DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )"

Transkript

1 . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,, 3), (3,, ) (, 3, ), (, 3, ), (3,, ) SD. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı frklı tüm mümkü sırlmlrıı syısı (Permütsyo syısı): ( )! = K. Tım: Bir tm syılr {,,, } kümesideki elemlrı her hgi bir permütsyou geel olrk: ( j j K j ),,,. Permütsyo Tım: Bir ( j, j, K, j ) permütsyoudki ters döüşüm (iversio) syısı bu permütsyodki büyük bir syıyı tkip ede küçük syılrı syısıdır:. ( j, j, K, j ) permütsyoud j syısıı tkip ede küçük syılrı syısıı belirle,. ( j, j, K, j ) permütsyoud j syısıı tkip ede küçük syılrı syısıı belirle 3. Bu işlemi j - syısı kdr sürdür, 4. Bulduğu syılrı topl. Elde edile toplm syı ( j, j, K, j ) permütsyouu ters döüşüm syısıdır.

2 Permütsyo Tım: Bir permütsyo, eğer toplm ters döüşüm syısı çift bir syı ise çift permütsyo, eğer toplm ters döüşüm syısı tek ise tek permütsyo olrk dldırılır. Örek: şğıdki permütsyolrı ters döüşüm syılrıı buluuz. (6,, 3, 4, 5, )=5+0+++=8 (, 4,, 3) =++0 =3 (,, 3, 4) =0+0+0 =0 Permütsyo Örek: {,, 3} tm syılr kümesii tüm mümkü permütsyolrıı tek y d çift olrk belirleyiiz. Permütsyo Ters Döüşüm Sııflm Syısı (,, 3) 0 Çift (, 3, ) Tek (,, 3) Tek (, 3, ) Çift (3,, ) Çift (3,, ) 3 Tek Determit boyutlu, v r = M = M v r = v r M r r r te vektörü, v v v foksiyoel gösterimidir. (,,, ) SD 7 Determit Tım: Determit, x te elemı, şeklideki sırlışıdır. SD 8

3 Determitı Köşege Elemlrı Tım: Bir determitıdki ij (i=,,) elemlrı sl köşege y d sdece köşege elemlrı deir. Elemter Çrpım İşretli Elemter Çrpım Determit Foksiyou SD 0 Elemter Çrpım Tım: Bir boyutlu determitıı, yı sır ve sütud gelmeye det elemıı çrpımı elemter çrpım deir. Örek: boyutlu determitıı tüm elemter çrpımlrıı buluuz. = Çözüm: Stırlr bz lıdığıd.. Noktlr sütulrı temsil etmektedir. İki sütu olduğud {, } Permütsyolr (, ) ve (, ) Noktlrı yerie permütsyolr kork elemter çrpımlr: ve Elemter Çrpım Örek: 3 3 boyutlu determitıı tüm elemter çrpımlrıı buluuz. = Çözüm: Stırlr bz lıdığıd.. 3. Noktlr sütulrı temsil etmektedir. Üç sütu olduğud {,, 3} Permütsyolr (,, 3), (, 3, ), (,, 3), (, 3, ), (3,, ), (3,, ) Noktlrı yerie kork elemter çrpımlr: 33, 3 3, 33, 3 3, 3 3, 3 3

4 Elemter Çrpım Tım: Bir boyutlu determitıı, işretli elemter çrpımı K elemter çrpımı j j j - y d + ile çrpımıdır. Eğer ( j j K j ) permütsyou çift permütsyo ise,,, K j j j Eğer ( j j K j ) permütsyou tek permütsyo ise,,, K j j j Elemter Çrpım Örek: boyutlu determitıı tüm işretli elemter çrpımlrıı buluuz. = Çözüm: Elemter Çrpım Permütsyo Ters Döüşüm syısı ve İşret İşretli Çrpım (, ) 0 Çift (, ) Tek Elemter Elemter Çrpım Örek: 3 3 boyutlu determitıı tüm işretli elemter çrpımlrıı buluuz. = Çözüm: Elemter Çrpım Elemter Çrpım Permütsyo Ters Döüşüm syısı ve İşret İşretli Çrpım 33 (,, 3) 0 Çift (, 3, ) Tek 33 Elemter 33 (,, 3) Tek (, 3, ) Çift (3,, ) Çift (3,, ) 3 Tek 33

5 Determit Foksiyou Tım: boyutu ol bir determit olsu. Determit foksiyou det( ) y d ile gösterilir. det( ) determitı tüm işretli elemter çrpımlrıı toplmıdır: det ( ) = ± K j j j det() syısı ı determitı olrk dldırılır. Örek: boyutlu determitıı = Determit Foksiyou değerii buluuz. det = Çözüm: ( ) Örek: 3 3 boyutlu determitıı = değerii buluuz. Çözüm: Determit Foksiyou ( ) = det Determit Foksiyou Determit foksiyou bir sklerdir. Geometrik olrk bu skler büyüklük determitı oluştur vektörleri rsıd kl l, hcim vs. değerie krşılık gelir.

6 y Determitı Geometrik lmı B(, ) (, ) C( +, + ) ( v, v) = x O B C = içi determit, vektörleri oluşturmuş olduğu prlelkerı lıı verir. = = l Elemter Stır (Sütu) İşlemleri Tım: Bir determitı, mtrisi y d doğrusl deklem sistemii dek determit, mtris y d deklem sistemie döüştüre işlemlere elemter işlemler deir.. İki Stırı (sütuu) değiştirilmesi,. Bir stırı (sütuu) bir k sbiti ile çrpılmsı, 3. Bir stırı (sütuu) bir k sbiti ile çrpılıp bir diğer stır (sütu) eklemesi. SD Elemter Stır (Sütu) İşlemleri Elemter işlemler: Geel olrk stır işlemleri içi R, sütu işlemleri içi C kullılır: j-ici stır ile i-ici stırı yer değiştirmesi R ji j-ici stırı bir k sbiti ile çrpılmsı R j (k) j-ici stırı bir k sbiti ile çrpılıp i-ici stır ile toplmsı R ji (k) Echelo Determit Bir determit i i i Elemter stır (sütu) işlemleri kullılrk, 0 M 0 0 K M O M Echelo determit döüştürülebilir.

7 Echelo Determit Örek: şğıd verile determitı elemter işlemler ile Echelo determit döüştürüp değerii buluuz. 0 5 = Çözüm: Echelo Determit det = R = 0 5 3R ( ) R ( ) = R = ( )( ) = R = = ( 3)( 55)( ) = 65 Miör İşretli Miör Determitı Bir Sıry Göre çılımı Miör Tım: Boyutu ol bir determitıd i-ici stır ve j-ici sütud yer l ij elemıı buluduğu stır ve sütu siliir. - boyutlu yei bir determit elde edilir. Bu determit M ij ile gösterilir ve bu ij elemıı miörü deir. SD 7

8 İşretli Miör Tım: Miör determitı kullılrk, ij=(-)i+j Mij yei bir determit tımlırs, bu ij elemıı işretli miörü (kofktörü, eş çrpı) deir. SD 9 Determitı Bir Sıry Göre çılımı Tım: Bir determıtıı, bir sır (sütu) elemlrıı tümü içi işretli miörler oluşturulur. İşretli miörler kedilerie it elemlrl çrpılrk determitı çılımı elde edilir. = i i i i i i i i i Determitı Bir Sıry Göre çılımı Determitı Bir Sıry Göre çılımı Öemli: Determitı her hgi bir stırıı (sütuu) elem ile frklı her hgi bir stırıı (sütuu) işretli miorlerii çrpımlrıd elde edile toplm sıfırdır. i k + i k + + i k = 0 i k içi Öemli: Bir determitı.stır,.stır,.stır,.sütu,. sütu,,.sütu göre çılımlrıı tümü birbirie eşittir. SD 3

9 Determitı Bir Sıry Göre çılımı Örek: determitıı değerii ikici sütu göre çrk buluuz. + = M = = 7 3 Çözüm: ( ) ( ) + 3 = M = = 7 3 ( ) = M 3 = = 7 ( )( ) ( )( ) ( )( ) Srrus Kurlı Üç boyutlu bir determitı prtik yold hesplmsı : det = = 8 SD 34 (-) (-) (-) (+) = + + ( + + ) (+) (+) Öemli: Sdece 3 boyutlu determitlrd kullılır. Temel Determit Hesplm Yötemleri İşretli elemter çrpım Echelo determit (elemter stır /sütu işlemleri) Determitı bir stır (sütu) göre çılmsı Determitı Özellikleri SD 36

10 Determitı Özellikleri. determitıd stırlr ile sütulr yer değiştirilirse T determitıı trspozu (evriği) det det T T elde edilir. Determitı Özellikleri. Determitı bir stırı (sütuu) bir k sbiti ile çrpılırs i i i i ( ) R k % = k k k i i i det % = k det Determitı Özellikleri 3. Determitı bir stırı (sütuu) bir k sbiti ile çrpılırs ( ) i i i R, K, k k k k % = k k k i i i k k k det % = k det Determitı Özellikleri 4. Determitı herhgi iki stırı (sütuu) yer değiştirirse R i i i i % = i i i det % = det

11 Determitı Özellikleri 5. Determitı herhgi bir stırıı (sütuuu) ktlrı bir diğer stır (sütu) ile toplırs i i i i ( ) R k % = i i i + k + k + k i i i det % = det Determitı Özellikleri 6. Bir determitt herhgi iki stır (vey sütu) ortılı ise determitı değeri sıfır eşittir. i i i k k k i i i det 0 SD 4 7. Bir determitı herhgi bir stır (vey sütu) elemlrıı tümü sıfır ise determitı değeri sıfır eşittir. Determitı Özellikleri det 0 8. Bir determitı köşegeii ltıdki (y d üstüdeki) tüm elemlr sıfır eşit ise eşlo (echelo) determitır: 0 M K 0 0 Determitı Özellikleri M O M y d M det 0 0 K 0 M O M K SD 43

12 Sıfır Determit Koşullrı Tüm stır (sütu) elemlrı sıfır ise İki stır (sütu) elemlrı eşit ise Bir stır (sütu) bir diğer stır (sütu) elemlrıı ktı ise Özel Determitlr Ek Determıt : Bir determıtıd her elemı yerie, bu elemı işretli miörlerii yzrk elde edile determıt Ek Determıt deir. Ek ile gösterilir. Ek Özellik :, boyutlu bir determıt ise Ek = - dır. SD 46 Özel Determitlr Simetrik determit: Bir determitı elemlrıı rsıd, T y d ij = ji ( i, j =,,, ) bğıtısı vrs determit simetrik determit deir. Özel Determitlr Yrı simetrik determit: Bir determitı elemlrıı rsıd, T = y d = ( i, j =,,, ) ij bğıtısı vrs determit yrı simetrik determit deir. ji SD 47

13 SD 49 Vder Mode Determitı : şeklideki determıtlr deir. Özel Determitlr SD 50 İKİNCİ BÖÜM BİTTİİİİİİİ

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME SYISL ÇÖZÜMLEME 6. Hft LİNEER DENKLEM SİSTEMLERİ İÇİNDEKİLER Doğrusl Deklem Sistemlerii Çöümü Mtrisi Tersi ile Bilimeyeleri Bulm Örek uygulm MTLB t mtrisi tersii (iv komutu) lm Crmer Yötemi

Detaylı

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş MAT 202 SAYISAL YÖNTEMLER Bhr 2005-2006 Hft Bu Hft Özet Ders Hkkıd Geel Bilgiler Mtris işlemlerie giriş 2 Öğretim Üyesi: Öğr. Gör. Od No: 442, Tel: 293 3 00 / -- E-mil: ltuger@itu.edu.tr Ders Stleri: Slı

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur.

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur. Guss Elimisyou Lieer deklem sistemlerii çözmede kullıl e popüler tekiklerde birisi Guss Elimisyou yötemidir. Bu yötem geel bir deklemli ve bilimeyeli lieer sistemi çözümüe bir yklşım getirmektedir....

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER BÖLÜM. REGRESYON İÇİN MRİS VE VEKÖR CEBRİ Bölüm de, doğrusl regreso tek değişkeli sit model olrk ele lırk çıklmıştı. Bölüm 4 de ise çok değişkeli (k değişkeli) model içi giriş pılcktır. Çok değişkeli modelde

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrı toplmı: 1 + + 3 +...+ =.(+1) Ardışık çift syılrı toplmı : + 4 + 6 +... + =.(+1) Ardışık tek syılrı toplmı: 1 + 3 + 5 +... + ( 1) =.= Ardışık tm kre syılrı

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Mühedislik Mimrlık Fkültesi İşt Mühedisliği Bölümü EPost: ogu hmettopcu@gmilcom We: http://mmfoguedutr/topcu Bilgisyr Destekli Nümerik liz Ders otlrı hmet OPÇU m Kre mtrisi

Detaylı

BÖLÜM 3 3. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKTÖR VE MATRİS CEBRİ

BÖLÜM 3 3. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKTÖR VE MATRİS CEBRİ BÖLÜM. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKÖR VE MRİS CEBRİ Bölüm de, doğrusl regresyo tek değşkel bst model olrk ele lırk çıklmıştı. Bölüm de se çok değşkel (k değşkel) model ç grş ypılcktır. Çok değşkel

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

7 SAYISAL İNTEGRASYON YÖNTEMLERİ

7 SAYISAL İNTEGRASYON YÖNTEMLERİ Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl itegrsyo vey itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

Cebir Notları. Diziler Mustafa YAĞCI,

Cebir Notları. Diziler Mustafa YAĞCI, www.mustfygci.com, 006 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Diziler Mtemtiği e zevkli ve sürükleyici koulrıd birie geldik. Pek zorlcğımı thmi etmiyorum, çükü yei esil diziler e oldukç merklı. Kurtlr

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

1981 ÖYS. 1. Bir top kumaşın önce i, sonra da kalanın. ü satılıyor. Geriye 26 m kumaş kaldığı- 3. na göre, kumaşın tümü kaç metredir?

1981 ÖYS. 1. Bir top kumaşın önce i, sonra da kalanın. ü satılıyor. Geriye 26 m kumaş kaldığı- 3. na göre, kumaşın tümü kaç metredir? 98 ÖYS. Bir top kumşı öce i, sor d klı ü stılıyor. Geriye 6 m kumş kldığı- göre, kumşı tümü kç metredir? 70 6 60 0., y pozitif iki tmsyı olmk üzere, (+y)(-y)=88 dir. Bu eşitliği soludki çrplrd üyüğü, küçüğüü

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI 6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI Y i β + β X i + β X i + + β k X ki + i (i,,, gibi çok çıklyıcı değişkee ship bir model, şğıdki gibi bir eşlı deklem modelii göstermektedir. Y β + β X + β

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200 ., b, c, d Z olmk üzere / + /b + /c + /d = ½ ve ( + b + c + d) =.b + c.d + ( + b ).(c +d) + dekliklerii sğly kç (, b, c, d) dörtlüsü vrdır? A) 48 B) 4 C) D) 6 E) 5. Alı 40 birim kre ol bir ABC üçgeii AB,

Detaylı

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN ANALİZ III DERS NOTLARI Prof. Dr. Nuretti ERGUN İ Ç İ N D E K İ L E R Syf No BÖLÜM Foksiyo Dizi ve Serileri... BÖLÜM Fourier Serileri... BÖLÜM 3 Özge Olmy Tümlevler...48 BÖLÜM 4 Dik Poliom Serileri...7

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

II. DERECEDEN DENKLEMLER

II. DERECEDEN DENKLEMLER ünite DEEEDE DEKEME Dereceden Denklemler TEST 0 x x + = 0 denkleminin kökleri x ve x dir 6 x + x + x işleminin sonucu kçtır? ) B) ) D) E) x + bx + = 0 x - denkleminin reel syılrdki çözüm kümesi bir elemnlı

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L Contents 0.1 Determinntlr.......................... 7 0.2 Determinnt Nedir?....................... 7 0.2.1 1 1 Mtrislerin

Detaylı

ÇARPANLAR VE KATLAR GENEL TEKRAR TESTİ

ÇARPANLAR VE KATLAR GENEL TEKRAR TESTİ ÇPNL VE TL GENEL TE TESTİ 1) 3 syısıı doğl syı çrplrıı tı şğıdkilerde hgisidir? ) 1,,4,16 B) 1,,4,6,8,16,3 C),4,6,8,16 D) 1,,4,8,16,3 5) 54 syısıı kç frklı sl çrpı vrdır? ) 1 B) C) 3 D) 4 ) 10 syısıı çrplrıı

Detaylı

Kareler Toplamları ve Beklenen Kareler Ortalamaları Varyans Analizi Tabloları

Kareler Toplamları ve Beklenen Kareler Ortalamaları Varyans Analizi Tabloları Kreler Toplmlrı ve Belee Kreler Ortlmlrı Vrys lz Tlolrı Bu derste degel tsrımlı modellerde etler ve etleşmler ç resel toplmlrı yzılmsıd, serestl dereceler elrlemesde ve elee reler ortlmlrı ulumsıd yrdımcı

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known?

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known? 1 Mrkov ve Chebychev Eşitsizlikleri Pr [ ] = 1 Pr [ < ] = 1 f ( ) dx = 1 () x dx F Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) Wht if ot kow? bilimiyor olbilir r.d. i sdece ortlmsıı ve vrysıı bildiğimizi vrsylım. Ortlm

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir? ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

D) 240 E) 260 D) 240 E) 220

D) 240 E) 260 D) 240 E) 220 01 Test Ünite? AYT Mtemtik EBOB - EKOK 1. 240 ve 300 syılrının en büyük ortk böleni kçtır? A) 20 B) 40 C) 60 3. 18, 24 ve 32 syılrının en küçük ortk ktı kçtır? A) 248 B) 260 C) 276 5. Kenr uzunluklrı 60

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrın toplmı: 1 + 2 + 3 +...+ n =.(+) Ardışık çift syılrın toplmı : 2 + 4 + 6 +... + 2n = n.(n+1) Ardışık tek syılrın toplmı: 1 + 3 + 5 +... + (2n 1) = n.n=n 2

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİTESİ Mühedslk Mmrlık Fkültes İşt Mühedslğ Bölümü EPost: oguhmettopcu@gmlcom Web: http://mmfoguedutr/topcu Blgsyr Destekl Nümerk lz Ders otlrı hmet TOPÇU Ktsyılr mtrs Özdeğer Özvektör

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

KAREKÖKLÜ SAYILAR TARAMA TESTİ-1

KAREKÖKLÜ SAYILAR TARAMA TESTİ-1 EÖLÜ SYIL TM TESTİ- 8..3.. -8..3.2.-T kre doğl syılr ve doğl syılrl rsıdki ilişki. 8..3.3. T kre oly syılrı krekök değerlerii hgi iki doğl syı rsıd olduğuu belirler. 8..3.4. Gerçek Syılr. ) şğıdkilerde

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 007 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 8 A) 8 B) 8 C) 8 D) E) Çözüm + 8 8 + 8 8. ( ).( ) (+ ).(+ ) işleminin sonucu

Detaylı

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı vey ir kısmıı

Detaylı

ORAN VE ORANTI. Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b

ORAN VE ORANTI. Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b 1 ORAN VE ORANTI ORAN: Ayı irimle ölçüle iki çokluğu ölme yoluyl krşılştırılmsı or eir. ı ye orı; şeklie gösterilir. 3 00gr 15m Örek 1:,,... 3 300gr 0m irer orır. 00gr 30m 5000TL Örek :,,,... ifeleri irer

Detaylı

Her hakkı Millî Eğitim Bakanlığı na aittir. Kitabın metin, soru ve şekilleri kısmen de olsa hiçbir surette alınıp yayımlanamaz.

Her hakkı Millî Eğitim Bakanlığı na aittir. Kitabın metin, soru ve şekilleri kısmen de olsa hiçbir surette alınıp yayımlanamaz. MİÎ EĞİTİM BAKANĞ YAYNAR... 4 DERS KİTAPAR DİZİSİ... 68.4.Y..8 Her hkkı Millî Eğitim Bklığı ittir. Kitbı meti, soru ve şekilleri kısme de ols hiçbir surette lııp yyımlm. GENE KRDİNATÖR Yurdgül GÜNEŞ İNCEEME

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu Dış Etk Olrk Sıcklık Değşmes ve/vey eset Çökmeler Göz Öüe Alımsı Durumu Dış etk olrk göz öüe lı sıcklık eğşm ve meset çökmeler hpersttk sstemlere şekl eğştrme le brlkte kest zoru mey getrr. Sıcklık eğşm:

Detaylı

8.sınıf matematik üslü sayılar

8.sınıf matematik üslü sayılar .sııf tetik üslü syılr bir tsyı, sy syısı olk üere te ı ÖĞETEN MİNİ ETİNLİ- çrpıı şeklide gösterilir ve ı. kuvveti y d üssü olrk okuur. Üs (kuvvet)....= Tb 0 0 0 0 00 0 0 ) Her syıı. kuvveti kedisie eşittir.

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür.

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür. OLİNOMLAR o,,,... n, n birer reel syı, n bir doğl syı ve belirsiz bir elemn olmk üzere, o.. n n... n. n. biçimindeki ifdelere e göre düzenlenmiş reel ktsyılı ve bir belirsizli polinom denir. in bir polinomu,,r,t,k

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

SAYILAR DERS NOTLARI Bölüm 2 / 3

SAYILAR DERS NOTLARI Bölüm 2 / 3 Örnek : 4 10 tbnindki (3 + 3 + 3 + 3) syisinin üç tbnindki yzilisi sgidkilerden hngisidir? A)10110 B)10001 C)1001 D)100011 E) 1100 4 (3 + 3 + 3 4 + 3) = 1 3 + 3 3 1 0 + 0 3 + 1 3 + 1 3 + 0 3 Burdn ( 10110)

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

1.ÜNİTE ÇARPANLAR VE KATLAR

1.ÜNİTE ÇARPANLAR VE KATLAR 1.ÜNİTE ÇPNL VE TL Bİ DOĞL SYININ ÇPNLI(BÖLENLEİ) Bir doğl syıyı t olrk böle syılr o syıı böleleri(çrplrı) deir. ÖĞETEN MİNİ TEST 1 1) şğıdkilerde hgisi 40 syısıı bölei değildir? ) 5 B) 8 C) 10 D) 1 Bir

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

1 ifadesi aşağıdakilerden hangisi ile çarpıldığında, ifadesine eşit olur? çarpım C) 3 D) 6. Çözüm x =? 1 = Sayı = x olsun. x.

1 ifadesi aşağıdakilerden hangisi ile çarpıldığında, ifadesine eşit olur? çarpım C) 3 D) 6. Çözüm x =? 1 = Sayı = x olsun. x. T.C. MĐLLÎ EĞĐTĐM BAKANLIĞI Fe Liseleri, Sosyl Bilimler Liseleri, Güzel Stlr Ve Spor Liseleri Đle Her Türdeki Adolu Liseleri Öğretmelerii Seçme Sıvı 7 Arlık 9 Mtemtik Sorulrı ve Çözümleri 56. çrpım ifdesi

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

İÇİNDEKİLER SAYISAL YETENEK SÖZEL YETENEK

İÇİNDEKİLER SAYISAL YETENEK SÖZEL YETENEK İÇİNDEKİLER SAYISAL YETENEK Mtemtiğe Giriş... 1 Temel Kvrmlr... 9 Doğl Syılrd Bölme İşlemi... 65 EBOB - EKOK... 93 Rsyonel Syılr... 111 Bsit Eşitsizlikler... 131 Mutlk Değer... 151 Çrpnlr Ayırm... 169

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Ösöz Değerli Öğreciler, Bu fsiül ortöğretimde bşrıızı yüseltmeye, üiversite giriş sıvlrıd yüse pu lmız yrdımcı olm içi özele hzırlmıştır. Koulr lmlı bir bütü oluşturc şeilde hücrelere yrılr işlemiştir.

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI Ftm İÇER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI DİYARBAKIR Hzir 203 TEŞEKKÜR Çlışmmı her

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersi Adı SINIFI: KONU: Diziler Dersi Kousu. Aşğıdkilerde kç tesi bir dizii geel terimi olbilir? I. II. log III. IV. V. 7 7 9 9 t 4 4 E). Aşğıdkilerde hgisi bir dizii geel

Detaylı

ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT MAİ, DEEMİNAN ve DOUAL DENKLEM İEMLEİ ÜNİE. ÜNİE. ÜNİE. ÜNİE. ÜNİ Mtrisler. Kznım : Mtrisi örneklerle çıklr, verilen ir mtrisin türünü elirtir ve istenilen stırı, sütunu ve elemnı gösterir.. Kznım : Kre

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı