Karar Verme ve Oyun Teorisi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Karar Verme ve Oyun Teorisi"

Transkript

1 Karar Problemlerinin Modellenmesinde Kullanılan raçlar Karar Verme ve Oyun Teorisi Karar Problemlerinin Modellenmesinde Kullanılan raçlar Karmaşık karar problemlerinin anlaşılmasını kolaylaştırmak amacıyla, Problemi oluşturan unsurları Ve bu unsurlar arasındaki bağlantıları açıklayan araçlar: Etki diyagramı Karar matrisi Karar ağacı Etki Diyagramları Karar problemlerinin açıklanmasında en basit yöntemdir. Kolaylıkla karar ağacına dönüştürülürler Karar problemlerinin ardışık yapısını görebilmek için kullanılır. Karar ağacının ilk aşamasıdır. Etki diyagramları Karar problemini grafik olarak gösterir. Karar probleminin elemanlarını değişik geometrik şekillerle sembolize eder. Bu şekillere nokta adı verilir Karar noktası Belirsizlik noktası Sonuç noktası vs

2 Bu şekiller daha sonra, elemanlar arasındaki ilişkileri göstermek için oklarla ilişkilendirilir. Birbirine bağladıkları elemanlara göre; Bilgi oku Koşulluluk oku Etki oku adını alır. Bilgiler noktalarda ve oklarda depolanır. Örneğin Karar noktasında alternatifler Belirsizlik noktasında çevresel faktörler ve bunlarla ilgili durumlar depolanır. 5 6 Etki Diyagramlarında Kullanılan Şekiller Oklar Karar Noktası Belirsizlik Noktası Değer Noktası Sonuç Noktası Karar noktası dikdörtgenle gösterilir ve içinde aralarında seçim yapılacak elemanları barındırır. Belirsizlik noktası daire ile gösterilir ve içinde çevresel faktörleri ve bu çevresel faktörlerle ilgili durumları barındırır. Değer noktası çift çizgili bir dikdörtgenle gösterilir. Değeri ile ilgili herhangi bir belirsizlik bulunmayan elemanlardır. Matematiksel işlemleri de temsil edebilir. Sonuç noktası eşkenar dörtgenle gösterilir. Bu nokta, karar problemlerinin elemanlarında tanımlanan sonuçları depolar. Bilgi Oku: Bir karar noktasını diğer karar noktası ile ya da Bir belirsizlik noktasını bir karar noktası ile bağlar. D1 D2 D 7 8 2

3 Etki Oku: Karar noktasından belirsizlik noktasına doğru çizilir. çevresel faktörünün durumlarının oluşma olasılıklarının D noktasında seçilen alternatife bağlı olduğunu BU olasılıkların D noktasındaki karardan etkilendiğini gösterir. belirsizlik noktasındaki olasılıkların şartlı olasılıklar olduğunu gösterir. D Koşulluluk Oku: İki belirsizlik noktasını birbirine bağlayan oka koşulluluk oku denir. B çevresel faktörü ile ilgili olasılıkların, çevresel faktörünün alacağı durumlara bağlı olduğunu Şartlı olasılıkların bulunduğunu göstermektedir. B 9 10 İşlem Oku: Bir belirsizlik noktasından bir değer noktasına çizilen oktur. ile B ile ilgili belirsizlik çözüldükten sonra C nin değeri (C=xB) şeklinde hesaplanabilir. B C (C=xB) Sonuç Oku: Bir karar noktasından veya bir belirsizlik noktasından sonuç noktasına çizilen oka sonuç oku adı verilir. Şekilde sonuç okları, sonucun noktasındaki alternatiflerin ve B noktasındaki çevresel faktörlerin bir kombinasyonu olduğunu gösterir. Sonuç B

4 Etki Diyagramlarının Oluşturulmasında Dikkat Edilecek Noktalar 1. Etki diyagramı yalnızca bir sonuç noktası içermelidir. nalizin sonuç noktası ile ifade edilen yalnız bir bitiş noktası bulunmalıdır. 2. Etki diyagramları herhangi bir çevrim içermemelidir. Çevrim belli bir bitiş noktası olmayan bir döngüdür. Nasıl anlaşılır: Sonuç noktasından geriye doğru gelirken aynı yolda aynı noktaya birden fazla kez rastlanıyorsa, diyagram çevrim içermektedir. Para Cezası Test yap Test sonuçları şırı Hız Polise Yakalanma Toplam Maliyet Sigorta Pirim rtışı Ürünü iyileştir Ürünü piyasaya çıkar Sonuç Etki diyagramı kısır noktalar içermemelidir. Kısır noktalar artçıları olmayan belirsizlik veya karar noktalarıdır. Bu yüzden modelin sonucunu etkilemezler. Örnek Etki Dayagramı Mamul üretimi etki diyagramı Maç sonucu Takım sıralamaları Play-off serisi Fiyat Satış miktarı Değişen maliyet Satış geliri Toplam maliyet Sabit maliyet Bahis miktarını belirle Sonuç Kısır noktalar Mamul üret? Kar

5 2. Karar Matrisi Bir karar probleminde bir tek karar noktası varsa ve sonuçlar da bir tek çevresel faktörün değişik durumlarına bağlı ise, karar matrisiyle modellenebilir. Karar matrisinin yapısı: Karar matrisi S1 S2.. Sm 1 U11 U12.. U1m 2 U21 U22.. U2m n Un1 Un2.. Unm P P1 P2.. Pm 17 Satırlar (): lternatifler Sütunlar (S): Çevresel faktörün değişik durumları Hücreler (U): lternatifler ve çevresel faktörün değişik durumlarının kombinasyonlarının sonuçları. 18 Örnek olay: Bir işletme X ürününü üretmektedir. İşletme gelecekteki dönemle ilgili planlama faaliyetlerine başlamıştır, önünde 3 alternatif vardır: Bir genişleme yatırımı yaparak üretim kapasitesini arttırmak, mevcut kapasitede üretime devam etmek, üretim kapasitesini düşürmek için mevcut üretim hatlarından bazılarını kapatmak ve bu hatlarda kullanılan makine ve teçhizatı satmaktır. lternatiflerin getirisi, gelecekte ürüne olan talebe bağlıdır. Gelecekte ürüne olan talep artabilir, herhangi bir değişiklik olmayabilir veya talep düşebilir. Eğer işletme genişleme yatırımı yapar ve talep de artarsa planlama dönemi sonunda TL Ekonomik Kar (EK) elde edileceği, talepte bir değişiklik olmazsa 2.000TL EK elde edileceği ve talep düşerse 8.000TL zarara uğrayacağı (negatif ekonomik kar) tahmin edilmektedir. Eğer işletme mevcut kapasitede üretime devam eder ve talep artarsa planlama dönemi sonunda 9.000TL EK elde edileceği, talepte bir değişiklik olmazsa 5.000TL EK elde edileceği, talep düşerse herhangi bir EK veya zararın söz konusu olmayacağı (sıfır EK) tahmin edilmektedir. İşletme kapasitesini düşürür ve talep artarsa 4.000TL EK elde edileceği, talepte değişiklik olmazsa 1.500TL EK ve talep düşerse 7.000TL EK elde edileceği tahmin edilmektedir. Problemde tek karar noktası bulunmaktadır: Kapasite kararı Tek çevresel faktör: Gelecekteki talebin ne olacağı Çevresel faktörün 3 durumu vardır. maç: Firmanın piyasa değerini arttırmak lternatifler arasında seçim kriteri: Ekonomik kar

6 Etki diyagramı: Ekonomik Kar(EK)= Vergi sonrası faaliyet karı-(yatırılan sermaye x ğırlıklı ortalama sermaye maliyeti) Gelecekteki talep Yatırılan Sermaye=Net işletme sermayesi + İşletmenin faaliyetlerini yürütmek için kullandığı maddi ve maddi olmayan duran varlıklar. Kapasite Ekonomik kar Karar matrisi: lternatifler Karar Matrisi Talebin rtması Talebin Değişmemesi Talebin Düşmesi Kapasite artırım yatırımı yapmak Mevcut kapasiteyi korumak Kapasiteyi düşürmek Karar ğacı Etki diyagramları karar problemlerinin elemanlarını ve bu elemanlar arasındaki ilişkiyi özet olarak gösterirken, Karar ağaçları problemin daha detaylı olarak gösterilmesini sağlar. Etki diyagramının noktalarında depolanan bilgiler, Karar ağaçlarının dallarında bulunur. Karar ve belirsizlikle kronolojik olarak gösterilir

7 Karar ağacı; Noktalar ve Bu noktalardan çıkan dallardan oluşur. Karar Noktası; Dikdörtgenle temsil edilir Karar noktasından çıkan dallar, alternatifleri gösterir. Belirsizlik Noktaları; Daire ile temsil edilir Her belirsizlik noktası bir çevresel faktörü gösterir. Belirsizlik noktalarından çıkan dallar, çevresel faktörün durumlarını temsil eder. 25 Bir karar ağacı; Soldan (şu andan) Sağa doğru (geleceğe) çizilir. Her etki diyagramı bir karar ağacına dönüştürülebilir. 26 Karar ağaçlarının genel yapısı: Durum 1 (Olasılık 1) Sonuç [U(1,1)] Örnek olay için karar ağacı Talebin artması Kapasite artırımı yapmak Talebin değişmemesi lternatif 1 Durum 2 (Olasılık 2) Sonuç [U(1,2)] Talebin düşmesi Talebin artması lternatif 2 Mevcut kapasiteyi korumak Talebin değişmemesi lternatif 3 Kapasiteyi düşürmek Talebin düşmesi Talebin artması Talebin değişmemesi Talebin düşmesi

8 Tek karar ve belirsizlik noktası bulunan problemler; Etki diyagramı Karar matrisi Karar ağacı ile modellenebilir. Birden fazla karar ve belirsizlik noktalarının bulunduğu sıralı karar problemleri; Etki diyagramı Karar ağaçları ile modellenir. Etki Diyagramının Karar ğacına Dönüştürülmesi Etki diyagramları karar problemlerinin karmaşık yapısını analitik olarak gösterebilir. Fakat, etki diyagramları alternatifleri, çevresel faktörlerle ilgili durumları ve ilgili olasılıkları net olarak gösteremez Etki diyagramları; Karar problemlerinin kolaylıkla karar ağaçlarına dönüştürülmesine imkan sağlar. Karar ağacının ilk aşamasını oluşturur. Etki diyagramlarını karar ağacına dönüştürmek için bazı aşamalar vardır. Etki diyagramını karar ağacına dönüştürme aşamaları: Herhangi bir okun işaret etmediği bir nokta belirle (gerisinde bir okun bulunmadığı nokta) Karar noktası ile belirsizlik noktası arasında bir seçim yapılması gerekirse, karar noktasını seç, ğacın başlangıcına bu karar noktasını koy ve bu karar noktasının alternatiflerini oklarla göster,

9 Etki diyagramında karar noktası etki oku ile bir belirsizlik noktasına bağlanıyorsa, karar noktasından çıkan ve alternatifleri gösteren okların ucuna bir belirsizlik noktası çiz ve bu belirsizlik noktasındaki durumları oklarla göster, Etki diyagramında karar noktası bilgi oku ile bir karar noktasına bağlanıyorsa, karar noktasından çıkan alternatifleri gösteren okların ucuna karar noktası çiz ve bu karar noktasındaki alternatifleri oklarla göster, Şayet etki diyagramında bir belirsizlik noktası koşulluluk oku ile başka bir belirsizlik noktasına bağlanıyorsa, başlangıçtaki belirsizlik noktasından çıkan ve durumları gösteren okların ucuna belirsizlik noktası çiz ve belirsizlik noktasındaki durumları göster, Bir belirsizlik noktası ile bir karar noktası sonuç oku ile bir sonuç noktasına bağlanıyorsa, her bir alternatife karşılık gelen belirsizlik noktasındaki durumların oluşturduğu sonuç yaz Bu aşamaları, etki diyagramının tüm aşamaları bitene kadar devam ettir, Tüm karar ağaçları tamamlandığında ilgili çevresel faktörlerin durumlarının ilgili olasılıklarını karar ağacında göster. Örnek olay (ödev) Bir fabrika sahibi, fabrikasında X ürünü üretebilmesi için bu fabrikadaki makine ve teçhizatta belli bir modifikasyon yapması ve konuda karar vermesi gerekmektedir. Fabrikayı X ürünü üretecek şekilde modifikasyonunu yaptıktan sonra bu modifikasyonun fabrikanın tamamında mı yoksa yarısında mı olacağına karar vermelidir. Daha sonra X ürünü üretim seviyesi (düşük/orta/yüksek) konusunda karar vermelidir. Fakat üretim seviyesini belirlemesinde hem bir önceki kararı (fabrikanın yarısını/tamamını modifiye etmek)hem de üretilecek ürünün fiyatını (düşük/orta/yüksek)belrileme konusundaki kararını etkilemektedir.ancak piyasa fiyatına etki eden birçok çevresel faktör bulunmaktadır. Fabrika sahibi geçmiş tecrübelerine dayanarak bunları rakip firmaların aynı ürünlerinin piyasa fiyatı ve üretim maliyeti olarak belirlemiştir. yrıca bu çevresel faktörlerin durumlarının düşük, orta veya yüksek olabileceğini tahmin etmektedir. Bu problemin; etki diyagramını çiziniz. Etki diyagramını karar ağacına dönüştürünüz

Etki Diyagramları ve Karar Ağaçları

Etki Diyagramları ve Karar Ağaçları Etki Diyagramları ve Karar Ağaçları IENG 456 Karar Vermede Analitik Yaklaşımlar Bu ders notlarının hazırlanmasında Dr. Vildan Ç. Özkır ın ders notlarından faydalanılmıştır. Yrd. Doç. Dr. Hacer GÜNER GÖREN

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

Karar Ağaçları. Karar Ağaçları. Arş. Gör. Melike ERDOĞAN

Karar Ağaçları. Karar Ağaçları. Arş. Gör. Melike ERDOĞAN Arş. Gör. Melike ERDOĞAN 09.05.2014 1 Belirsizlik ve risk altında karar alma durumunu temsil eden şekil Bu şekil karar seçeneklerini, her bir seçeneğin olasılıklarını, kar ve zararlarını gösterir. 09.05.2014

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

Ödev TeslimTarihi 12.Ocak 2010 KAR PLANLAMASI

Ödev TeslimTarihi 12.Ocak 2010 KAR PLANLAMASI İTÜ Tekstil Teknolojileri ve Tasarımı Fakültesi / Tekstil Mühendisliği Bölümü 2009-2010Öğretim Yılı / Güz Yarıyılı TEK485-MALİYET MUHASEBESİ DERSİ ÖDEV5 (YÖNETİM MUHASEBESİ) 30.Aralık.2009 Ödev TeslimTarihi

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Ders Bilgileri Dersin Hocası: Araş. Gör. Ahmet Ardahanlı E-posta: ahmet.ardahanli@hotmail.com Oda: DZ-33

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

EM205 26/9/2014. Programlamaya giriş Algoritmalar. Amaçlar

EM205 26/9/2014. Programlamaya giriş Algoritmalar. Amaçlar EM205 26/9/2014 Programlamaya giriş Algoritmalar Temel kavramlar Algoritmalar Amaçlar Algoritma kavramını öğrenmek, Algoritmaları ifade edebilmek, Temel matematiksel algoritmaları yazabilmek C programlama

Detaylı

ARDIŞIL DİYAGRAM YAPI DİYAGRAMI. Sistem Analizi ve Tasarımı Dersi

ARDIŞIL DİYAGRAM YAPI DİYAGRAMI. Sistem Analizi ve Tasarımı Dersi ARDIŞIL DİYAGRAM YAPI DİYAGRAMI Sistem Analizi ve Tasarımı Dersi İçindekiler Ardışıl Diyagram Nedir ve Neden Kullanılır... 3 Ardışıl Diyagram Elemanları... 3 MS Visio ile Ardışıl Diyagram Çizimi... 5 Violet

Detaylı

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU Bilişim Sistemleri Modelleme, Analiz ve Tasarım Yrd. Doç. Dr. Alper GÖKSU Ders Akışı Hafta 10-11. Nesneye Yönelik Sistem Tasarımı Haftanın Amacı Bilişim sistemleri geliştirmede nesneye yönelik sistem tasarımı

Detaylı

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE SİSTEM ANALİZİ ve TASARIMI ÖN İNCELEME ve FİZİBİLİTE Sistem Tasarım ve Analiz Aşamaları Ön İnceleme Fizibilite Sistem Analizi Sistem Tasarımı Sistem Gerçekleştirme Sistem Operasyon ve Destek ÖN İNCELEME

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan,

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

GRAFİK ÇİZİMİ VE UYGULAMALARI 2

GRAFİK ÇİZİMİ VE UYGULAMALARI 2 GRAFİK ÇİZİMİ VE UYGULAMALARI 2 1. Verinin Grafikle Gösterilmesi 2 1.1. İki Değişkenli Grafikler 3 1.1.1. Serpilme Diyagramı 4 1.1.2. Zaman Serisi Grafikleri 5 1.1.3. İktisadi Modellerde Kullanılan Grafikler

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

STOK VE STOK YÖNETİMİ.

STOK VE STOK YÖNETİMİ. STOK YÖNETİMİ STOK VE STOK YÖNETİMİ. Bir işletmede gereksinim duyulana kadar bekletilen malzemelere stok denir. Her kuruluş talep ile arz arasında bir tampon görevini görmesi için stok bulundurur. Stok

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

Trend Dönüş Formasyonları: Teknik Analiz

Trend Dönüş Formasyonları: Teknik Analiz Trend Dönüş Formasyonları: Teknik Analiz Döviz kurları grafikleri üzerinde fiyat seviyesinin mevcut eğilim içinde maksimum değerine ulaştıktan sonra oluşan geometrik modelleri vurgulamak mümkündür. Bu

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI 1. John Maynard Keynes e göre, konjonktürün daralma dönemlerinde görülen düşük gelir ve yüksek işsizliğin nedeni aşağıdakilerden

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

PROJE YÖNETİMİ: PERT VE CPM ANALİZİ: Prof. Dr. Şevkinaz Gümüşoğlu (I.Üretim Araştırmaları Sempozyumu, Bildiriler Kitabı-İTÜ Yayını, Ekim1997, İstanbul

PROJE YÖNETİMİ: PERT VE CPM ANALİZİ: Prof. Dr. Şevkinaz Gümüşoğlu (I.Üretim Araştırmaları Sempozyumu, Bildiriler Kitabı-İTÜ Yayını, Ekim1997, İstanbul PROJE YÖNETİMİ: PERT VE CPM ANALİZİ: Prof. Dr. Şevkinaz Gümüşoğlu (I.Üretim Araştırmaları Sempozyumu, Bildiriler Kitabı-İTÜ Yayını, Ekim1997, İstanbul Proje:Belirli bir işin tamamlanabilmesi için yapılması

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

İŞ AKIŞI ve YERLEŞTİRME TİPLERİ

İŞ AKIŞI ve YERLEŞTİRME TİPLERİ İŞ AKIŞI ve YERLEŞTİRME TİPLERİ İş akışı tipleri önce, fabrika binasının tek veya çok katlı olmasına göre, yatay ve düşey olmak üzere iki grupta toplanabilir. Yatay iş akışı tiplerinden bazı örneklerde

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama Öğr. Grv. M. Mustafa BAHŞI WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Bilgisayar ile Problem Çözüm Aşamaları Programlama Problem 1- Problemin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

VeritabanıYönetimi Varlık İlişki Diyagramları. Yrd. Doç. Dr. Tuba KURBAN

VeritabanıYönetimi Varlık İlişki Diyagramları. Yrd. Doç. Dr. Tuba KURBAN VeritabanıYönetimi Varlık İlişki Diyagramları Yrd. Doç. Dr. Tuba KURBAN VeritabanıTasarımı - Projenin tasarım aşamasında veritabanı tasarımı çok iyi yapılmalıdır. Daha sonra yapılacak değişiklikler sorunlar

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

Talep ve arz kavramları ve bu kavramları etkileyen öğeler spor endüstrisine konu olan bir mal ya da hizmetin üretilmesi ve tüketilmesi açısından

Talep ve arz kavramları ve bu kavramları etkileyen öğeler spor endüstrisine konu olan bir mal ya da hizmetin üretilmesi ve tüketilmesi açısından 3.Ders Talep ve arz kavramları ve bu kavramları etkileyen öğeler spor endüstrisine konu olan bir mal ya da hizmetin üretilmesi ve tüketilmesi açısından önemli unsurlardır. Spor endüstrisi içerisinde yer

Detaylı

Sistem Analizi Ders Notları Bölüm 2

Sistem Analizi Ders Notları Bölüm 2 2. SİSTEM MODELLERİ Sistem Analizi Ders Notları Bölüm 2 Sistemlerin işleyişini ve durumlarını izah etmek ve göstermek amacıyla çeşitli modellerden faydalanılır. Bu modeller aşağıdaki şekilde sınıflandırılabilir:

Detaylı

Görünüş çıkarmak için, cisimlerin özelliğine göre belirli kurallar uygulanır.

Görünüş çıkarmak için, cisimlerin özelliğine göre belirli kurallar uygulanır. Görünüş Çıkarma Görünüş çıkarma? Parçanın bitmiş halini gösteren eşlenik dik iz düşüm kurallarına göre belirli yerlerde, konumlarda ve yeterli sayıda çizilmiş iz düşümlere GÖRÜNÜŞ denir. Görünüş çıkarmak

Detaylı

BİL1002 Bilgisayar Programlama PROF.DR.TOLGA ELBİR

BİL1002 Bilgisayar Programlama PROF.DR.TOLGA ELBİR BİL1002 Bilgisayar Programlama PROF.DR.TOLGA ELBİR Bilgisayar Programı Nedir? Program, bilgisayarda belirli bir amacı gerçekleştirmek için geliştirilmiş yöntemlerin ve verilerin, bilgisayarın donanımının

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Bu bölüm, çeşitli şekillerde birbirlerine bağlanmış bataryalar, dirençlerden oluşan bazı basit devrelerin incelenmesi ile ilgilidir. Bu tür

Detaylı

ÜNİTE 4: FAİZ ORANLARININ YAPISI

ÜNİTE 4: FAİZ ORANLARININ YAPISI ÜNİTE 4: FAİZ ORANLARININ YAPISI Faiz oranlarının yapısı; Menkul kıymetlerin sahip olduğu risk, Likidite özelliği, Vergilendirme durumu ve Vade farklarının faiz oranlarını nasıl etkilediğidir. FAİZ ORANLARININ

Detaylı

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. GENETEK Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. Güç Sistemlerinde Kısa Devre Analizi Eğitimi Yeniköy Merkez Mh. KOÜ Teknopark No:83 C-13, 41275, Başiskele/KOCAELİ

Detaylı

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir?

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir? Ders : Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 4 Yrd. Doç. Dr. Beyazıt Ocaktan E-mail: bocaktan@gmail.com Ders İçerik: nedir? Markov Zinciri nedir? Markov Özelliği Zaman Homojenliği

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri Otto ve Dizel Çevrimlerinin Termodinamik Analizi 1 GÜÇ ÇEVRİMLERİNİN ÇÖZÜMLEMESİNE İLİŞKİN TEMEL KAVRAMLAR Güç üreten makinelerin büyük çoğunluğu bir termodinamik çevrime göre çalışır. Ideal Çevrim: Gerçek

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Bu ders notlarının hazırlanmasında Doç. Dr. İbrahim Çil in ders notlarından faydalanılmıştır. Yrd. Doç. Dr. Hacer GÜNER GÖREN Pamukkale Üniversitesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI Veritabanı Tasarımı ve Yönetimi Uzm. Murat YAZICI Veritabanı Tasarımı - Projenin tasarım aşamasında veritabanı tasarımı çok iyi yapılmalıdır. Daha sonra yapılacak değişiklikler sorunlar çıkartabilir veya

Detaylı

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü

Detaylı

Oyun Teorisine (Kuramına) Giriş

Oyun Teorisine (Kuramına) Giriş Oyun Teorisi Oyun Teorisine (uramına) Giriş Şimdiye kadar, karar modellerinde bireysel kararlar ve çözüm yöntemleri ele alınmıştı. adece tek karar vericinin olduğu karar modellerinde belirsizlik ve risk

Detaylı

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV)

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) AÇIKLAMALAR Ödevlerinizin teslimi, 14 Kasim 2013 günü saat 09:30-12:30 da yapılacaktır. Sorular aynı gün örgün (13:15) ve ikinci öğretim (17:00) dersinde çözüleceği

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

AGREGA GRONULÜMETRİSİ. Sakarya Üniversitesi

AGREGA GRONULÜMETRİSİ. Sakarya Üniversitesi AGREGA GRONULÜMETRİSİ Sakarya Üniversitesi Agregalarda Granülometri (Tane Büyüklüğü Dağılım) Agrega yığınında bulunan tanelerin oranlarının belirlenmesine granülometri denir. Kaliteli yani, yüksek mukavemetli

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Değişken ve Atama Bilgisayar programı içerisinde ihtiyaç duyulan sembolik bir ifadeyi veya niceliği

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Algoritmalar ve Programlama. Algoritma

Algoritmalar ve Programlama. Algoritma Algoritmalar ve Programlama Algoritma Algoritma Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü

Detaylı

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ %100 web tabanlı İNTERQC, programı ile laboratuarlarınızın kalite kontrollerini istediğiniz yerden ve istediğiniz

Detaylı

Varlık davranış modeli: Bu aşama her entity ye etki eden durumların tanımlandığı, modellendiği ve dokümante edildiği süreçtir.

Varlık davranış modeli: Bu aşama her entity ye etki eden durumların tanımlandığı, modellendiği ve dokümante edildiği süreçtir. Yapısal Sistem Analiz ve Tasarım Metodu SSADM waterfall model baz alınarak uygulanan bir metottur. İngiltere de kamusal projelerde 1980 lerin başında kullanılan sistem analizi ve tasarımı konularındaki

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

ATÖLYE TİPİ ÜRETİMDEN HÜCRESEL ÜRETİME GEÇİŞ: OTOMOTİV SEKTÖRÜNDE UYGULAMA

ATÖLYE TİPİ ÜRETİMDEN HÜCRESEL ÜRETİME GEÇİŞ: OTOMOTİV SEKTÖRÜNDE UYGULAMA ATÖLYE TİPİ ÜRETİMDEN HÜCRESEL ÜRETİME GEÇİŞ: OTOMOTİV SEKTÖRÜNDE UYGULAMA Hande Yerlikaya, Furkan Yener, Melike Girgin, Nesibe Kaya, Harun Reşit Yazgan Bu çalışmada, otomotiv sektöründe hizmet veren bir

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

MODELLEME VE BENZETİM

MODELLEME VE BENZETİM MODELLEME VE BENZETİM Hazırlayan: Özlem AYDIN Not: Bu sunumda Yrd. Doç. Dr. Yılmaz YÜCEL in Modelleme ve Benzetim dersi notlarından faydalanılmıştır. DERSE İLİŞKİN GENEL BİLGİLER Dersi veren: Özlem AYDIN

Detaylı

STEM komutu ayrık zamanlı sinyalleri veya fonksiyonları çizmek amacı ile kullanılır. Bu komutun en basit kullanım şekli şöyledir: stem(x,y).

STEM komutu ayrık zamanlı sinyalleri veya fonksiyonları çizmek amacı ile kullanılır. Bu komutun en basit kullanım şekli şöyledir: stem(x,y). STEM Komutu: STEM komutu ayrık zamanlı sinyalleri veya fonksiyonları çizmek amacı ile kullanılır. Bu komutun en basit kullanım şekli şöyledir: stem(x,y). Bu komutta X vektörünün ve Y vektörünün elemanları

Detaylı

SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA

SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA Problem 1 (KMS-2001) Kısa dönem toplam arz eğrisinin pozitif eğimli olmasının nedeni aşağıdakilerden hangisidir?

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 11 Bu bölümde, Graph (Çizge - Graf) Terminoloji Çizge Kullanım

Detaylı

Bilgisayar Programı Nedir?

Bilgisayar Programı Nedir? BİL1002 Bilgisayar Programlama PROF.DR.TOLGA ELBİR Bilgisayar Programı Nedir? Program, bilgisayarda i belirli libir amacı gerçekleştirmek için geliştirilmiş yöntemlerin ve verilerin, bilgisayarındonanımınınyerine

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

Proje Değerlendirme (3) Ders 5 Finansal Yönetim, 15.414

Proje Değerlendirme (3) Ders 5 Finansal Yönetim, 15.414 Proje Değerlendirme (3) Ders 5 Finansal Yönetim, 15.414 Bugün Projeleri Değerlendirme Gerçek opsiyonlar Alternatif yatırım kriterleri Okuma Brealey ve Myers, Bölümler 5,10,11 DCF analizi (İskontolu Nakit

Detaylı

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK KPSS KONU LÜĞÜ 30 DE MATEMATİK ISBN: 978-605-2329-07-8 Bu kitabın basım, yayın ve satış hakları Kısayol Yayıncılık a aittir. Anılan kuruluşun izni alınmadan yayınların tümü ya da herhangi bir bölümü mekanik,

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

döşeme hesap aksı kütleleri deprem hesaplarında kullanılmaz. Dikdörtgen döşeme

döşeme hesap aksı kütleleri deprem hesaplarında kullanılmaz. Dikdörtgen döşeme DÖŞEME ÇİZİMİ StatiCAD-Yigma programında döşemeler üzerlerindeki yükün ve zati ağırlıkların duvarlara aktarımı için kullanılırlar. Döşeme hesap aksları ise betonarme döşemelerin donatı hesaplarının yapılmasını

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri BLM2881 2015-1 DR. GÖKSEL Bİ R İ C İ K goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 16.09.2015 Tanışma, Ders Planı, Kriterler, Kaynaklar, Giriş Latex

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 2

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 2 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Görünüşler - 2 2/23 Görünüşler-2 Görünüşler - 2 Eksik Verilmiş Görünüşler Yardımcı Görünüşler Kısmi Yardımcı Görünüş Özel Görünüşler

Detaylı

Programlama Giriş. 17 Ekim 2015 Cumartesi Yrd. Doç. Dr. Mustafa YANARTAŞ 1

Programlama Giriş. 17 Ekim 2015 Cumartesi Yrd. Doç. Dr. Mustafa YANARTAŞ 1 17 Ekim 2015 Cumartesi Yrd. Doç. Dr. Mustafa YANARTAŞ 1 Ders Not Sistemi Vize : % 40 Final : % 60 Kaynaklar Kitap : Algoritma Geliştirme ve Programlama Giriş Yazar: Dr. Fahri VATANSEVER Konularla ilgili

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı