Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir."

Transkript

1 İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne kadar olur? Yrd. Doç. Dr. Safa KARAMAN 1 İSTATİSTİKTE VERİ Bu ve buna benzer bir çok sorunun cevabını verebilek ya da cevap hakkında yoru yapabilek için elde ölçü ya da sayı yolu ile elde ediliş verilere gereksini vardır. Çünkü; İstatistik sayı, raka İstatistik Anakütleden rassal olarak seçilen örneklelerden hesaplanan değerlerdir. VERİLERİN ÖZETLENMESİ Veri: Herhangi bir konu ile ilgili ölçü ya da sayı Data-Datu 1

2 VERİLERİN ÖZETLENMESİ AMACIYLA İSTATİSTİKTE SERİLER KULLANILIR. LİSTE SERİ BASİT SERİ FREKANS SERİSİ GRUPLANDIRILMIŞ FREKANS SERİSİ LİSTE SERİ İlgilenilen değişkenin alış olduğu değerler diğer bir değişkene göre ya da rastgele sıralanış ya da gözle sırasına göre kaydediliş ise, bu seriye liste seri denir. Veriler liste şeklindedir. Herhangi bir işle yapılaıştır. Ha veri şeklindedir. BASİT SERİ İlgilenilen değişkenin alış olduğu değerlerin küçükten büyüğe ya da büyükten küçüğe doğru sıralanası ile elde edilen seri tipine basit seri denir. LİSTE SERİ-Ha hali BASİT SERİ- İşle görüş hali Bir sınıftaki öğrencilerin final notları LİSTE SERİ Öğrenci No Puan Öğrenci No Puan Öğrenci No Puan Öğrenci No Puan BASİT SERİ Puan (Xi) Puan (Xi) Puan (Xi) Puan (Xi) En küçük not Veriler basit bir işlee tabi tutuldu Ha veri basit veri şekline dönüştü En büyük not

3 FREKANS SERİ Örneğin 0 tane değil de 5000 tane veri olsaydı Bu basit veri şeklinde 5000 satır olarak yazılacaktı Bu basit seri olaaktadır. Çünkü basit değil Bunu alt alta yazak çok zaan alıcı ve yorulaak ise zor olacaktır. FREKANS SERİ Herbir verinin tekrarlana sıklığı frekans olarak değerlendirilektedir. Bu bağlada tekrarlaa sayısı frekans olarak ifade edilekte, bu şekilde oluşturulan seriye de frekans serisi denilektedir. En küçük not BASİT En büyük not Frekans serisi FREKANS Puan (Xi) fi Topla 0 Bu şekilde biraz daha özet bilgiye ulaşılış oldu Ortalarda bir yığıla var şeklinde bir yoru yapılabilir. FREKANS SERİ GRUPLANDIRILMIŞ SERİ Gözle değerlerinin çok sayıda olası duruunda yani, örneğin bir sınıfta alınan notların arasında neredeyse her sayıda notun olası duruunda he liste, he basit he de frekans veri, düzenlee işleinde yetersiz kalaktadır. Yani; Xi fi TOPLAM 108 3

4 GRUPLANDIRILMIŞ SERİ BÖYLE BİR DURUMDA, VERİLERİ DAHA ANLAMLI HALE GETİRMEK İÇİN, BELİRLİ ARALIKLARLA GRUPLANDIRILARAK VERİLERİN DAHA ANLAŞILIR HALE GETİRİLMESİ SAĞLANIR GRUPLANDIRILMIŞ SERİ İstenilen değişken değerlerinin belirlenen sınıflara (aralıklara) ayrılası ve bu sınıflara giren gözle sayısının ayrı bir sütuna yerleştirilesi ile elde edilen seriye gruplandırılış seri denir. ÖRNEK gibi belirli aralıkta gruplaa yapılır. GRUPLANDIRILMIŞ SERİ GRUP SAYISI: Tü frekansları içine alacak şekilde gözle değerlerinin aralıklarına göre oluşturulan sınıfların topla sayısıdır. Örneğin; Burada sınıf sayısı 4 tür. Yani tü gözle değerleri bu sınıflara yerleştiriliş deektir. GRUP SAYISI BELİRLEME? Bu sayının ne çok fazla, ne de çok az olası gerekir. Yani tü gözle değerlerini içine alak koşulu ile, akul sayıda bir sınıf sayısı seçilelidir. Ancak istatistik olarak bu her sayıda olabilir. Yani keyfi olarak belirlenebilir. Ancak burada ateatiksel bir yol izlenesi, dataların daha iyi açıklanasının sağlanası bakıından önelidir. GRUP SAYISI BELİRLEME? Üç şekilde yapılabilir. 1) kuralı ) Sturges kuralı 3) Karekök kuralı 4

5 1) kuralı ile grup sayısı belirlee ) Sturges kuralı ile grup sayısı belirlee 3) Karekök kuralı ile grup sayısı belirlee :sınıf sayısı n n:örnek sayısı SINIF ARALIĞI Bir sınıfın ne kadar geniş olacağını ifade eder ve aşağıdaki şekilde hesaplanır. S A E B D S S E K D EBD: En büyük değer EKD: En küçük değer GRUPLANDIRILMIŞ SERİ Puan (Xi) 10-8'den az 'dan az 'den az 'den az 'den az 1 TOPLAM 0 fi Bir dersin final notları a) Basit seri b) Frekans seri c) Gruplandırılış seri olarak göstereli 5

6 a) Basit seri b) Frekans seri Puan (Xi) fi En düşük not En yüksek not 91 1 TOPLAM 5 Grup sayısı: Sturges kuralına göre; M1+3.3log(n) M1+3.3log(5) Sınıf aralığı: SA(EBD-EKD)/SS (91-15)/6 13 Puan (Xi) fi 15-8'den az 'den az 'den az 'den az 'den az 80-93'den az 3 TOPLAM 5 VERİLERİN SUNUMU Bir çalışadan elde edilen veriler ha veri niteliğindedir. Ha verilerden bilgi edinek zor ve zaan alıcıdır. Ha veriler çok karaşık durudadır. Verilerin düzenlenesi ile etkin bilgi teini sağlanış olur. Tablo ve grafikler en öneli veri düzenlee araçlarıdır. 6

7 Verilerin Özetlenesi ve Grafikle Gösterilesi Frekans Dağılıları Basit Frekans Dağılıı Gruplandırılış Frekans Dağılıı Verilerin Grafikle Gösterilesi Bar Grafik Histogra Frekans Poligonu Çizgi Grafiği Pasta ya da Daire Grafiği Dal-yaprak grafiği Frekans Dağılıları Ha verilerin düzenlenesinde, özetlenesinde, anlalı ve anlaşılır hale getirilesinde en sık kullanılan yöntelerden biri, bu verilerin frekans dağılılarının verilesidir. Frekans dağılılarının verilesi ile karışık halde bulunan puanlaalar derlenir, puanlar yüksekten düşüğe ya da tersi biçide sıralanabilir ve puanlar hakkında yorular yapılabilir Frekans Dağılıları Frekans tablosu: Bir veri küesindeki verilerin sınıflarla ya da aralıklarla gruplandırıldığı tablodur. Frekans: Sınıflaa sonucu eydana çıkan belli bir özelliği tesil eden birey, olay ya da nesne sayısına denir. 1. Aşaa: Verileri düzenli bir şekilde sıralayınız. Büyükten küçüğe Küçükten büyüğe Örnek: Bir dersten 40 öğrencinin aldığı sınav notları aşağıdaki gibidir. Bu notlara bakarak kaç öğrencinin 70 den fazla not aldığını, arası not alan kaç öğrencinin olduğunu, kala notunun 70> olası duruunda kaç öğrencinin kaldığını heen söyleyebilir iyiz? Verilerin sıralanış hali: Bu notlara bakarak kaç öğrencinin 70 den fazla not aldığını, arası not alan kaç öğrencinin olduğunu, kala notu notunun 70> olası duruunda kaç öğrencinin kaldığını öğrenek için; Frekans tablosu oluşturarak bu sorular hızlı bir şekilde cevaplanabilektedir. 7

8 1. Aşaa: Verileri düzenli bir şekilde sıralanalıdır. Büyükten küçüğe Küçükten büyüğe. Aşaa: Değişi aralığı hesaplanalıdır. DA EBV-EKV EBV:89 EKV:60 DA Aşaa: Genel kural gereği 5-0 arasında olalıdır. Çok fazla olası yorulaayı zorlaştıracak, çok az olası duruunda ise verilerin öneli özelliklerinin kaybolasına neden olacaktır. :sınıf sayısı n:örnek sayısı O halde n a l ı n ı r n 4. Aşaa: Sınıf aralığı belirlenelidir. S A E B D S S E K D SA Aşaa: Sınıf liitleri belirlenelidir. Bir veri küesinde en küçük veri, ilk sınıfın alt liitidir. Bu değere sınıf genişliği eklenir ve diğer sınıfların alt liitleri bulunur. Hangi sayının hangi sınıfta olacağı kesin olalıdır. i. Sınıf üst liiti ile i+1. sınıfın alt liiti ardışık olalıdır. 6. Aşaa: Sınıf frekansları belirlenelidir. Her bir sınıfta bulunan veri sayısıdır. Sınıf frekans sayı toplaı topla veri olalıdır. i 1 i f i n 1,, 3,... 8

9 7. Aşaa: Sınıf sınırları belirlenelidir. Bir sınıfın sınıf sınırı değeri için; O sınıfın alt liiti ile kendinden önceki sınıfın üst liiti değerinin ortalaası alt sınıf sınırını Bir sınıfın üst liiti ile o sınıfın kendinden sonraki sınıfın alt liitinin ortalaası üst sınıf sınırını verir A lt li i t + Ü s t li i t S S n r A L T Ü s t li i t + A lt li i t S S n Ü S T K Ö K S 8. Aşaa: Sınıf orta değeri belirlenelidir. Bir sınıfın sınıf orta değeri için; Sınıf liitleri ya da sınıf sınırlarının ortalaası alınır A lt li i t + Ü s t li i t S S n r 9. Oransal Frekans: Sınıf frekansının topla frekansa bölünesi ile bulunur. Yüzde olarak ifade edilir. S ı n ı f f r e k a n s ı O F T o p l a f r e k a n s ( n ) x 10. Birikili Frekans ve Birikili Oransal Frekans: Birikili frekans: i. sınıfın üst sınırından düşük olan bütün frekansların toplaıdır. Birikili oransal frekans: i. sınıfın üst sınırından düşük olan bütün oransal frekansların toplaıdır. Soru? Örnek: Bir dersten 40 öğrencinin aldığı sınav notları aşağıdaki gibidir. Bu notlara bakarak kaç öğrencinin 70 den fazla not aldığını, arası not alan kaç öğrencinin olduğunu, kala notunun 70> olası duruunda kaç öğrencinin kaldığını heen söyleyebilir iyiz? Aşaa: Verileri büyükten küçüğe sırala

10 . Aşaa: Değişi aralığı hesapla DA EBV-EKV DA: Değişi aralığı, EBV: En büyük veri, EKV: En küçük veri EBV:89 EKV:60 DA Aşaa: Sınıf sayısını belirle Genel kural gereği 5-0 arasında olalıdır. :sınıf sayısı????? n:örnek sayısı 40 O halde n n alınabilir 4. Aşaa: Sınıf aralığını belirle 5. Aşaa: Sınıf liitlerini belirle Sınıf aralığı (SA) E B D E K D S A S S SA En küçük veri, ilk sınıfın alt liitidir. Bu değere sınıf genişliği ekle ve diğer sınıfların alt liitlerini bul. i. Sınıf üst liiti ile i+1. sınıfın alt liiti ardışık olalıdır. Sınıf liitleri: Aşaa: Sınıf frekanslarını belirle Her bir sınıfa düşen veri sayısı Sınıf frekans sayı toplaı topla veri olalıdır. i i 1 f i 1,, 3,... Her bir sınıfa düşen veri sayısı Sınıf liitleri: SL f fi 40 n 7. Aşaa: Sınıf sınırlarını belirle A lt li i t + Ü s t li i t S S n r A L T Ü s t li i t + A lt li i t S S n Ü S T SL f Sınıf sınırları ,5-64, ,5-69, ,5-74, ,5-79, ,5-84, ,5-89,5 K Ö K S 10

11 8. Aşaa: Sınıf orta değerini belirle A lt li i t + Ü s t li i t S S n r SL f Sınıf sınırları SOD ,5-64, ,5-69, ,5-74, ,5-79, ,5-84, ,5-89, Aşaa: Oransal frekans değerlerini belirle S ı n ı f f r e k a n s ı O F T o p l a f r e k a n s ( n ) x SL f OF (%) Aşaa: Birikili frekans ve birikili oransal frekans değerleri hesapla SL f OF (%) BF BOF , , , , Örnek: Bir dersten 40 öğrencinin aldığı sınav notları aşağıdaki gibidir. Bu notlara bakarak kaç öğrencinin 70 den fazla not aldığını, arası not alan kaç öğrencinin olduğunu, kala notunun 70> olası duruunda kaç öğrencinin kaldığını heen söyleyebilir iyiz? Sınıf liitleri Frekans Sınıf sınırları Sınıf Ortalaa Değeri Oransal frekans Birikili frekans ,5-64, BOF ,5-69, ,5 11 7, ,5-74,5 7 3, ,5-79,5 77,5 33 8, ,5-84,5 8 1, ,5-89, Ha Puanlar Frekans Dağılıları Basit Frekans Dağılıı Basit frekans dağılıı, her puan değerinin kaç sefer tekrarlandığını gösterir. Frekans f harfi ile gösterilir. Sıralanış Puanlar Frekans tablosu hazırlanırken; tü puanlar gösterilir. İstenirse öğrencilerin aladıkları diğer puanlar da verilebilir. Toplaalı frekans, frekans değerlerinin ard arda toplanası ile elde edilir

12 Öğrencilerin % kaçı YÖK e kesin olarak karşıdır? Bar Grafik İstatistiksel verileri açıklaak için en çok kullanılan grafik türüdür. Bar diyagra, birbirini izleyen barların bir serisini gösterir. Barlar küçükten büyüğe ya da tersi biçide sıralanır Histogra Histogra bar grafiğe benzer. Ancak, bar grafik kategorik ya da kesikli grup aralıklarıyla çizildiği halde, histogra sürekli grup aralıklarıyla çizilir. Histograda dikey eksen her zaan sıfır değeriyle başlarken, yatay eksen sıfır ya da büyük bir değerden başlayabilir. Frekans Poligonu Histograda verilen puan aralıklarının orta noktalarının birleştirilesiyle oluşur. Puan aralıkları ve orta noktalar

13 Çizgi Grafiği Frekans poligonunun iki ucu yatay eksene değediği zaan çizgi grafiği oluşur. Çizgi grafiği sürekli verilere uygulanabilir. Puanlar ya da puan aralıkları yatay eksende, bunlara ait frekanslar dikey eksende yer alır. Pasta ya da Daire Grafiği Serpile grafiği Özellikle değişkenlerin yüzdelik değerlerini gösterede sıklıkla kullanılan bir grafik türüdür. Soru: Çözü Aşağıdaki veri küesini bar grafik olarak gösteriniz Yıllar Öğr. Say Yıllar Ö.S

14 Soru: Çözü: Aşağıdaki veri küesini histogra olarak gösteriniz. Sınıf aralığı frekans Soru: Sınıf aralığı frekans Aşağıdaki veri küesini daire grafik olarak gösteriniz. harcaa grupları benzin %19 kıyafet %1 gıda %14 kozetik %1 kırtasiye %5 ulaşı %18 sağlık %11 topla %100 Dal yaprak gösterii benzin kıyafet gıda kozetik kırtasiye ulaşı sağlık % 5% 11% 1% 19% 14% 1% 14

15 Soru: Teel Kavralar Aşağıdaki veri küesini dal yaprak olarak gösteriniz Teel Kavralar İstatistikte Bazı Teel kavralar Anlalı raka X.8 X5.0 5 c 5,0c İstatistikte Bazı Teel kavralar Sayıları yuvarlaa 5, ,39 5,4 5 7,4657,46 183,575183,58 116,500,000116,000,000 Birikili yuvarlaa hatası A B C TOPLAM B yöntei C yönteine göre? 15

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:...

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:... ADI: SOYADI: No: Sınıfı: A) Grubu Tarih.../.../... ADIĞI NOT:.... Boşluk doldura a) uetin büyüklüğünü ölçek için... kullanılır. b) Uyduların gezegen etrafında dolanasını sağlayan kuet... c) Cisilerin hareket

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi BBY 606 Araştırma Yöntemleri 1 SPSS in açılması 2 SPSS programı 3 Veri giriş ekranı 4 Değişken giriş ekranı 5 Veri toplama Kayıtlardan yararlanarak Örneğin

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

VERİLERİN SINIFLANDIRILMASI

VERİLERİN SINIFLANDIRILMASI VERİLERİN SINIFLANDIRILMASI Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr NİTEL VE NİCEL VERİLERİN SINIFLANDIRMASI Sınıflandırma

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler Mühendislikte İstatistik Yöntemler Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt, Beyhan Oğuz, Birsen Yayınevi Mühendislikte İstatistik Metodlar, Erdem KOÇ,ÇÜ, Müh.Mim.Fak.

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

Yay Dalgaları. Test 1 Çözümleri cm m = 80 cm

Yay Dalgaları. Test 1 Çözümleri cm m = 80 cm Yay Dalgaları YY DGRI 1 Test 1 Çözüleri 3. 0 c = 80 c 1. = 8 biri 0 c rdaşık iki tepe arasındaki uzaklık dalga boyudur. Bu duruda dalga boyu şekildeki gibi 80 c olarak bulunur. v = f bağıntısına göre hız;

Detaylı

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD.

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD. TABLO ve GRAFİKLER Epidemiyoloji Konferansları Serisi 14.05.2015 Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Neden gerekli? Tablo ve grafikler araştırma sonucunda elde edilen verilerin

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI KARADENİZ TEKNİK ÜNİVERSİTESİ BEŞİKDÜZÜ MESLEK YÜKSEKOKULU İSTATİSTİK DERS NOTLARI BÖLÜM 2 İSTATİSTİK VE GRAFİK ÖĞR. GÖR. COŞKUN ALİYAZICIOĞLU BEŞİKDÜZÜ - 2017 1 İstatistik çalışmaları sonucu elde edilen

Detaylı

ALMANCA ÖĞRETİMİNDE ÖĞRETMEN KILAVUZ KİTAPLARININ ÖNEMİ

ALMANCA ÖĞRETİMİNDE ÖĞRETMEN KILAVUZ KİTAPLARININ ÖNEMİ The Journal of Acadeic Social Science Studies International Journal of Social Science Volue 6 Issue 3, p. 1217-1230, March 2013 ALMANCA ÖĞRETİMİNDE ÖĞRETMEN KILAVUZ KİTAPLARININ ÖNEMİ THE SIGNIFICANCE

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

Değer Frekans

Değer Frekans Veri Rasgelelik içeren olgulardan elde edilen ölçüm (gözlem) değerlerine istatistiksel veri veya kısaca veri (data) diyelim. Verilerin deneyler sonucu veya doğal şartlarda olguları gözlemekle elde edildiğini

Detaylı

KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi 16 (27): 87-103, 2014 ISSN: 2147-7833, www.kmu.edu.tr

KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi 16 (27): 87-103, 2014 ISSN: 2147-7833, www.kmu.edu.tr 29 KMÜ Sosyal ve Ekonoik Araştıralar Dergisi 16 (27): 87-103, 2014 ISSN: 2147-7833, www.ku.edu.tr Karaanoğlu Mehetbey Üniversitesi (KMÜ) Öğrencilerinin Barına Sorunlarının Tespiti ve Değerlendirilesi *

Detaylı

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ Gündüz GÜRHAN Dokuz Eylül Üniversitesi, Deniz Bilileri ve Teknolojisi Enstitüsü İnciraltı/İzir E-Posta:gunduz.gurhan@deu.edu.tr

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Olasılık Bilim, sonsuz sayıda ve çok karmaşık nesne ve olaylardan oluşan evrenin kavranmasını sağlamak üzere; nesne ve olayları soyutlamak sınıflandırmak, bu sınıfların içindeki

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR Giriş İstatistik sözcüğü farklı yaklaşımlara göre değişik anlamlar taşır. Günlük dilde istatistik ya da istatistikler denildiğinde, belirli bir olaya ilişkin derlenmiş sayısal

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

VERİLERİN TOPLANMASI, DÜZENLENMESİ VE TABLOLARLA SUNUMU

VERİLERİN TOPLANMASI, DÜZENLENMESİ VE TABLOLARLA SUNUMU SAÜ 2. HAFTA VERİLERİN TOPLANMASI, DÜZENLENMESİ VE TABLOLARLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. VERİLERİN TOPLANMASI Genel olarak istatistik Daha teknik bir ifade ile istatistik İstatistik Yöntemler

Detaylı

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler.

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler. GRAFİKLER Verilerin matematiksel temellere sahip şekiller olarak gösterilmelerine grafik adı verilir. Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Grafikler gözlem sonuçlarının

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Bütünleme WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İstatistiğe Giriş A Bu testte 20 soru

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

ELASTİK DALGA TEORİSİ

ELASTİK DALGA TEORİSİ ELASTİK DALGA TEORİSİ ( - 5. ders ) Doç.Dr. Eşref YALÇINKAYA Geçtiğiiz hafta; Dalga hareketi ve türleri Yaılan dalga Yaılan dalga enerjisi ve sönülene Bu derste; Süperpozison prensibi Fourier analizi Dalgaların

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ İSTATİSTİĞE GİRİŞ ÜNİTE 1 TEMEL KAVRAMLAR İSTATİSTİĞİN TANIMI İstatistik; herhangi bir konuyla ilgili verilerin toplanması, düzenlenmesi, özetlenmesi, sunulması, uygun yöntemlerle analizi ve bu analizlerle

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

VERİLERİN TOPLANMASI, ÖZETLENMESİ ve SUNULMASI

VERİLERİN TOPLANMASI, ÖZETLENMESİ ve SUNULMASI VERİLERİN TOPLANMASI, ÖZETLENMESİ ve SUNULMASI Araştırıcının, konusu ile ilgili verilerini doğru olarak toplaması, özetlemesi, tanıtıcı değerleri hesaplaması, araştırmada dikkate alınan faktörlere göre

Detaylı

Probability Density Function (PDF, Sürekli fonksiyon)

Probability Density Function (PDF, Sürekli fonksiyon) Varyans Bir serideki her elemanın ortalamadan farklarının karelerinin toplamının, serideki eleman sayısına bölümü ile elde edilir. Standart Sapma Varyansın kareköküdür. Eğer birçok veri ortalamaya yakın

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller BÖLÜM12 2- FORMÜLLER ve OTOMATİK TOPLAM 2.1. Formüller Formül, bir sayfadaki verilerin aritmetiksel, mantıksal, istatistiksel vb. işlemleri yapması için kullanılan denklemlerdir ve bize sonuç bildirirler.

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

4.1. Grafik Sihirbazını kullanarak grafik oluşturma

4.1. Grafik Sihirbazını kullanarak grafik oluşturma BÖLÜM14 4. EXCEL DE GRAFİK Excel programının en üstün özelliklerinden bir diğeri de grafik çizim özelliğinin mükemmel olmasıdır. Excel grafik işlemleri için kullanıcıya çok geniş seçenekler sunar. Excel

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

AGREGA GRONULÜMETRİSİ. Sakarya Üniversitesi

AGREGA GRONULÜMETRİSİ. Sakarya Üniversitesi AGREGA GRONULÜMETRİSİ Sakarya Üniversitesi Agregalarda Granülometri (Tane Büyüklüğü Dağılım) Agrega yığınında bulunan tanelerin oranlarının belirlenmesine granülometri denir. Kaliteli yani, yüksek mukavemetli

Detaylı

İstatistik Laboratuvarı I Vize Ödevi Levent TERLEMEZ 30 Kasım 2016

İstatistik Laboratuvarı I Vize Ödevi Levent TERLEMEZ 30 Kasım 2016 İstatistik Laboratuvarı I Vize Ödevi Levent TERLEMEZ 30 Kasım 2016 İçindekiler 1 Soru 1 1.1 Veri Girişi............................................... 1 1.2 Boy Değişkeni.............................................

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Finansal (Mali) Tablolar Analizi DİKEY ANALİZ

Finansal (Mali) Tablolar Analizi DİKEY ANALİZ Finansal (Mali) Tablolar Analizi DİKEY ANALİZ 1 Mali tablolarda yer alan hesap kalemlerinin, içinde bu lundukları toplamlara oranlarının hesaplanarak analiz edil mesine dikey analiz, diğer bir ifadeyle

Detaylı

BÖLÜM 19 5. RAPORLAR. Şekil 5.1. Rapor sihirbazı ile rapor oluşturma 1. pencere.

BÖLÜM 19 5. RAPORLAR. Şekil 5.1. Rapor sihirbazı ile rapor oluşturma 1. pencere. BÖLÜM 19 5. RAPORLAR Raporlar; tablolardaki ve hazırlanan sorgulardaki bilgilerin istenilen düzenlemelere göre ekran veya yazıcıdan liste halinde alınabilmesi sağlayan bir ortamdır. Raporları hazırlayabilmek

Detaylı

ÜNİTE. BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT İÇİNDEKİLER HEDEFLER TABLOLAR VE GRAFİKLER. Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler

ÜNİTE. BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT İÇİNDEKİLER HEDEFLER TABLOLAR VE GRAFİKLER. Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler HEDEFLER İÇİNDEKİLER TABLOLAR VE GRAFİKLER Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT Bu üniteyi çalıştıktan sonra; Verileri frekans tablolarında

Detaylı