKLERİ ve DENEYSEL ARANMASI Seyit Okan KARA FİZİK ANABİLİM DALI ANKARA 2012 Her hakkı saklıdır ÖZET Doktora Tezi LEPTONİK

Detaylı

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 11 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 11. HAFTA Kapsam: İmpuls Momentum yöntemi İmpuls ve momentum ilkesi

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 2015

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 2015 ? Güncel sorunlar ve çözüm arayışı Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 215 1 Maddenin en küçük öğesi bulunmadan insan evreni asla anlayamaz. Plato 2 Büyük Patlama dan hemen sonra evrenimiz

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

Modern Fizik (Fiz 206)

Modern Fizik (Fiz 206) Modern Fizik (Fiz 206) 3. Bölüm KUANTUM Mekaniği Bohr modelinin sınırları Düz bir dairenin çevresinde hareket eden elektronu tanımlar Saçılma deneyleri elektronların çekirdek etrafında, çekirdekten uzaklaştıkça

Detaylı

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018 STANDART MODEL VE ÖTESİ Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018 1 Evrenin kısa tarihi Görüldüğü gibi evrenimizin tarihi aynı zamanda atom altı parçacıkların oluşum

Detaylı

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası Karşımadde

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası  Karşımadde Fizikçiler dünyanın ne olduğunu ve onu neyin bir arada tuttuğunu açıklayan isimli bir kuram geliştirmişlerdir. yüzlerce parçacığı ve karmaşık etkileşmeleri yalnızca aşağıdakilerle açıklayabilen bir kuramdır:

Detaylı

DALITZ GRAFİĞİ ANALİZİ İLE HADRONİK BOZUNUMLARIN İNCELENMESİ

DALITZ GRAFİĞİ ANALİZİ İLE HADRONİK BOZUNUMLARIN İNCELENMESİ T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DALITZ GRAFİĞİ ANALİZİ İLE HADRONİK BOZUNUMLARIN İNCELENMESİ MURAT BULDU YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI MALATYA HAZİRAN 2013 Tezin Başlığı : Dalitz

Detaylı

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ 1 LEPTONLAR AYAR BOZONLARI (KUVVET TAŞIYICI BOZONLAR) KUARKLAR STANDART MODELİ ANLAMAK MADDE PARÇACIKLARI

Detaylı

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları A. Fiziksel sabitler ve dönüşüm çarpanları B. Seçilmiş bağıntılar Rutherford saçınımının diferansiyel kesiti: Compton kayması Bohr un hidrojenimsi atom modelinde izinli yörüngelerin yarıçapı: olup burada

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014 Güncel sorunlar ve çözüm arayışı Sezen Sekmen CERN CERN Türk Öğretmenler Programı 23-27 Şubat 2014 1 Maddenin en küçük öğesi bulunmadan insan evreni asla anlayamaz. Plato 2 Büyük Patlama dan sonra evrenimiz

Detaylı

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR Doç. Dr. Turan OLĞAR Ankara Üniversitesi, Mühendislik Fakültesi, Fizik Mühendisliği Bölümü Birçok çekirdek nötron yakalama ile β - yayınlayarak bozunuma uğrar. Bu bozunum sonucu nötron protona dönüşür

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

Giriş Bir çok mekanik problemi Newton yasaları ile çözülebilir, ancak bu teknik bazı problemlerin çözümünde yetersiz kalabilir yada çok zor bir yaklaş

Giriş Bir çok mekanik problemi Newton yasaları ile çözülebilir, ancak bu teknik bazı problemlerin çözümünde yetersiz kalabilir yada çok zor bir yaklaş Bölüm 7 Enerji Giriş Bir çok mekanik problemi Newton yasaları ile çözülebilir, ancak bu teknik bazı problemlerin çözümünde yetersiz kalabilir yada çok zor bir yaklaşım halide gelebilir. Bu tür problemlerin

Detaylı

FİZ4001 KATIHAL FİZİĞİ-I

FİZ4001 KATIHAL FİZİĞİ-I FİZ4001 KATIHAL FİZİĞİ-I Bölüm 3. Örgü Titreşimleri: Termal, Akustik ve Optik Özellikler Dr. Aytaç Gürhan GÖKÇE Katıhal Fiziği - I Dr. Aytaç Gürhan GÖKÇE 1 Bir Boyutlu İki Atomlu Örgü Titreşimleri M 2

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

Doç. Dr. Orhan ÇAKIR Ankara Üniversitesi, Ankara

Doç. Dr. Orhan ÇAKIR Ankara Üniversitesi, Ankara Doç. Dr. Orhan ÇAKIR Ankara Üniversitesi, Ankara PARÇACIK FİZİĞİNDE SİMULASYONLARA GENEL BAKIŞ SİMULASYON YÖNTEMLERİ ve ÇARPIŞMA KİNEMATİĞİ SİMULASYON PROGRAMLARI (CompHEP, PYTHIA) 2 3 1. PARÇACIK FİZİĞİNDE

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-0 Ders 5 Elektrik Alanları Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik. Cilt (SERWAY) -Fiziğin Temelleri.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt ) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Kuantum Mekaniğinin Varsayımları

Kuantum Mekaniğinin Varsayımları Kuantum Mekaniğinin Varsayımları Kuantum mekaniği 6 temel varsayım üzerine kurulmuştur. Kuantum mekaniksel problemler bu varsayımlar kullanılarak (teorik/kuramsal olarak) çözülmekte ve elde edilen sonuçlar

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

PROBLEMLERLE GÖRELİ MEKANİK VE ELEKTRODİNAMİK

PROBLEMLERLE GÖRELİ MEKANİK VE ELEKTRODİNAMİK PROBLEMLERLE GÖRELİ MEKANİK VE ELEKTRODİNAMİK ÇÖZÜMLÜ 11 PROBLEM Prof. Dr. Harun AKKUŞ 215 1 PROBLEMLERLE GÖRELİ MEKANİK VE ELEKTRODİNAMİK ÇÖZÜMLÜ 11 PROBLEM Prof. Dr. Harun AKKUŞ 215 2 İÇİNDEKİLER Önsöz....

Detaylı

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7)

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7) HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7) HİGGS HAKKINDA KONU BAŞLIKLARI STANDART MODEL-TEMEL PARÇACIKLAR HİGGS BOZONU HİGGS ALANI HIZLANDIRICILAR(HİGGS

Detaylı

IceCube Deneyinde Gözlemlenen PeV Enerjili Olayların Renk Sekizlisi Nötrino Yorumu

IceCube Deneyinde Gözlemlenen PeV Enerjili Olayların Renk Sekizlisi Nötrino Yorumu Maddenin Yeni Yapı Düzeyi: PREONLAR Çalıştayı 8-10 Mart 2018 IceCube Deneyinde Gözlemlenen PeV Enerjili Olayların Renk Sekizlisi Nötrino Yorumu Ümit Kaya 09.03.2018 TÜBİTAK 1001 Projesi : 114F337 A. N.

Detaylı

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER Dr. İlkay TÜRK ÇAKIR TAEK Sarayköy Nükleer Araştırma ve Eğitim Merkezi Ar-Ge Bölümü Füzyon Birimi - Hızlandırıcı Fiziği Birimi 24/09/07 III. UPHDYO 1 İÇERİK

Detaylı

Süpernova Nötrinoları ve Güncel Nötrino Araştırmaları

Süpernova Nötrinoları ve Güncel Nötrino Araştırmaları Süpernova Nötrinoları ve Güncel Nötrino Araştırmaları Taygun Bulmuş Mimar Sinan Güzel Sanatlar Üniversitesi Fizik Bölümü 13 Şubat 2015 Taygun Bulmuş (MSGSU) Ankara YEF Günleri 2015 13 Şubat 2015 1 / 19

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

MSGSÜ FİZİK YÜKSEKLİSANS PROGRAMI

MSGSÜ FİZİK YÜKSEKLİSANS PROGRAMI MSGSÜ FİZİK YÜKSEKLİSANS PROGRAMI SEÇMELİ DERSLER Teori + AKTS FİZ640 Nükleer Fizik FİZ645 Nötrino Fiziği FİZ660 İleri Hesaplamalı Fizik Çekirdeğin genel özellikleri Düşük enerjilerde iki cisim problemi

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 7 MANYETİK ALANLAR 2 İÇERİK

Detaylı

ELEKTRON-POZİTRON VE ELEKTRON-FOTON ÇARPIŞTIRICILARINDA SÜPERSİMETRİ PARAMETRE UZAYININ

ELEKTRON-POZİTRON VE ELEKTRON-FOTON ÇARPIŞTIRICILARINDA SÜPERSİMETRİ PARAMETRE UZAYININ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ ELEKTRON-POZİTRON VE ELEKTRON-FOTON ÇARPIŞTIRICILARINDA SÜPERSİMETRİ PARAMETRE UZAYININ İNCELENMESİ Semra GÜNDÜÇ FİZİK MÜHENDİSLİĞİ ANABİLİM DALI

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi Fizik Doktora Programı. Program kapsamında sunulacak olan seçmeli dersler ve içerikleri :

Mimar Sinan Güzel Sanatlar Üniversitesi Fizik Doktora Programı. Program kapsamında sunulacak olan seçmeli dersler ve içerikleri : Mimar Sinan Güzel Sanatlar Üniversitesi Fizik Doktora Programı Program kapsamında sunulacak olan seçmeli dersler ve içerikleri : Kodu FİZ640 Nükleer Fizik FİZ645 Nötrino Fiziği FİZ660 İleri Hesaplamalı

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016 Higgs ve Higgs Buluşu Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016 1 Standart Model de kütle sorunu Madde parçacıkları Etkileşim aracıları Parçacıklara kütlesini veren nedir? Neden

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015 Higgs ve Higgs Buluşu Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015 1 STANDART MODEL temel parçacıklar ve etkileşimler hakkındaki bütün bilgimizi içeren bir kuramlar bütünüdür. Force carriers

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır DERS ÖĞRETİM PLANI (Bölümden Bağımsız hazırlanmıştır TÜRKÇE 1 Dersin Adı: ÇEKİRDEK FİZİĞİ 2 Dersin Kodu: FZK3004 3 Dersin Türü: Zorunlu, 4 Dersin Seviyesi: Lisans 5 Dersin Verildiği Yıl: 2011-2012 6 Dersin

Detaylı

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII Geçen Derste Verilen l kuantum sayılı açısal momentum Y lm (θ,φ) özdurumunun radyal denklemi 1B lu SD şeklinde etkin potansiyeli olacak şekilde yazılabilir, u(r) = rr(r) olarak tanımlayarak elde edilir.

Detaylı

DOKTORA TEZİ KORKUT OKAN OZANSOY ANKARA

DOKTORA TEZİ KORKUT OKAN OZANSOY ANKARA ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ GÜNÜMÜZ VE GELECEKTEKİ YÜKSEK ENERJİLERDE BİLEPTONLAR KORKUT OKAN OZANSOY FİZİK ANABİLİM DALI ANKARA 005 Her hakkı saklıdır Prof. Dr. Satılmış ATAĞ

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

2-MANYETIK ALANLAR İÇİN GAUSS YASASI

2-MANYETIK ALANLAR İÇİN GAUSS YASASI 2-MANYETIK ALANLAR İÇİN GAUSS YASASI Elektrik yükleri yani pozitif ve negatif yükler birbirlerinden ayrı ve izole halde düşünülebilirler. Bu durum, Kuzey ve güney manyetik kutuplar için de söz konusu olabilir

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu Laboratuar Yeri: E1 Blok Termodinamik Laboratuvarı Laboratuar

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

, bu vektörün uzay ekseni üzerindeki izdüşümüdür. Bunlar şu değerlere sahiptir:

, bu vektörün uzay ekseni üzerindeki izdüşümüdür. Bunlar şu değerlere sahiptir: .. AÇISAL MOMENTUM Çekirdek ve çekirdekteki parçacıkların açısal momentumları vardır. Bu özellik her türlü nükleer reaksiyonda gözlenir. Açısal momentumun gözlenebilir özelliği açısal momentum vektörünün

Detaylı

Güncel sorunlar ve çözüm arayışı. G. Ünel CERN Türk Öğretmenler Çalıştayı 8 Ocak 2018

Güncel sorunlar ve çözüm arayışı. G. Ünel CERN Türk Öğretmenler Çalıştayı 8 Ocak 2018 ? Güncel sorunlar ve çözüm arayışı G. Ünel CERN Türk Öğretmenler Çalıştayı 8 Ocak 218 1 Büyük Patlama dan hemen sonra evrenimiz bir parçacık kadar küçüktü. 2 ve evrenimizin gelişimi parçacıklarla ve onların

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu 40 Radyoaktivite - Büyük Patlama ve Evrenin Olşm 1 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktr. Işık hızıyla hareket ettikleri için atom içerisinde blnamazlar.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

İş, Güç ve Enerji. Fiz Ders 7. Sabit Bir Kuvvetin Yaptığı İş. Değişen Bir Kuvvetin Yaptığı İş. Güç. İş-Kinetik Enerji Teoremi

İş, Güç ve Enerji. Fiz Ders 7. Sabit Bir Kuvvetin Yaptığı İş. Değişen Bir Kuvvetin Yaptığı İş. Güç. İş-Kinetik Enerji Teoremi Fiz 1011 - Ders 7 İş, Güç ve Enerji Sabit Bir Kuvvetin Yaptığı İş Değişen Bir Kuvvetin Yaptığı İş Güç İş-Kinetik Enerji Teoremi http://kisi.deu.edu.tr/mehmet.tarakci/ Günlük yaşamda iş kavramı bir çok

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı