MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya"

Transkript

1 MAK 1005 Bilgisyr Progrmlmy Giriş Diziler Prof. Dr. Necmettin Ky

2 DİZİ: Bir değişken içinde birden fzl ynı tip veriyi sklmk için kullnıln veri tipidir. Dizi elemnlrı indis numrsı (sır no) ile çğrılıp işlenirler. Dizi tnımı: veritipi diziadı[elemn_syısı]; Örneğin, 5 elemnlı, uzunluk verilerini bellekte tutmk için, uzunluk dizisi şöyle tnımlnbilir: flot uzunluk[5]; Bu dizinin elemnlrın bir değer tm işlemi şöyle ypılbilir: uzunluk[0] = uzunluk[1] = uzunluk[2] = uzunluk[3] = uzunluk[4] = (Dizi indisinin bşlngıç değeri 0 dır.)

3 Dizilerin Okunmsı ve Yzdırılmsı printf ve scnf fonksiyonlrı bir dizinin okunmsı ve yzdırılmsı için de kullnılır. Örneğin bir A dizisinin şğıdki gibi tnımlndığını vrsylım: int A[10]; Bu dizinin elemnlrını klvyeden okumk için döngü ypısı içinde: for (i=0; i<10; i++) scnf("%d",&a[i]); dh sonr bu değerlerini ekrn yzmk için: for (i=0;i<10;i++) printf("%d\n",a[i]);

4 Dizilere Bşlngıç Değerlerinin Girilmesi Progrm içinde dizi elemnlr scnf fonksiyonu ile okutulcğı gibi bşlngıç değerleri de girilebilir: flot kutle[5]= 8.471, 3.683, 9.107, 4.739, 3.918; int mliyet[3] = 25, 72, 94; double [4] = 10.0, 5.2, 7.5, 0.0; Bir dizinin uzunluğu belirtilmeden de bşlngıç değeri tmk mümkündür. int [] = 100, 200, 300, 400; flot v[] = 9.8, 11.0, 7.5, 0.0, 12.5; Derleyici bu şekilde bir tm ile krşılştığınd, küme prntezi içindeki elemn syısını hesplr ve dizinin o uzunlukt çıldığını vrsyr. Yukrıdki örnekte, dizisinin 4, v dizisinin 5 elemnlı olduğu vrsyılır. Bşlngıç değerlerinin tndığı durumlrd indis numrsı 0 dn bşlr. (Örn: kutle[0]=8.471)

5 Örnek 1: N tne syının ortlmsını buln C progrmını (dizi kullnrk) yzınız. int N,i; flot x[100], ort, toplm = 0.0; min() printf("n="); scnf("%d",&n); for(i=0; i<n; i++) printf("%d. syi : ",i+1); scnf("%f",&x[i]); toplm += x[i]; /* toplm=toplm+x[i] */ ort = toplm/n; printf("syilrin ortlmsi = %f\n",ort); Ekrn Çıktısı:

6 Örnek 2: 10 tne syının stndrt spmsını buln C progrmını yzınız. #include <mth.h> int i; #define N 10 flot x[n],toplm=0.0, ktoplm=0, ort, std_sp=0.0; min() /* ortlm hesbı */ for(i=0; i<n; i++) printf("%d. syi : ",i+1); scnf("%f",&x[i]); toplm=toplm+x[i]; ort = toplm/n; /* stndrt spm hesbı */ for(i=0; i<n; i++) ktoplm=ktoplm+pow(x[i]-ort,2.0); std_sp = sqrt(ktoplm/(n-1) ); printf("ortlm = %f\n",ort); printf("stndrt spm = %f\n",std_sp); Ekrn Çıktısı:

7 Örnek 3: Elemn syısı N oln bir dizinin elemnlrını okutup diziyi tersten yzdırn C progrmını yzınız. #include <mth.h> int i,n; int dizi[100]; min() printf("n=");scnf("%d",&n); for(i=0; i<n; i++) printf("%d. syi=",i+1); scnf("%d",&dizi[i]); printf("tersten dizi:\n"); for (i=n-1; i>=0; i--) printf("%d\n",dizi[i]); Ekrn Çıktısı:

8 Örnek 4: Elemnlrı girilen N elemnlı bir A dizisi için şğıdki işlemleri ypn C progrmını yzınız. ) Girilen bir B syısındn büyük oln elemnlrın syısı, b) A dizisinin ortlmsı, c) ortlmnın üzerinde oln elemn syısı. #include <mth.h> int i,n,b,s=0,p=0,toplm=0; int [100]; flot ort; min() printf("n=");scnf("%d",&n); printf("b=");scnf("%d",&b); for(i=0; i<n; i++) printf("%d. syi=",i+1); scnf("%d",&[i]); if ([i]>b) s=s+1; toplm=toplm+[i]; ort=(flot) toplm/n; for(i=0; i<n; i++) if ([i]>ort) p=p+1; printf("b den buyuk elemn syisi=%d\n",s); printf("ortlm=%f\n",ort); printf("ort. buyuk elemn syisi=%d\n",p); Ekrn Çıktısı:

9 İKİ BOYUTLU DİZİLER İki boyutlu dizi tnımı: flot mt[5][4]; Mtris işlemleri de 2 boyutlu dizi mntığı ile gerçekleştirilebilir. 3 stır ve 3 sütünlu bir A mtrisi: A mtrisinin tnımı: flot A[3][3]; A mtrisinin elemnlrının okunmsı: int i,j; int A[50][50]; min() for(i=1; i<=3; i++) for(j=1; j<=3; j++) A ij printf("a[%d,%d]=",i,j); scnf("%d",&a[i][j]); İndislerin değişimi: i j A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33

10 İKİ BOYUTLU DİZİLER Örnek 5: İki mtrisin toplmı #define SAT 2 #define SUT 3 int [SAT][SUT] = 5, 3, 7, 0, 1, 2; int b[sat][sut] = 1, 2, 3, 4, 5, 6; int c[sat][sut]; int i, j; min() puts("a Mtrisi:"); for(i=0; i<sat; i++) for(j=0; j<sut; j++) printf("%4d",[i][j]); printf("\n"); puts("b Mtrisi:"); for(i=0; i<sat; i++) for(j=0; j<sut; j++) printf("%4d",b[i][j]); printf("\n"); puts("\nc Mtrisi:"); for(i=0; i<sat; i++) for(j=0; j<sut; j++) c[i][j] = [i][j] + b[i][j]; printf("%4d",c[i][j]); printf("\n"); Ekrn Çıktısı:

11 LABORATUVAR UYGULAMASI UYGULAMA SORULARI 1. A(NxM) boyutlrındki mtris elemnlrındn pozitif olnlrın toplmının, negtif olnlrın toplmın ornını hesplyn C progrmını yzınız. 2. N elemnlı bir A dizisinin elemnlrının sırsını ters çevirerek B dizisine ktrn C progrmını yzınız. ÖDEV SORULARI 1. N öğrencinin bulunduğu bir sınıft öğrencilerin dını ve notunu okuyup, sınıf ortlmsının üzerinde not ln öğrencilerin dını ve notunu ekrn yzn C progrmını yzınız. 2. N elemnlı bir A dizisinde negtif ve pozitif elemn syısı birbirine eşittir ve bu elemnlr dizide krışık şekilde bulunmktdır. Negtif elemnlrı dizinin ilk yrısın, pozitif elemnlrı ikinci yrısın yerleştirerek B dizisini oluşturn C progrmını yzınız. Örnek: A=1, -2, -4, 6, 7, -1, 5, -8 B=-2, -4, -1, -8, 1, 6, 7, 5 3. A(MxN) ile B(NxP) mtris çrpımını ypn C progrmını yzınız.

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

BLM-111 PROGRAMLAMA DİLLERİ I. Ders-10 Diziler. Yrd. Doç. Dr. Ümit ATİLA

BLM-111 PROGRAMLAMA DİLLERİ I. Ders-10 Diziler. Yrd. Doç. Dr. Ümit ATİLA BLM-111 PROGRAMLAMA DİLLERİ I Ders-10 Diziler Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN BLM111 Programlama Dilleri I Hafta 10 Diziler Yrd. Doç. Dr. Caner ÖZCAN Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri girilmesi ve girilen verilerin işlenerek belirli bir sistematiğe

Detaylı

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU Diziler Yrd.Doç.Dr.Bülent ÇOBANOĞLU Dizi (Array) Nedir? Bellekte sürekli yer kaplayan artarda sıralanmış aynı türden verilerin oluşturduğu kümeye dizi (array) denir. Dizi, çok fazla miktardaki tek tip

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

C PROGRAMLAMA D İ L İ

C PROGRAMLAMA D İ L İ C PROGRAMLAMA DİLİ Diziler Dizi bir kümedir. Aynı tipteki verilere tek bir isimle erişmek için kullanılır. Bir dizi bildirildikten sonra, dizinin bütün elemanları bellekte peşpeşe saklanır. Bu yüzden dizilere

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

Diziler. Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler

Diziler. Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler Diziler Diziler Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler Dizi Tanımı Değişkenler aynı anda tek bir değer tutabilen temel değişkenler ve birden fazla değer saklayabilen

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER Dizi, aynı tipteki verilere tek bir isimle erişmek için kullanılan bir kümedir. Bir dizi bildirildikten sonra, dizinin bütün elemanları bellekte peşpeşe

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi Dizilere Başlangıç Değeri Verme Dizilerde Arama

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

Diziler (Arrays) Çok Boyutlu Diziler

Diziler (Arrays) Çok Boyutlu Diziler Diziler (Arrays) Çok Boyutlu Diziler ÇOK BOYUTLU DİZİLER Birden fazla indis numarası ile elemanlarına ulaşılan dizilere çok boyutlu diziler denir. Bunlardan en sık kullanılanı çift boyutlu dizilerdir.

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

MAK 1005 Bilgisayar Programlamaya Giriş. Fonksiyonlar. Prof. Dr. Necmettin Kaya

MAK 1005 Bilgisayar Programlamaya Giriş. Fonksiyonlar. Prof. Dr. Necmettin Kaya MAK 1005 Bilgisayar Programlamaya Giriş Fonksiyonlar Prof. Dr. Necmettin Kaya Gerçek hayattaki problemlerin çözümü için geliştirilen programlar çok büyük boyutlardadır. Daha büyük programlar yazmanın en

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN00 BİLGİSAYAR PROGRAMLAMA YİNELEME (RECURSION) Sunu Plnı Yinelemenin nlmı Yinelemeli fonksiyon tnımınd temel ve genel durum Bsit değişken tipleriyle yinelemeli fonksiyon oluşturm Dizi prmetreleriyle

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

BMB1002 Bilgisayar Programlamaya Giriş. Dosyalar. Prof. Dr. Necmettin Kaya

BMB1002 Bilgisayar Programlamaya Giriş. Dosyalar. Prof. Dr. Necmettin Kaya BMB1002 Bilgisayar Programlamaya Giriş Dosyalar Prof. Dr. Necmettin Kaya Dosyalar, verilen saklanması ve daha sonra okunması için bilgi içeren ve kalıcı olarak saklanabilen ortamlardır. Dosya işlemleri,

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl I / 7 Ksım 011 Mtemtik Sorulrının Çözümleri 1 1 1 1. 1. + + 1 1. + 3 6 1 3 1 + 3 6 3 1. + + 1 1 1 6+ + 3 1. 1 13 1. 1 13. 5.10 +

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi Algoritm Geliştirme ve Veri Ypılrı 4 Algoritm ve Yzılımın Şekilsel Gösterimi Mustf Keml Üniversitesi Algoritm ve Yzılımın Şekilsel Gösterimi Algoritmik progrm tsrımı, verilen ir prolemin ilgisyr ortmınd

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

Bil 101 Bilgisayar Yazılımı 1 Çözümlü Sorular Timur Karaçay

Bil 101 Bilgisayar Yazılımı 1 Çözümlü Sorular Timur Karaçay Bil 101 Bilgisayar Yazılımı 1 Çözümlü Sorular Timur Karaçay SORU 1: Aşağıdaki programın çıktısını, adım adım izleyerek (trace) bulunuz? #include int f(int x) { if (x

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

Döngü ve Koşul Deyimleri

Döngü ve Koşul Deyimleri Döngü ve Koşul Deyimleri Programlar üç temel blok kullanılarak gerçekleştirilebilirler. art arda, bir koşula bağlı olarak ve sonlu sayıda yineleme (döngü) dir Koşul Deyimleri Birkaç seçenekten birini seçmek

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

1. 100 elemanlı bir dizide bir sinyalin 1 er saniye aralıklarla ölçülen gerilim değerleri tutulmaktadır. Bu sinyalin tepeden tepeye genliğini,

1. 100 elemanlı bir dizide bir sinyalin 1 er saniye aralıklarla ölçülen gerilim değerleri tutulmaktadır. Bu sinyalin tepeden tepeye genliğini, 1. 100 elemanlı bir dizide bir sinyalin 1 er saniye aralıklarla ölçülen gerilim değerleri tutulmaktadır. Bu sinyalin tepeden tepeye genliğini, pozitif tepe genliğini, negatif tepe genliğini ve ortalamasını

Detaylı

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

Kümelerin elemanları virgülle ayrılarak {} içerisinde gösterilir.

Kümelerin elemanları virgülle ayrılarak {} içerisinde gösterilir. KÜME KAVRAMI Nesnelerin iyi tnımlnmış bir listesidir. Kümeyi oluşturn nesnelere kümenin elemnlrı denir. Kümeler genellikle A, B, C gibi büyük hrflerle gösterilir. Bir elemnı bir A kümesine it ise A ile,

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

Temel Bilgisayar Bilimleri Ders Notu #4-2. kısım

Temel Bilgisayar Bilimleri Ders Notu #4-2. kısım Nisan 2009 9031150 - Temel Bilgisayar Bilimleri Ders Notu #4-2. kısım Referans: Bugün: 1. Ders Notları. Ders #4.1 Tekrar Dowhile ve for döngüleri Diziler Göstergeler 1. Tekrar for döngüleri Genel yazılımı

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu DİZİLER

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu DİZİLER DİZİLER Dizi Nedir? Aynı türden nesnelerin oluşturduğu, bellekte bitişik bir biçimde bulunan veri yapısına dizi denir.mesela alfabe diye bir dizi tanımlarız, harfleri a,b,c,d... diye sıralarız.dizinin

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ TG ÖABT İLKÖĞETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir ısmının İhtiyç

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

Başkent Üniversitesi MühendislikFakültesi BaharYarıyılı YerSıra No BİL 101 Bilgisayar Yazılımı-I Dersi Dönem Sonu MAZERET Sınavı

Başkent Üniversitesi MühendislikFakültesi BaharYarıyılı YerSıra No BİL 101 Bilgisayar Yazılımı-I Dersi Dönem Sonu MAZERET Sınavı Başkent Üniversitesi MühendislikFakültesi 2013-2014 BaharYarıyılı YerSıra No BİL 101 Bilgisayar Yazılımı-I Dersi Dönem Sonu MAZERET Sınavı SınavTarihi : 03.06.2015 SınavBaşlamaSaati : 12:00 SınavSüresi

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir

Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir DİZİLER (ARRAYS) Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir değişken tanımlamak gereklidir. string gun1,

Detaylı

Döngü komutları komutların bir çok kez yeniden yürülmesini. sağlayan, programlamada kullandığımız önemli yapılardan biridir.

Döngü komutları komutların bir çok kez yeniden yürülmesini. sağlayan, programlamada kullandığımız önemli yapılardan biridir. Bölüm 5 Döngü Komutları while Komutu Diğer Operatörler Bileşik Komut for Komutu do-while Komutu İçiçe Döngüler break ve continue Komutları while Komutu Döngü komutları komutların bir çok kez yeniden yürülmesini

Detaylı

ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER

ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER // 5 adet ogrenci icin 8 adet sinavi // temsil etmesi icin bir ogrenci tablosu // olusturuyoruz. Bunun icin 5x8 bir matris // yaratilmasi

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

#include <stdio.h> main() { int i; i=0; do { printf("i nin simdiki degeri= %d\n",i); i = i + 1; } while (i<5); }

#include <stdio.h> main() { int i; i=0; do { printf(i nin simdiki degeri= %d\n,i); i = i + 1; } while (i<5); } DÖNGÜLER(do-while deyimi) do İfade bloğu; while (şart ifadesi) ; Mantıksal ifade doğru olduğu sürece döngü tekrar edilir. Yanlış olduğunda while sözcüğünden sonraki deyim yürütülür. do.. while döngüsünde

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı