İspatlarıyla Türev Alma Kuralları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İspatlarıyla Türev Alma Kuralları"

Transkript

1 İspalarıyla Türev Ala Kuralları Muarre Şai dy f( ) f() y f() y f () li d 0. f() a (a R) ise f ()? f( ) f() a a f () li li 0 0 f () 0 5. f() ise f ()? f () li 0 ( ) ( ) f () li 0 ( ) f () li li 0 ( ) 0. f() ise f ()? f( ) f() f () li 0 ( ) f () li li 0 0 f () 3. f() a ( N ) ise f ()? f( ) f() f () li 0 a( ) a f () li 0 ( ) f () a li 0 ( ) ( )... f () a li 0 f () a li ( ) ( ) 0 f () a 4. f() ise f ()? 3 ( )... ( ) ( ) f () li li 0 0 f () li li 0 ( ) 0 ( ) f () f () 6. F() f() g() ise F ()? f( ) g( ) f() g() F () li 0 f( ) f() g( ) g() F () li 0 f( ) f() g( ) g() F () li li 0 0 F () f () g() 7. F() f() g() ise F ()? f( ) g( ) f() g() F () li 0 F () li 0 f( ) g( ) f() g() f( ) g() f( ) g() f( ) f() F () li g() 0 g( ) g() li f( ) 0 F () f () g() f() g()

2 İspalarıyla Türev Ala Kuralları Muarre Şai f() 8. F() ise F ()? g() f( ) f() g( ) g() F () li 0 f( ) g() f() g( ) F () li 0 g( ) g() f( ) g() f() g( ) F () li 0 g( ) g() f() g() f() g() g( ) g() f( ) f() g() F () li 0 g( ) g() f() g( ) g() g( ) g() f( ) f() F () li g() 0 g( ) g() f() li 0 g( ) g() 0. f() l ise f ()? e li ya da e li 0 aııı ullaacağız. l( ) l() f () li 0 f () li l( ) li l( ) 0 0 diyeli. ve 0 ie 0 olur. f () le le f (). f() e ise f ()? e e e (e ) f () li li 0 0 f () e li 0 e f () g() f() g() F () g() 9. f() ise f ()? g() g( ) g() f () li 0 g( ) g() f () li 0 g( ) g() g( ) g() f () li 0 g( ) g() e diyeli. l( ) ve 0 ie 0 olur. f () e li 0 l( ) f () e li 0 l( ) f () e li 0 l( ) f () e 0 f () e le l li( ) g() f () g() f () g() g() f () e

3 İspalarıyla Türev Ala Kuralları Muarre Şai. f() a ise f ()? 4. f() cos ise f ()? a a a (a ) f () li li 0 0 f () a li 0 a diyeli. a log a( ) ve 0 ie 0 olur. f () a li 0 log a ( ) f () a li 0 log a ( ) f () a li 0 log a( ) f () a a 0 log li( ) cos( ) cos() f () li 0 si( ) si( ) f () li 0 si si( ) f () li 0 si f () li li si( ) 0 0 f () si f () a f () a la log e a 5. f() a ise f ()? 3. f() si ise f ()? si( ) si() f () li 0 si( ) cos( ) f () li 0 si cos( ) f () li 0 si f () li li cos( ) 0 0 a( ) a() f () li 0 si( ) f () li 0 cos( ) cos si f () li li 0 0 cos( ) cos f () ; veya cos cos si f () cos f () a f () cos 3

4 İspalarıyla Türev Ala Kuralları 6. F() fg() f(g()) ise F ()? f(g( ) f(g()) F () li 0 g( ) g() diyeli. g( ) g() ve 0 ie 0 olur. f(g() ) f(g()) F () li 0 İl çarpada g() u oyalı. Buu, göreyi olaylaşırası içi yapıyoruz. Muarre Şai 7. g() f () y ise g()? f () g() fg() f(g()) f(g()) f (g()) g() g() f (g()) dy d d dy Bu soucu şöyle de ifade edebiliriz: (f ) () f (y)) f(u ) f(u) g( ) g() F () li li 0 0 f (u) F () f (u) g() F () f (g()) g() Bu so forül. Zicir Kuralı adıyla şöyle de ifade edilir: z f(u), u g() ve i arasıa arşılı u ve z fosiyolarıdai aralar u ve z olsu. z z u u z z u li li ( ) 0 0 u u ve z ürevleri var ola fosiyolar olara abul edilirse, 0 ie u 0 olur. z z u li li ( ) 0 0 u z z u li li li ) 0 u0 u 0 dz dz du d du d 8. f() arcsi y ise f ()? y arcsi si y Zicir uralı işiizi ço olaylaşırır. d(siy) dy si y dy d Ayı şeilde; dy cos y d dy f () d cos y f () f () si y f() arccos f () f() arca f () f() arc co f () buluur. Ters fosiyoları ürevleri doğruda doğruya ürev aııyla da buluabilir. Aca bu olduça işlei bol bir yoldur. Buraya adar er bilgiyi öceii üzerie oyara geldiğiize göre, elde eiğiiz bilgileri işiizi olaylaşıra içi ullaalıyız. 4

5 İspalarıyla Türev Ala Kuralları 9. f() y ( Z ) ise f ()? d(y ) dy y y dy d dy dy y d d y Burada, y değerii ürüde bulalı. y y y dy dy d y d f () 0. Kapalı fosiyoları ürevlerii zicir uralıda yararlaara alacağız. Buu bir örelerle gösereli: a. dy y y 6 y? d d( y) d(y ) 0 d d d( ) dy d d(y ) dy y 0 d d d dy d y y y y 0 y y y b. si y y si ise y? si y si y cos y y y si y si cos y siy y si y si si y y si si y y siy si. f() F() e ise F ()? Muarre Şai F (), bileşe fosiyou ürevii ala uralı ile, f() F () e f () olara buluur. Biz buu bir de ürev aıı ile bulalı: e F () li 0 f( ) e f() f( ) f() diyeli. f( ) f() ve 0 ie 0 olur. e F () li 0 f() e f() F () e li 0 f() e f() e F () e li( ) 0 f() e f( ) f() F () e li li 0 0 f() (soru) F () e f (). f() l ise f ()? f () f (), çarpıı ürevi uralı ile buluur. Biz ürev aıı yoluyla bulalı: ( ) l( ) l f () li 0 l( ) l( ) l f () li 0 l( ) l f () li 0 l( ) li 0 l( ) l f () li 0 f () l (soru 0) li l( ) 0 l 5

6 İspalarıyla Türev Ala Kuralları Muarre Şai 3. f() ise f ()? l f() l f() l f() e l e olur. f() fosiyouu ürevii ürev aıı ile alıası iseirse,. ve. sorulardai çözü işleleri birlie yürüülür. Biz, ii arafı logariasıı alara zicir uralıı uygulayacağız: f() l f() l f () l f() f () f() ( l ) 5. y y y 6 ise y? l y y e y y l ve e olduğuu düşüere zicir uralıı uygulayacağız. y y (ly y ) (y l y) y y Paraezler açılıp y çeilirse; 6. y ly y y l y y y ise y? buluur. f () ( l ) buluur. 3. l f() ise f ()?. soruda öerileler burada da geçer-lidir. l f() l f() l l l f () l f() f () f() l y l y l y y y y y y Böylece, üssü doğal sayı olduğu duruda bulduğuuz uralı, üssü rasyoel sayı olası duruuda da geçerli olduğu göseriliş olur. f () l 4. l f() (l ) ise f ()? l f() (l ) l f() l l(l ) f () l(l ) l f() l f () f() l(l ) l f () (l ) l(l ) 6

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

32. Kardinal Say lar, Tan m ve lk Özellikler

32. Kardinal Say lar, Tan m ve lk Özellikler 32. Kardial Say lar, Ta ve l Özelliler Her üei iyis ralaabilece ii a tla flt (Teore 24.1). Özel iyis ral üeler ola ordialleri de Bölü 10 da ta la flt. Ordiallerde iyis ralaa iliflisiyle verilir, yai bir

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

Matrislerin Hadamard Çarpımı Üzerine *

Matrislerin Hadamard Çarpımı Üzerine * S Ü Fe Fa Fe Derg Sayı 37 (011) 9-14, KONYA Matrisleri Hadaard Çarpıı Üzerie * İ. Halil GÜMÜŞ, Necati AŞKARA Selçu Üiversitesi, Fe Faültesi, Mateati Bölüü, Koya Özet: Bu çalışada lieer cebirde öeli bir

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet Hiperboli Küresel Uzaylarda Bir Simetri Dörtyüzlüü Hacmi Üzerie Bai KARLIĞA arliaga@gazi.edu.tr Gazi Üirsitesi Fe Edebiyat Faültesi atemati Bölümü 06500 Aara T.oullar/Aara urat SAVAŞ msavas@gazi.edu.tr

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

C E V A P L I T E S T ~ 1

C E V A P L I T E S T ~ 1 C E V A P L I T E S T ~. 5. () 7 ( ).( ) A) B) C) 0 D) E) A) B) C) 0 D) E). 6. 5 A) 0 B) C) D) E) A) B) C) D) E) 5. b b ab a a A) B) a C) b D) b E) 7. ( 5 ) A) B) C) 0 D) E). 9 8. 5 8 A) B) 0 C) D) E)

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır.

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır. . OLASILIK TEORİSİ İstatistisel araştırmaları temel oularıda biri soucu öcede esi olara bilimeye bazı şasa bağlı olayları (deemeleri) olası tüm mümü souçlarıı hagi sılıla ortaya çıtığıı belirleyebilmetir.

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads.

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads. http://oeis.org/a - (,,) Origial wor by Ata Aydi Uslu Hamdi Gota Ozmeese.. Explaatio: Number of bracelets made with blue, idetical red ad idetical blac beads. Usage: Chemistry: CROSSRES: A85 A989 A989

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ LİNEER CEBİR DERS NOTLARI Aye KOÇ I MATRİSLER I.1. Taım F bir cisim olmak üzere her i = 1,2,..., m, j = 1,2,..., içi aij F ike a11 a12... a1 a21 a22... a 2 M M... M am1 am2... am (1) şeklide dikdörgesel

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

Sınır Koşullarının Spektral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sınır-Değer Problemi İçin Düz ve Ters Problemler

Sınır Koşullarının Spektral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sınır-Değer Problemi İçin Düz ve Ters Problemler CÜ Fe-Edebiyat Faültesi Fe Bilimleri Dergisi (6)Cilt 7 Sayı Sıır Koşullarıı Spetral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sıır-Değer Problemi İçi Düz ve Ters Problemler R Kh Amirov, B Kesi, A

Detaylı

On invariant subspaces of collectively compact sets of linear operators

On invariant subspaces of collectively compact sets of linear operators itüdergisi/c fe bilimleri Cilt:4, Sayı:, 85-94 Kasım 26 Birlite ompat operatör ailelerii değişmez altuzayları üzerie uç MISIRLIOĞLU *, Şafa ALPAY İÜ Fe Bilimleri Estitüsü, Matemati Mühedisliği Programı,

Detaylı

GERİ ÖDEMELERİN VE KİRA ÖDEMELERİNİN PARÇALI GEOMETRİK DEĞİŞİMLİ OLDUĞU ORTAKLIĞA DAYALI KONUT FİNANSMANI MODELİ

GERİ ÖDEMELERİN VE KİRA ÖDEMELERİNİN PARÇALI GEOMETRİK DEĞİŞİMLİ OLDUĞU ORTAKLIĞA DAYALI KONUT FİNANSMANI MODELİ Süleyan Deirel Üniversiesi İisadi ve İdari Bililer Faülesi Dergisi Y C7 S3 s475-484 Suleyan Deirel Universiy The Journal of Faculy of conoics and Adinisraive Sciences Y Vol7 No3 pp475-484 GRİ ÖDRİN V KİRA

Detaylı

[ ]{} []{} []{} [ ]{} g

[ ]{} []{} []{} [ ]{} g ZAMAN TANIM ALANINDA ÇÖZÜM Yapı özellilerii ortogoalli şartlarıı sağlaaası duruuda, diferasiel hareet delei doğruda üeri ötelerle çözülebilir Depre etisi altıdai ço atlı apılara ugulaa üzere ii arı üeri

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BİR VE İKİ DEĞİŞKENLİ BERNSTEIN-CHLODOWSKY POLİNOMLARI. Neşe İŞLER

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BİR VE İKİ DEĞİŞKENLİ BERNSTEIN-CHLODOWSKY POLİNOMLARI. Neşe İŞLER ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BİR VE İKİ DEĞİŞKENLİ BERNSTEIN-CHLODOWSKY POLİNOMLARI Neşe İŞLER MATEMATİK ANABİLİM DALI ANKARA 009 Her haı salıdır ÖZET Yüse Lisas Tezi

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

1.BÖLÜM LİTERATÜR ÖZETİ

1.BÖLÜM LİTERATÜR ÖZETİ .BÖÜM İTERATÜR ÖZETİ Bu bölüde boacc ucas -boacc dzler le lgl lteratürde yer alış ola bazı çalışalar ve boacc dzler bölüeble özeller odülüe göre -boacc dzler peryodu peryod uzuluğu le lgl yapıla çalışalar

Detaylı

T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CATALAN SAYILARI VE CATALAN MATRİSLERİ. Hikmet Turan EKİCİ YÜKSEK LİSANS TEZİ

T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CATALAN SAYILARI VE CATALAN MATRİSLERİ. Hikmet Turan EKİCİ YÜKSEK LİSANS TEZİ T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CATALAN SAYILARI VE CATALAN MATRİSLERİ Himet Tura EKİCİ YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI DANIŞMAN Dr. Şerife BÜYÜKKÖSE KIRŞEHİR 013 i FEN BİLİMLERİ

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

ifadesi ile, n kişilik bir topluluktakilerinin doğum günlerinin tümünün farklı olması olasılığını

ifadesi ile, n kişilik bir topluluktakilerinin doğum günlerinin tümünün farklı olması olasılığını Çözüler (Wee tr). Bir taraftai (bu tarafı yuarı taraf abul edeli) uçları iişer iişer, rastgele seçere bağlayalı. Bağlaa çiftlerde birii seçip, çifti oluştura iplere A ve A diyeli. A, aşağıda serbest duruda

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

PARÇALI ARİTMETİK DEĞİŞİMLİ GERİ ÖDEMELERE SAHİP ORTAKLIĞA DAYALI KONUT FİNANSMAN MODELİ

PARÇALI ARİTMETİK DEĞİŞİMLİ GERİ ÖDEMELERE SAHİP ORTAKLIĞA DAYALI KONUT FİNANSMAN MODELİ Süleya Deirel Üiversitesi İtisadi ve İdari Bililer Faültesi Dergisi Y.0, C.6, S., s.-7. Suleya Deirel Uiversity The Joural of Faculty of Ecooics ad Adiistrative Scieces Y.0, Vol.6, No., pp.-7. PARÇALI

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Joural of Egieerig ad Natural Scieces Mühedisli ve Fe Bilileri Dergisi Ivited Review Paer / Çağrılı Derlee Maalesi REGULARIZED TRACES OF DIFFERENTIAL OPERATORS Siga 5/ Mehet BAYRAMOĞLU *, Ehlia ADIGÜZELOV

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

Temel Elektrik Mühendisliği-I

Temel Elektrik Mühendisliği-I Akara Üiversiesi Mühedislik Fakülesi, Fizik Mühedisliği Bölümü FZM7 Temel Elekrik MühedisliğiI Temel Elekrik Mühedisliğiil, Çev. Ed: K. Kıymaç Yazarlar: A. E. Fizgerald, D. E. Higgibham, A. Grabel 3. Bölüm:

Detaylı

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri C.Ü. Fe-Edebiyat Faültesi Fe Bilimleri Dergisi 5Cilt 6 Sayı Aralığı İç Notasıda Süresizliğe Sahip Dirac Operatörüü Spetral Özellileri R. Kh. AMİROV ve Y. GÜLDÜ Cumhuriyet Üiversitesi Fe Edebiyat Faültesi

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim LİMİT I. TANIM:, a yakınındaki değerleri için tanımlı bir onksiyon olsun. Alınan ε> sayısına karşılık -L < ε olacak şekilde -a < δ koşulunu sağlayan δ > sayısı bulunabiliyorsa ;, a ya yaklaşırken, L ye

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM. Seyide ATAK MATEMATİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM. Seyide ATAK MATEMATİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM Seyide ATAK MATEMATİK ANABİLİM DALI ANKARA 202 Her haı salıdır ÖZET Yüse Lisas Tezi CHLODOWSKY-TAYLOR

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir.

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir. 1 Taı: pozitif doğal saı olak üzere kuvvette kökü deir. KÖKLÜ İFADELER = a dekleii sağlaa saısıa a ı ici = a dekleide = a, tek ise a 0 ; = ± a, çift ise Uarı: = ise, a = a olarak gösterilir. a ifadesie

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BRAHMAGUPTA DÖRTGENLERİ İLE BRAHMAGUPTA GENLERİNİN OLUŞTURULMASI ÜZERİNE BİR ARAŞTIRMA Lüfiye YILMAZ YÜKSEK LİSANS TEZİ İLKÖĞRETİM ANABİLİM DALI MATEMATİK

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM Tüme varım. Kazaım : Tüme varım yötemii açılar ve uygulamalar yapar. Toplam ve Çarpım Sembolü. Kazaım : Toplam sembolüü ve çarpım

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ TAMAMLANMAMIġ TRĠBONACCĠ SAYILARI VE DETERMĠNANTLARI Nazmiye YILMAZ YÜKSEK LĠSANS TEZĠ Maemai Aabilim Dalı Temmuz-0 KONYA Her Haı Salıdır TEZ KABUL VE ONAYI

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, ARA SINAV 13 KASIM 2014 Adı Soyadı: No: İMZA: 1. (10+10 p.) 2. (10+10 p.) 3. (10+10+10 p.) 4. (65 p.) TOPLAM NOT: Tam puan almak için

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sistem Diamiği ve Modellemesi Sistem Nedir? Belli bir görevi yerie getire te bir elemaa veya biribirleri ile fizisel olara ilişiledirilmiş elemalara sistem deir. Sistem Taımı ve Temel Kavramlar Sistem

Detaylı

RASYONEL FARK DENKLEMLERĐ VE RASYONEL FARK DENKLEMLERĐNĐN BĐLGĐSAYAR UYGULAMALARI ÜZERĐNE BĐR ÇALIŞMA

RASYONEL FARK DENKLEMLERĐ VE RASYONEL FARK DENKLEMLERĐNĐN BĐLGĐSAYAR UYGULAMALARI ÜZERĐNE BĐR ÇALIŞMA T.C. SELÇUK ÜNĐVERSĐTESĐ EĞĐTĐM BĐLĐMLERĐ ENSTĐTÜSÜ ORTÖĞRETĐM FEN VE MTEMTĐK LNLR EĞĐTĐMĐ N BĐLĐM DLI MTEMTĐK EĞĐTĐMĐ BĐLĐM DLI RSYONEL FRK DENKLEMLERĐ VE RSYONEL FRK DENKLEMLERĐNĐN BĐLGĐSYR UYGULMLRI

Detaylı

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ç ö çö ö çö ö ğ ç ğ ğ ğ ğ ğ ğ ğ ö ö ö ğ ç ö ğ ö ç ğ ğ ö ğ ğ ğ ğ ğ ç ğ ö ö ç ç ğ ç ğ ö ğ ğ ğ çö çö ö ö ğ ö ğ ö ö ğ ç

Detaylı

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET

Detaylı

Ü İ İ İ Ğ öğ İ İ öğ İ Ü İ ö ç ö ö Ü ö Ö ö ö ö ç ö ö ö ç ö ö ö İ ç ö ç ö ç ö ö ö ö ç ç ö ç ç ç ö Ç ç ç ö ö ç ç ö ö ç ö ç ö Ö ö ö ö ö Ç ö ç ç ç ö ö Ö Ö Ö ö ö ç Ç Ö ö ö ö ç ö ç ö ç ö ö ö ç ç ç ö ö ö Ü ç Ö

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö Ğ ö ö ö «ö Ğ Ö ö Ç ö ö Ö ö ö İ ö İ ö İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö İ ö Ç ö ö ö ö ö ö Ç ö Ö Ç ö İ Ç ö Ü Ş ö ö İ ö ö Ş ö İ Ü Ş ö ö ö ö Çö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ TOPLANABİLİRLİK ALANLARININ ÇARPAN UZAYLARI. Mehmet ÜNVER MATEMATİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ TOPLANABİLİRLİK ALANLARININ ÇARPAN UZAYLARI. Mehmet ÜNVER MATEMATİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ TOPLANABİLİRLİK ALANLARININ ÇARPAN UZAYLARI Mehmet ÜNVER MATEMATİK ANABİLİM DALI ANKARA 2009 Her haı salıdır ÖZET Yüse Lisas Tezi TOPLANAB

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç

Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç Ğ Ğ Ğ Ğ Ğ Ğ Ç ç ö ö Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç ö ö ç ç ç ç ö ö Ü Ö ç ö ç ç ç ç ç ç ç ö ö ç ö ö ö ö ö ç ö ç ö ç ç ç ç ç ç ö ç ç ç ç ç ç ç ö ç ç ç ç ç ö ç ç ç ç ö ç ö ö ö ç ç ç ç ç ç

Detaylı

Ü Ğ ç Ğ ç ö ç ö

Ü Ğ ç Ğ ç ö ç ö Ü Ğ ç Ğ ç ö ö ç Ğ Ü Ğ ç Ğ ç ö ç ö Ğ ç ç ö ö ç ç ç ö ç ç Ç ç ç ç Ş ç ç ö ç Ü ç ç ç ö ö ç ö Ş ö Ğ ç ç ö ç ö Ü ç ö ç ç ö ö ç ç Ü ç çö ö ç ö ç ö ö ö ö Ü ç ö Ö ö Ü ö ö Ü Ş ö ö Ü Ş ç Ş ö Ğ ö Ö ö Ğ ç ç Ö ç ç

Detaylı

İŞ, GÜÇ, ENERJİ BÖLÜM 8

İŞ, GÜÇ, ENERJİ BÖLÜM 8 İŞ, GÜÇ, EERJİ BÖÜ 8 ODE SORU DE SORUARI ÇÖZÜER 5 Cise eti eden sür- tüne uvveti, IFI0 ür F α F T W (F ür ) (Fcosα (g Fsinα)) düzle Ya pı lan net iş de ğe ri α, ve ütleye bağ lı dır G düzle 00,5 G0 0 I

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı