FERROAKIŞKANLARIN YAPISININ ve MANYETİK ALANDA HAREKETLERİNİN İNCELENMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FERROAKIŞKANLARIN YAPISININ ve MANYETİK ALANDA HAREKETLERİNİN İNCELENMESİ"

Transkript

1 ÖZEL EGE LİSESİ FERROAKIŞKANLARIN YAPISININ ve MANYETİK ALANDA HAREKETLERİNİN İNCELENMESİ HAZIRLAYAN ÖĞRENCİLER: Berker Parlaker Emir Coşkun DANIŞMAN ÖĞRETMEN: A.Ruhşah Erduygun 2010 İZMİR

2 İÇİNDEKİLER Amaç 1 Giriş 1 1. Manyetik Alan 1 2. Manyetik Maddeler 2 3. Ferromanyetik Malzemeler Histerisiz Çevrimi 4 5. Nanomanyetik parçacıklar Ferroakışkanlar 6.1. Ferroakışkanların yapısı Ferroakışkana etki eden kuvvetler 6-9 Materyal- Yöntem 10 1.Ferroakışkanın yapısının ve ortam sıvısının incelenmesi Ferroakışkanın manyetik alan içinde hareketinin incelenmesi Ferroakışkanın değişken manyetik alanda hareketinin incelenmesi Sonuç ve Tartışma 19 Kaynakça 20 Teşekkür 21

3 AMAÇ Bu projede amacımız, nanoparçacıkların kutupsal özellikte sıvılarla kaplanmış hali olan manyetik sıvıların manyetik alan altında hareketlerinin incelenmesidir. GİRİŞ Projeye başlamadan önce çeşitli kitap ve makalelerden manyetik alan, nanoparçacıklar ve ferroakışkanlar hakkında bilgi toplanmıştır. 1.MANYETİK ALAN Manyetik alan, elektrik yüklerinin hareketi sonucunda ortaya çıkan bir etkidir. Bir maddenin en küçük parçası olan atomlarda negatif yüklü olan elektronlar, çekirdek etrafında yörüngesel bir hareket yaptıkları gibi, kendi eksenleri etrafında da bir dönme hareketi yaparlar(şekil 1). Şekil 1.a) Bir elektronun yörüngesel hareketi b) Bir elektronun manyetik momenti Elektrik akımının yüklü parçacıkların hareketi sonucunda meydana gelmesi nedeniyle bu hareketlere, bir çeşit mikroskopik akımlar gözüyle bakılabileceği ve tabii ve yapay miknatısların manyetik özellikler göstermesinde etkin oldukları ilk kez Ampere tarafından ileri sürülmüştür. Manyetik etkilerin, söz konusu bu mikroskopik akımlardan ileri geldiği savı, günümüzde de artık kesinlik kazanmıştır. Bu sava göre elektrik yüklü parçacıklar hareket halinde ise ortamda bir değişiklik meydana gelir. İşte akım taşıyan bir bobinin yada bir miknatısın bulunduğu ortamda manyetik kuvvet olarak ortaya çıkan bu değişiklik, manyetik alan olarak adlandırılır. Manyetik alan; doğrultusu, yönü ve şiddeti ile belirlenen vektörel bir büyüklüktür. Her hangi bir ortamdaki manyetik alan, kuvvet çizgileri ya da manyetik akı çizgileri ile gösterilir. N S (a) Şekil 2.a) Mıknatısın manyetik alanı (b) b) NdFeB mıknatısı

4 2.MANYETİK MADDELER Faraday, yaptığı araştırmalar sonunda tüm maddelerin, manyetik alana bir tepki gösterdiğini ve bu tepki nedeniyle karşılıklı bir etkileşimin söz konusu olmasından dolayı maddelerin üç grupta toplanabildiğini göstermiştir; 1) Diamanyetik Maddeler : Bağıl manyetik geçirgenlikleri μ r < 1 olan bu tür maddeler, güçlü bir manyetik alana dik şekilde kendilerini yönlendirirler. Diamanyetizma, tek sayıda elektronlara sahip ve tamamlanmamış içi kabuğu olmayan maddelerde görünür. Radyum, potasyum, magnezyum, hidrojen, bakır,gümüş, altın ve su diamanyetik gruba girerler. 2) Paramanyetik Maddeler : Bağıl manyetik geçirgenlikleri μ r > 1 olan bu tür maddeler, güçlü bir manyetik alana paralel şekilde kendilerini yönlendirirler. Paramanyetizma çift sayıda elektronlara sahip maddelerde görülür. Hava,alüminyum ve silisyum paramanyetik gruba girer. 3) Ferromanyetik Maddeler : Demir, nikel, kobalt ve alaşımlarını içeren maddeler bu gruba girer. Uygulanan manyetik alan altında yüksek manyetizasyon ve histeresiz özelliği gösterirler. Şekil 3. Para/Ferromanyetik maddeler 3. FERROMANYETİK MALZEMELER Atomik sayıları 21 ila 28, 39 ila 45, 57 ila 78 arasında ve 89 ve büyük olan malzemelerde manyetik moment söz konusudur. En önemli aralık 21 ila 28 arasında olup, bu aralıkta bulunan vanadium, krom, manganez, demir, nikel, kobalt ve bunların alaşımlarında netmanyetik momentleri manyetik alan altında sıfırdan farklıdır ve manyetik alan kaldırıldığına dahi manyetizasyonları hemen kaybolmaz. Bu malzemelere ferromanyetik malzemeler adı verilir. Bu gibi malzemelerde birbirine komşu atomların dizilimler şekil-4 deki gibi olup, yapıları nedeniyle elektronlarının döngü eksenleri hep aynı yönde olduğundan net manyetik momentleri bölgesel olarak sıfırdan farklıdır.

5 Şekil 4. Ferromanyetik maddelerin manyetik moment dizilimleri Ferromanyetik malzemelerde manyetik akı, atomların sıralanma yönü doğrultusu boyunca bir süreklilik içindedir. Sadece demir, nikel ve kobalttan oluşan küçük bir saf elementler grubunda, aynı sıradaki momentler normal ısıda ferromanyetik meydana getirir. Bununla beraber, normal ısının biraz altında bu elementlerdeki ferromanyetik etkilenmez. Isı sonucunda oluşan kuvvetler, tamamen komşu atomlarda manyetik moment oluşturan elektronlar arasındaki mesafeye bağlıdır. Mesafenin belli bir değerinde ferromanyetik olan malzeme, bu belli değerin altında manyetik olmayan malzeme duruma geçer. Değişik bir uygulama, farklı manyetik momentlere sahip farklı dizimli iki grup atom yapısından bir magnet elde edilebilmesidir. (Şekil 5) Bu yapı ferrimanyetik bir yapı olup, bu gruptaki malzemeler ferrit olarak bilinmektedir. Şekil 5. Ferromanyetik maddelerin manyetizasyon vektörleri Ferromanyetik maddeler manyetik özellik bakımından, diamanyetik ve paramanyetik maddelere göre ayrıcalık gösterir. Bağıl manyetik geçirgenlikleri 1 den çok büyüktür. Bağıl manyetik geçirgenlikleri, malzemenin cinsine, malzemeye daha önce uygulanan manyetik işlemlere ve manyetik alan şiddetinin değerine bağlı olarak değişkendir. Paramanyetik ve diamanyetik maddelerde B manyetik akı yoğunluğu (endüksiyon) ile H alan şiddeti arasında doğrusal bir ilişki varken, ferromanyetik malzemelerde bu ilişki doğrusal değildir. Manyetik histerisize sahiptirler. (Şekil 6)

6 Ferromanyetik maddeler Curie sıcaklığı üzerinde paramanyetik malzeme durumuna geçerler. 4. HİSTERİSİZ ÇEVRİMİ Ferromanyetik malzemeler, histerisiz çevrimi ile karakterize edilir. Histerisiz çevrimi, tam bir miknatıslanma peryodunda malzemenin manyetik alan şiddeti H ile manyetik akı yoğunluğu B arasındaki ilişkiyi gösterir. Şekil 6. Histerisiz çevriminin elde edilişi Uyarma akımı dolayısı ile H manyetik alan şiddeti arttırıldıkça B manyetik akı yoğunluğu da doyma noktasına kadar artar. Bu noktadan itibaren uyarma akımı dolayısı ile H alan şiddeti azaltılarak geri dönülecek olursa B nin daha önce H nin arttırılırken aldığı değerlerden daha büyük değerler alarak eğri boyunca azaldığı görülür. Uyarma akımı kesilerek H = 0 yapılsa bile B, bir değer alır. H nin aynı değerleri için B nin farklı değerler alması olayına histeresiz adı verilir. Şekilde verilen kapalı eğri histerisiz eğrisi elde edilir. 5.NANOMANYETİK PARÇACIKLAR Manyetik malzemenin fiziksel ölçüleri her üç boyutta da küçültüldüğünde nanoparçacık denilen yapılara ulaşılır. Ferromanyetik özelliğe sahip malzemeler, pek çok manyetik domain ve bu domainler arasındaki domain duvarından oluşur. Malzemenin boyutu küçüldükçe, yapı içerisindeki domainler sahip oldukları enerjiye bağımlı olarak tek domain hale gelmeye baslar. Bu durumda malzeme içindeki domain duvar hareketlerine ve hatalara bağlı olan manyetik koersivite özelliğinin yani kalıcı mıknatıslık özelliğinin kaybolmasına sebep olur. Örneğin makroskopik boyutlarda ferromanyetik olan bir malzeme belli bir kritik değerin altına kadar küçültüldüğünde paramanyetik gibi davranmaya başlar. Aslında atomların spinleri arasındaki etkileşmeler hala ferromanyetik olmasına ve bir parçacık içindeki tüm spinler birbirlerine paralel olmalarına rağmen, yani parçacıklar tek başlarına ferromagnetik

7 olmalarına rağmen bu parçacıklardan oluşan tozun makroskopik mıknatıslanması paramanyetik bir malzemenin davranışına çok benzer. Şekil 7.Manyetik alan altında domainler Ferromanyetik maddelere, bir manyetik alan uygulandığında spinler yönlenir ve sonraki manyetik doygunluk benzer materyallere göre daha düşük manyetik alanlarda elde edilir. Manyetik alan azaldığında mıknatıslığı giderme spinlerin düzenli dönmelerine bağlıdır ve büyük bir koersivite (Hc) gerekir. Parçacıkların her birisinin toplam mıknatıslanmasını temsil eden bu dev spinlerin ortak davranışı süperparamanyetizma olarak adlandırılır. (Şekil 8) Şekil 8.Hc ile parçacık boyutu arasındaki ilişki 6.FERROAKIŞKANLAR 1960larda Nasa Araştırma Merkezi manyetik alan altında kontrol edilebilir sıvıları keşfetti. Bu nanoparçacıklardan oluşan sıvılar yaygın olarak ferroakışkan (ferrofluid) adında bilinir ve araştırmalar için aktif bir alandır.

8 Ferroakışkan taşıyıcısının içinde suspansiyon olarak duran manyetik nanoparçacıklardan oluşur. Nanoparçacıkların büyüklüğü yaklaşık 10 nm uzaklıktadır. Parçacıkların bozulmaması için yüzeyin kaplandığı madde oldukça önemlidir. Yüzeyin kaplandığı madde manyetik alan uygulandığında toplanmaya engel olacak güce sahip olmalıdır ve nanoparçacıkların moleküler arası bağlarını dengelemelidir. Bu çalışmada kaplayıcı olarak tetrametilamonyum hidroksit ve ortam sıvısı olarakta (N(CH 3 ) 4 OH ) kullanılmıştır. Tetrametil amonyum hidroksit kaplı manyetik akışkan hazır alınmıştır ve ortam sıvısı içine katılmıştır. MANYETİT Tetrametilamonyum katodu Elektrostatik itme kuvveti Hidroksit anyonu MANYETİT Şekil 9.Ferroakışkanın yapısı Ferroakışkanın içine koyulduğu sıvı içinde koloit suspansiyon şeklinde kalabilmesini sağlamak için elektrostatik itme kuvvetinin parçacıklar arası çekim kuvvetinden küçük olması gereklidir. Ferroakışkan sisteminde iki çekim kuvveti vardır. Birincisi Van der Waals kuvvetleri, ikincisi manyetostatik kuvvetlerdir. Ayrıca yer çekim kuvveti tüm koloit sistemi etkileyecektir. Parçacıklar arası çekim kuvveti sıvı içindeki koloit parçacıkların kümeleşmesini sağlar. Bu kümeleşen parçacıkların büyüklüğü 10 nm boyutunda ve yoğunluğu ise 5.2 g/cm 3 tür. Ferroakışkanın yoğunluğu etki eden manyetik alanın gücü oranında değişir. Manyetik alan parçacıkların bir arada kalmasını sağlar. Sıvı içindeki parçacık büyüklüğü çekim kuvvetine bağlı olarak büyüyebilir. Molekülleri bir arada turan zayıf Van der Waals kuvvetleri çeşitli dipol-dipol kuvvetlerinin çeşitliliğine göre artar.

9 Van der Waals çekiminin yarattığı enerji R parçacıkların yarı çapı, D parçacıkları merkezlerinden olan uzaklığına bağlı olarak, (1) şeklinde yazılır. A Hamaker sabitidir. Bu etkileşim ve çekim kuvveti parçaçık büyüklüğü ile artar. Manyetik dipoller arasındaki etkileşim enerjisi ise; (2) manyetik geçirgenlik katsayısı µo, m 1 ve m 2 dipol momentlerinin etkileşimine ve parçacılar arasındaki uzaklığa bağlıdır. Manyetostatik etkileşimler, çözelti içindeki kolloid manyetik maddelerin dipol momentleri ile artar. Bu kuvvetler çekme özelliğine sahiptir ve manyetik alan içinde manyetize olurlar. Elektrostatik itme Kararsız hal Potansiyel enerji Kararlı hal Van der Waals çekimi Nanoparçacıklar arası uzaklık azalıyor Şekil 10.Potansiyel enerji- parçacıklar arası uzaklık Grafikte elektrostatik potansiyel nanoparçaçıklar birbirinden uzaklaştıkça azalıyor, van der Waals kuvvetleri ise nanoparçaçıklar birbirinden uzaklaştıkça artıyor. Toplam uygulanan enerji değişimini kullanarak parçacıklara etki eden kuvvetin yorumlayabiliriz. U/ x ile değiştiğine göre parçaçıklara etki eden parçacık büyüklüğü artsa da azalsa da nanoparçaçıklar minumum noktasında kararlı haldedir. Maksimum noktasında ise U/ x her iki durumda da azalacağı için karasız haldedir.

10 Şekil 11.Van der Waals kuvvetlerinin etkisi ile nanoparçacıkların kümelenmesi Ferroakışkanların en önemli özelliği de değişken manyetik alanlarda B(r)manyetik momentleri manyetik alan paralel minumum enerji doğrultusunda dönmeleridir (U = -µ.b). Nanoparçacıklara etkiyen F = B/ x.µ (3)kuvveti tarafından çekilirler. Kuvvet uzaklığa göre manyetik alan değişimine bağlı olarak değişir.

11 MATERYAL- YÖNTEM Bu projede deneysel çalışmalarda 2 NeFeB adet mıknatıs, 4 adet dairesel alüminyum levha, 2 adet DC motor, çeşitli ebat ve şekillerde cam borular, ferroakışkan ve ferroakışkanın içinde hareket ettiği çözelti NH 4 -OH kullanıldı. 1.FERROAKIŞKANIN YAPISININ VE ORTAM SIVISININ İNCELENMESİ İlk olarak giriş kısmında bahsettiğimiz elektrostatik itme ve van der Waaals kuvvetlerinin ferroakışkanlara etkisi üzerine çalışılmıştır. Van der Waals Kuvveti=Manyetostatistik kuvvet Şekil 12. Ferroakışkana etki eden kuvvetler Projedeki önemli yeniliklerden biri, Amerikan patentli yağ benzeri özellik gösteren ferroakışkanların içinde hareket edeceği ortam sıvısının bulunmuş olmasıdır. Ortam sıvısı olarak NH 4 -OH kullanılmıştır. Bu malzeme bulunana kadar pek çok yağın çözünmediği bir çok sıvı denenmiştir. Bu sıvının özelliği ferroakışkanların yüzeye yapışması ve sürtünmesini önlemesidir. Cam boru içinde dağılmadan durabilmelerinin nedeni ise sıvı basıncının dağılmayı engellemesidir. Bu sayede kullanılan cam boru içinde hareketi sağlanabilmiştir. 2. FERROAKIŞKANIN MANYETİK ALAN İÇİNDE HAREKETİNİN İNCELENMESİ Deneme 1.İlk olarak askıda kalan ferroakışkanın manyetik alan içinde hareketi gözlenmiştir. (a) Resim 1.(a),(b) Ferroakışkanın mıknatısla şekil değiştirmesi (b) Şekil 13.Mıknatısla birlikte ferrosıvının hareketi

12 Resim 2. Mıknatısla birlikte ferroakışkanın hareketi Ferroakışkan içindeki nanomanyetik parçacıklar mıknatısın manyetik alanı tarafından etkilenmekte ve boyutlarından dolayı süperparamanyetik malzeler gibi davranarak manyetik alanda şekil değiştirmektedirler. Aynı zamanda mıknatısla etkileşmesi sonucu manyetize olarak hareket edebilmektedir. Mıknatısı yaklaştırdığımızda parçacıklar dağılmaktadır. Mıknatısı yaklaştırıp uzaklaştırarak manyetik alan değişimine baktığımızda manyetik kuvvetlerin uzaklıkla ters orantılı olarak değiştiğini gözlemleyebiliriz. Bu durumda ferroakışkan manyetik alandan uzaklaştıkça parçacıkların manyetik alan etkisinden kurtulup birleştiği gözlenmiştir. z ekseni Mıknatısların x ve z koordinatlarında manyetik alan değişimleri Gaussmetre cihazı kullanılarak ölçülmüştür. Burada amaç manyetik alan değişimini yorumlayabilmektir. x ekseni Şekil 14. Kullanılan mıknatıs Grafik 1. x ekseni üzerindeki manyetik alan değişimi

13 Grafik 2. z ekseni üzerindeki manyetik alan değişimi Resim 2 de ferroakışkana z yönünde yaklaştırılan mıknatısın uyguladığı kuvvet B/ z değişimine göre uzaklıkla azalmaktadır. Deneme 2. Mıknatıs DC motorun merkezine yerleştirilmiştir. DC motor çalıştırıldığında yatay cam yüzeydeki ferrofluid-nh 4 -OH karışımı üzerinde manyetik sıvının merkezdeki mıknatıs üzerinde toplandığı ve dönme etkisiyle hacminin değiştiği gözlenmiştir. Resim 3. Dönen mıknatısla ferroakışkanın hareketi Dönen mıknatısla birlikte ferroakışkanlarda hacimlerini değiştirmekte ve hareket etmektedir. Manyetik alan değişimi ile nanoparçacıklarda şekil değiştirmektedir. Parçacıklar arasındaki Van der Waals kuvvetlerini manyetik kuvvetin yendiği durumlarda parçacılar birleşmekte, manyetik alan içinde ise dağılmaktadırlar. 3. FERROAKIŞKANIN DEĞİŞKEN MANYETİK ALANDA HAREKETİNİN İNCELENMESİ Mıknatısların hareketli olduğu bir sistem tasarlandı. Dairesel alüminyum levhalar DC motorlar üzerine yerleştirildi. Mıknatıslardan biri 2 alüminyum levha arasına konuldu. ve sabitlendi.

14 Ferroakışkanın içinde bulunduğu amonyum hidroksit süspansiyon karışımı dairesel bir cam boruya konulup bu levhalar arasında monte edilebilecek şekilde yerleştirildi. Böylece manyetik alan etkisinde hareket sağlaması için gerekli düzenek oluşturulmuş oldu. 1 cm 2 cm 1 cm 2.mıknatıs Şekil 15. Manyetik alan değişi ile ferroakışkanın hareketlendirilmesi için hazırlanan düzeneğin yandan görünüşü Resim 4. Ölçüm düzeneğinin üstten ve yandan görünüşü Deneme 3.İlk olarak tek bir mıknatıs sabitlenmiş ve çeşitli Volt değerlerinde DC motor çalıştırıldığında, dairesel cam boru içindeki ferroakışkanın mıknatısın manyetik alanı ile hareketi gözlenmiş ve hızı ölçülmüştür.

15 DC motor NH 4 OH çözeltisi Ferroakışkan Şekil 16.Ferroakışkana etki eden Manyetik kuvvet =Merkezcil kuvvet Mıknatıs Resim 5. Tek mıknatısla hareket Gerilim değeri(v) Mıknatısın hızı(m/s) Ferroakışkanın hızı(m/s) 1,5 0,12 0,12 3 0,24 0,22 6 0,39 Mıknatısı takip edemedi. Ferroakışkana etki eden merkezcil kuvvet hesaplanırsa F m =mv 2 /r m=23g=0,023kg (Hassas terazi ile ölçülmüştür.) F m = 0,023.(0,12) 2 /0,04 =0,0083N F m =0,023.(0,22) 2 /0,04=0,028 N Sistemde ferroakışkanın hız değeri 0,22 m/s iken manyetik alan değişiminden kaynaklanan manyetik kuvvet etkisi -merkezcil kuvvet- ortam sıvısından kaynaklanan sürtünme kuvvetini yenebilmektedir. 6V dan sonra ferroakışkan mıknatısı takip edememektedir.sürtünme kuvvetini yenememektedir. ferroakışkan (a) (b) mıknatıs (a) (b) Şekil 17. a.ferroakışkanın hareketlendirilmesi b.6v dan sonra ferroakışkan mıknatısı takip edememektedir.

16 Ferroakışkan mıknatısın belli bir hız değerine kadar mıknatısın manyetik alanından etkilenip onunla birlikte hareket edebilmektedir. Fakat belirli bir hız değerinin üstünde (0,39m/s) nanomanyetik parçacıklar mıknatısın manyetik alanı dışında kalmakta ve takip edememektedir. Manyetik alan ölçüm Grafik 2 de görüleceği üzere manyetik alan değeri mesafe ile hızla azalmaktadır. Parçacıklar ise sıvı direncinden dolayı,sürtünme kuvvetini yenemedikleri için yavaşlamakta ve manyetik alanı takip edememektedir. Ferroakışkandan mıknatıs uzaklaştıkça mıknatısın oluşturduğu manyetik alan şiddeti değeri azalmaktadır.manyetik alan değeri azalmaktadır. Bu durumda ferroakışkana etkiyen kuvvet uzaklaştıkça azalmaktadır. Deneme 4. Dönen iki adet mıknatısın aynı kutupları, daha sonra zıt kutupları birbirine bakacak şekilde alüminyum levhalar arasına koyularak değişen manyetik etkinin ferroakışkan üzerindeki hareketi gözlenmiştir. Resim 6. Aynı ve zıt kutuplar birbirine doğru konumlandırıldığında durumlar Mıknatıslar aynı kutuplar birbirine doğru konumlandırıldığında,zıt kutuplar birbirine doğru konumlandırıldığında (Aynı fazda) ve zıt kutuplar birbirine doğru konumlandırıldığında (Faz farkı var ise) ferroakışkanın hızı ölçülmüştür. Sistemde mıknatısların durumu Hız(m/s) 1.durum: 0,098 Aynı kutuplar birbirine doğru konumlandırıldığında 2.durum: 0,034 Zıt kutuplar birbirine doğru konumlandırıldığında (Aynı fazda) 3.durum: 0,076 Zıt kutuplar birbirine doğru konumlandırıldığında (Faz farkı var ise) Tablo 1. Ferroakışkan hızı

17 B 2 B 1 B 2 B 1 B 1 B 2 1.durum 2.durum 3.durum Şekil duruma göre mıknatısların manyetik alanların vektörel gösterimi Tablo 1 de görüldüğü gibi 3 durumda ferroakışkanın hızı farklı olmaktadır. Ferroakışkanların hızların farklı olmasının nedeni mıknatısın manyetik alanlarının büyüklüğü ile ilgilidir. 1. durumda en yüksek değerdedir.(şekil 16) Çünkü manyetik alanlar birbirini desteklemektedir. Manyetik parçacıkların manyetik alan içinde hızlanmaları için manyetik alanın değişiyor olması gerekmektedir. Burada manyetik alanın vektörel bir büyüklük olduğunu düşünürsek sürekli değişecektir. Ve 1. durumdaki B değerleri en büyük vektörel farkı verecektir. Her 3 durum için x ekseni üzerindeki uzaklık dolayısıyla manyetik alan vektörleri sabit tutulup z ekseni üzerindeki değişimlerden yorum yapılmıştır. B 1 B 2 B 1,2 Bileşke Grafik 3. (1.durum)Aynı kutupları birbirine doğru konumlandırılan mıknatısların z yönündeki bileşke manyetik alan değişimi Ferroakışkan düzeneğimizde mıknatıslardan 18mm uzaklıktadır. Grafik 3 te 18 mm bileşke manyetik alan şiddetinin büyülüğü 400 G tur.

18 B 1 B 2 B 1,2 Bileşke Grafik 4. (2.durum)Zıt kutupları birbirine doğru konumlandırılan(aynı fazda dönen) mıknatısların z yönündeki bileşke manyetik alan değişimi Grafik 4 te 18 mm bileşke manyetik alan şiddetinin büyülüğü 0 G tur. Zıt yöndeki manyetik alanlar birbirini yok etmektedir. B 1 B 2 B 1,2 Bileşke Grafik 5. Zıt kutupları birbirine doğru konumlandırılan (faz farkı ile dönen) mıknatısların z yönündeki bileşke manyetik alan değişimi Grafik 5 te 18 mm bileşke manyetik alan şiddetinin büyülüğü 200G tur. Aralarında faz farkı bulunduğu için bileşke manyetik alan oluşmuştur.

19 Şekil 19 da 1,2 ve 3. durum için herhangi bir Δt aralığında manyetik alan vektörlerinin değerleri tahmini olarak çizilmiştir. B 1+ B 2 B 1 - B 2 B 1 - B 2 B 1 -B 2 B 1+ B 2 B 1+ B 2 1.durum 2.durum 3.durum Şekil duruma göre mıknatısların Δt sürede manyetik alanların vektörel değişimi Şekil 19 a ve grafik 3,4 ve 5 e göre manyetik alan değişimi sıralaması ΔB 1 > ΔB 2 > ΔB 3 olmaktadır. Buna göre mesafeye bağlı olarak manyetik alan değişimi ile doğru orantılı değişen bir kuvvet uygulanmaktadır. Bu da parçacıkların ivmelenmesini sağlamaktadır. Burada ΔB /Δx kullanmak bize kuvvet değişimi hakkında fikir verecektir. En büyük kuvvet 1.durumda uygulandığı için hız en büyük değerde, 3.durumda da en küçük değerdedir.

20 SONUÇ Projede elektrostatik, manyetik ve sıvı içinde oluşan kuvvetlerden oluşan bir yapı üzerindeki değişiklikler araştırılmıştır. Bu kuvvetlerden elektriksel kuvvetler manyetik parçacıkların birleşmesinde, manyetik kuvvetler ise bu parçacıklara hareket kazanmaları ve toplu halde hareketlerinin sağlamalarında etkilidir. Manyetik alanda ferroakışkanların hareketlerinin istenilen seviyede olması için manyetik alan değerinin yanında manyetik alan değişiminin büyük olması gerektiği sonucuna varılmıştır. Kurulan sistemle ferroakışkanın hızı 98 cm/s ye kadar çıkmıştır. Projedeki önemli yeniliklerden biri de, Amerikan patentli yağ benzeri özellik gösteren ferro akışkanların yüzeye yapışması ve sürtünmesini önleyecek ortam sıvısının bulunmuş olmasıdır. Bu projede incelenen özelliklerine göre ferroakışkanlar, lab-on chiplerde mikro yollarda sıvı hareketi gerektiren işlemlerde veya sıvıların mekanik cihazlarda taşınması gibi manyetik akışkan uygulamalarında kolaylıkla kullanılabilir. Özellikleri incelenen manyetik akışkanın hacimlerinin düşük olması bu alanlarda kullanıldığında çevre kirliliğinin azalmasında da etkili olacaktır.

21 KAYNAKÇA 1.Giancoli D.C.,(2005), Physics, Pearson Education Publishing Company, NJ;USA 2.Elektromekanik Enerji Dönüşümü Ders Notları, Prof.Dr. Emin Tacer, İTÜ Elektrik-Elektronik Fakültesi 3.Berger P,Preparing and Propertiies of Aqueous Ferrofluid,Journal of Chemical Education, Vol.76, No.7, July Roland,P. Particle Steering by Active Control of Magnetic Fields and Magnetic Particle Agglomeration Avoidance, ISR Technical Report Zahn M.,Magnetic fluid and nanoparticle application to nanotechnology, Journal of Nanoparticle Research3: 73-78, Beasant P., (2002), Elektronik, Tübitak Yayınları, Ankara 7. Yaz M.A, Aksoy S., Abacı S., Yalçıneli M., Teymur A., Vardar T., (1997), Fizik 2 Elektrik ve Manyetizma, Sürat Yayınları, İstanbul 8.Cheng D.K., (1989), Field and Wave Electromagnetics, Addison-Wesley Publishing Company,NewYork,USA 9.Scherer C., Figueiredo Neto A.M., Ferrofluids: Properties and Applications, Brazilian Journal of Physics, vol. 35, no. 3A, September, Yellen B.B.,Fridman G.,Friedman G., Ferrofluid lithography, Nanotechnology 15 (2004)

1.AMAÇ. Bu projede amacımız, manyetik alan olu turularak boru içerisindeki nano boyutta manyetik taneciklerin hızlandırılmasıdır.

1.AMAÇ. Bu projede amacımız, manyetik alan olu turularak boru içerisindeki nano boyutta manyetik taneciklerin hızlandırılmasıdır. 1.AMAÇ Bu projede amacımız, manyetik alan olu turularak boru içerisindeki nano boyutta manyetik taneciklerin hızlandırılmasıdır..g R Manyetik hızlandırıcının temel olarak çalı ma prensibi elektromanyetik

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 7 Manyetik Alan ve Manyetik Kuvvet Hedef Öğretiler Manyetik Kuvvet Manyetik Alan ve Manyetik Akı Manyetik Alanda Yüklerin hareketi Yarıiletkenlerde Manyetik Kuvvet hesabı Manyetik Tork Elektrik Motor

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYLARI LİSE 2 (ÇALIŞTAY 2012) FİZİK ALANI GRUP SA

TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYLARI LİSE 2 (ÇALIŞTAY 2012) FİZİK ALANI GRUP SA TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYLARI LİSE 2 (ÇALIŞTAY 2012) FİZİK ALANI GRUP SA ORTAM SICAKLIĞINA HASSAS OTOMATİK PENCERE AÇMA DÜZENEĞİ

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ MALZEMELERİN FİZİKSEL ÖZELLİKLERİ (Ders Notu) Manyetik Özellikler Doç.Dr. Özkan ÖZDEMİR MANYETİK ÖZELLİK Giriş Bazı malzemelerde mevcut manyetik kutup çiftleri, elektriksel kutuplara benzer şekilde, çevredeki

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA ELEKTROSTATİK 1)COULOM KANUNU: İki yük arasındaki itme ya da çekme kuvveti yüklerin çarpımı ile doğru yükler arasındaki uzaklığın karesi ile ters orantılıdır. q1q 1 u kanun F k şeklinde

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON Hedef Öğretiler Faraday Kanunu Lenz kanunu Hareke bağlı EMK İndüksiyon Elektrik Alan Maxwell denklemleri ve uygulamaları Giriş Pratikte Mıknatısın hareketi akım oluşmasına

Detaylı

Magnetic Materials. 6. Ders: Ferromanyetizma. Numan Akdoğan. akdogan@gyte.edu.tr

Magnetic Materials. 6. Ders: Ferromanyetizma. Numan Akdoğan. akdogan@gyte.edu.tr agnetic aterials 6. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASA) Ferromanyetik alzemelerin

Detaylı

GÜN IŞIĞI KULLANILARAK İÇ MEKANLARIN AYDINLATILMASI

GÜN IŞIĞI KULLANILARAK İÇ MEKANLARIN AYDINLATILMASI GÜN IŞIĞI KULLANILARAK İÇ MEKANLARIN AYDINLATILMASI HAZIRLAYAN ÖĞRENCİ: Emincan AYÇİÇEK (9/A) DANIŞMAN ÖĞRETMEN: A. Ruhşah ERDUYGUN 2005 İZMİR İÇİNDEKİLER Özet...2 Gün Işığı Kullanılarak İç Mekanların

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

BÖLÜM-I ELEKTRİK MAKİNELERİNİN TEMELLERİ DERS NOTLARI

BÖLÜM-I ELEKTRİK MAKİNELERİNİN TEMELLERİ DERS NOTLARI BÖLÜM-I ELEKTRİK MAKİNELERİNİN TEMELLERİ DERS NOTLARI 1 Makine İlkeleri Elektrik Makinaları elektrik enerjisini mekanik enerjiye veya mekanik enerjiyi elektrik enerjisine dönüştüren cihazlardır. Transformatörler,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Nükleer Manyetik Rezonans (NMR) Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY GİRİŞ NMR organik bilesiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çesitli çekirdeklerin

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları 9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI MEV Koleji Özel Ankara Okulları Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek

Detaylı

MEHMET FEVZİ BALIKÇI

MEHMET FEVZİ BALIKÇI MERSİN ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ FİZİK ve TEKNOLOJİK GELİŞMELER DERSİ KONU MANYETİK REZONANS GÖRÜNTÜLEME MR CIHAZI SPİN KAVRAMI ve SÜPER İLETKENLER MEHMET FEVZİ BALIKÇI 07102007

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

1. Bölüm: Makina İlkelerine Giriş. Doç. Dr. Ersan KABALCI

1. Bölüm: Makina İlkelerine Giriş. Doç. Dr. Ersan KABALCI 1. Bölüm: Makina İlkelerine Giriş Doç. Dr. Ersan KABALCI 1 Makine İlkeleri Elektrik Makinaları elektrik enerjisini mekanik enerjiye veya mekanik enerjiyi elektrik enerjisine dönüştüren cihazlardır. 2 Makine

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V 8.SINIF KUVVET VE HAREKET ÜNİTE ÇALIŞMA YAPRAĞI /11/2013 KALDIRMA KUVVETİ Sıvıların cisimlere uyguladığı kaldırma kuvvetini bulmak için,n nı önce havada,sonra aynı n nı düzeneği bozmadan suda ölçeriz.daha

Detaylı

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K - K - Kara delik: Kütlesel çekim kuvvetinin çok büyük olduğu hatta ışığı bile kendine çekebilen çok küçük kütleli sönmüş yıldızlardır. - Kalori:1 gram suyun sıcaklığını 1 Celcius artırmak için gerekli

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

5. BORU HATLARI VE BORU BOYUTLARI

5. BORU HATLARI VE BORU BOYUTLARI h 1 h f h 2 1 5. BORU HATLARI VE BORU BOYUTLARI (Ref. e_makaleleri) Sıvılar Bernoulli teoremine göre, bir akışkanın bir borudan akabilmesi için, aşağıdaki şekilde şematik olarak gösterildiği gibi, 1 noktasındaki

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

T.C.MİLLİ EĞİTİM BAKANLIĞI-TUBİTAK BİDEB YİBO ÖĞRETMENLERİ (Fen Ve Teknoloji, Fizik, Kimya, Biyoloji Ve Matematik)PROJE DANIŞMANLIĞI EĞİTİMİ

T.C.MİLLİ EĞİTİM BAKANLIĞI-TUBİTAK BİDEB YİBO ÖĞRETMENLERİ (Fen Ve Teknoloji, Fizik, Kimya, Biyoloji Ve Matematik)PROJE DANIŞMANLIĞI EĞİTİMİ T.C.MİLLİ EĞİTİM BAKANLIĞI-TUBİTAK BİDEB YİBO ÖĞRETMENLERİ (Fen Ve Teknoloji, Fizik, Kimya, Biyoloji Ve Matematik)PROJE DANIŞMANLIĞI EĞİTİMİ FİZİK ÇALIŞMA GRUBU FİZİK PROJE RAPORU PROJE ADI: HAREKET İLE

Detaylı

Bu konuda cevap verilecek sorular?

Bu konuda cevap verilecek sorular? MANYETİK ALAN Bu konuda cevap verilecek sorular? 1. Manyetik alan nedir? 2. Maddeler manyetik özelliklerine göre nasıl sınıflandırılır? 3. Manyetik alanın varlığı nasıl anlaşılır? 4. Mıknatısın manyetik

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 PHYWE Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 İlgili başlıklar Maxwell in eşitlikleri, elektrik sabiti, plaka kapasitörün kapasitesi, gerçek yükler, serbest yükler, dielektrik deplasmanı, dielektrik

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p)

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) T.C. FİZİK-2 LABORATUARI DENEY RAPORU ÖĞRENCİNİN Numarası : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) Teorisi Aşağıdaki soruları

Detaylı

Örneğin; İki hidrojen (H) uyla, bir oksijen (O) u birleşerek hidrojen ve oksijenden tamamen farklı olan su (H 2

Örneğin; İki hidrojen (H) uyla, bir oksijen (O) u birleşerek hidrojen ve oksijenden tamamen farklı olan su (H 2 On5yirmi5.com Madde ve özellikleri Kütlesi, hacmi ve eylemsizliği olan herşey maddedir. Yayın Tarihi : 21 Ocak 2014 Salı (oluşturma : 2/9/2016) Kütle hacim ve eylemsizlik maddenin ortak özelliklerindendir.çevremizde

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7)

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7) - Klaus Wille (1.3.5-1.3.6-1.3.7) 2 Temmuz 2012 HF Çalışma Topluluğu İçerik 1.3.5 - Doğrusal Hızlandırıcılar 1 1.3.5 - Doğrusal Hızlandırıcılar 2 3 Doğrusal Hızlandırıcılar Tüm elektrostatik hızlandırıcılar

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elekton ve proton

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL MANYETİK SENSÖRLER VE TRANSDÜSERLER Bir tel bobin haline getirilip içinden akım geçirilirse, bu bobinin içinde ve çevresinde manyetik alan oluşur. Bu manyetik alan gözle

Detaylı

I FİZİĞE ÖN HAZIRLIKLAR

I FİZİĞE ÖN HAZIRLIKLAR İÇİNDEKİLER Önsöz. III Bölüm I FİZİĞE ÖN HAZIRLIKLAR 1 1 Ölçme ve Birim Sistemleri 1 2 Uzunluk, Kütle ve Zaman Büyüklükleri (Standartları) 1 3 Boyut Analizi 1 4 Birim Çevirme ve Dönüşüm Çarpanları 1 5

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

DOĞRU AKIM DEVRE ANALİZİ ELEKTRO MAĞNETİZMA VE ELEKTRO MAĞNETİK İNDÜKSİYON

DOĞRU AKIM DEVRE ANALİZİ ELEKTRO MAĞNETİZMA VE ELEKTRO MAĞNETİK İNDÜKSİYON DOĞRU AKIM DEVRE ANAİZİ BÖÜM 9 EEKTRO MAĞNETİZMA VE EEKTRO MAĞNETİK İNDÜKSİYON 9. MANYETİZMA 9. MIKNATIS 9. KUON KANUNU 9.3 MANYETİK AAN İÇERİSİNDEKİ AKIM TAŞIYAN İETKENE ETKİ EDEN KUVVET 9.4 İNDÜKSİYON

Detaylı

Prof. Dr. ŞAKİR ERKOÇ Doç. Dr. MAHMUT BÖYÜKATA

Prof. Dr. ŞAKİR ERKOÇ Doç. Dr. MAHMUT BÖYÜKATA TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 [ÇALIŞTAY 2014]) GRUP ADI: FENER PROJE ADI NEODYUM MIKNATISLARLA ELEKTRİK ÜRETME Proje Ekibi

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL İçerik Algılama Teknolojisi Algılama Mekanizması Uygun Sensör SENSÖR SİSTEMİ Ölçme ve Kontrol Sistemi Transdüser ve Sensör Kavramı Günlük hayatımızda ısı, ışık, basınç

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Ses Sensörleri (Ultrasonik) Ultrasonik sensörler genellikle robotlarda engellerden kaçmak, navigasyon ve bulunan yerin haritasını çıkarmak amacıyla kullanılmaktadır.bu

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

KUTUP IŞINIMI AURORA. www.astrofotograf.com

KUTUP IŞINIMI AURORA. www.astrofotograf.com KUTUP IŞINIMI AURORA www.astrofotograf.com Kutup ışıkları, ya da aurora, genellikle kutup bölgelerinde görülen bir gece ışımasıdır. Aurora, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

MMM291 MALZEME BİLİMİ

MMM291 MALZEME BİLİMİ MMM291 MALZEME BİLİMİ Ofis Saatleri: Perşembe 14:00 16:00 ayse.kalemtas@btu.edu.tr, akalemtas@gmail.com Bursa Teknik Üniversitesi, Doğa Bilimleri, Mimarlık ve Mühendislik Fakültesi, Metalurji ve Malzeme

Detaylı

Tahribatsız Muayene Yöntemleri

Tahribatsız Muayene Yöntemleri Tahribatsız Muayene Yöntemleri Tahribatsız muayene; malzemelerin fiziki yapısını ve kullanılabilirliğini bozmadan içyapısında ve yüzeyinde bulunan süreksizliklerin tespit edilmesidir. Tahribatsız muayene

Detaylı

DC Motor ve Parçaları

DC Motor ve Parçaları DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.

Detaylı

GÜNEŞ ENERJĐSĐ IV. BÖLÜM. Prof. Dr. Olcay KINCAY

GÜNEŞ ENERJĐSĐ IV. BÖLÜM. Prof. Dr. Olcay KINCAY GÜNEŞ ENERJĐSĐ IV. BÖLÜM Prof. Dr. Olcay KINCAY DÜZ TOPLAYICI Düz toplayıcı, güneş ışınımını, yararlı enerjiye dönüştüren ısı eşanjörüdür. Akışkanlar arasında ısı geçişi sağlayan ısı eşanjörlerinden farkı,

Detaylı

AKTÜATÖRLER Elektromekanik Aktüatörler

AKTÜATÖRLER Elektromekanik Aktüatörler AKTÜATÖRLER Bir sitemi kontrol için, elektriksel, termal yada hidrolik, pnömatik gibi mekanik büyüklükleri harekete dönüştüren elemanlardır. Elektromekanik aktüatörler, Hidromekanik aktüatörler ve pnömatik

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

MIKNATISIN MANYETİK ALAN ETKİSİNİ KULLANARAK YAYSIZ YATAK TASARIMI

MIKNATISIN MANYETİK ALAN ETKİSİNİ KULLANARAK YAYSIZ YATAK TASARIMI YİBO Öğretmenleri (Fen ve Teknoloji-Fizik, Kimya, Biyoloji- ve Matematik) Proje Danışmanlığı Eğitimi Çalıştayı 2010-2 MIKNATISIN MANYETİK ALAN ETKİSİNİ KULLANARAK YAYSIZ YATAK TASARIMI Hazırlayan EMİN

Detaylı

ATOM VE MOLEKÜLLER ARASI BAĞLAR

ATOM VE MOLEKÜLLER ARASI BAĞLAR ATOM VE MOLEKÜLLER ARASI BAĞLAR 1 Potansiyel enerji (kj/mol) Çekme İtme Atomlararası denge mesafesi Atomlar birbirleri ile sürekli etkileşim içerisindedir. Bu etkileşimlerden biride atomlar arası itme

Detaylı

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr Ders asistanı: Fatih Kaya Hareket düzleminde etki ederse Veya hareket düzleminde bir bileşeni varsa F F d Cisme etki eden d Kuvvet F F Veya

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

BASINÇ ( SIVILARIN BASINCI )

BASINÇ ( SIVILARIN BASINCI ) BAINÇ ( IVIARIN BAINCI ) 1. Düşey kesiti verilen kap, özkütlesi 4 g/cm 3 olan sıvısıyla 60 cm çizgisine kadar dolduruluyor. Buna göre, kabın tabanındaki bir noktaya etki eden sıvı basıncı kaç N/m 2 dir?

Detaylı

ORTAM SICAKLIĞINA HASSAS OTOMATİK PENCERE AÇMA DÜZENEĞİ

ORTAM SICAKLIĞINA HASSAS OTOMATİK PENCERE AÇMA DÜZENEĞİ ORTAM SICAKLIĞINA HASSAS OTOMATİK PENCERE AÇMA DÜZENEĞİ Emel KALFAOĞLU PROJE EKİBİ GRUP SA ÜYELERİ Yavuz KESKİN PROJE DANIŞMANLARI Prof. Dr. Hasan EFEOĞLU Prof. Dr. Serhat ÖZDER PROJENİN AMACI 1. Dış ortamın

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan kuvvettir. Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Atomun sembolünün

Detaylı

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL AY HAFTA DERS SAATİ BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE KONULAR KAZANIMLAR ÖĞRENME-ÖĞRETME

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 Genel Kimya 101 Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 İyonik Bağ; İyonik bir bileşikteki pozitif ve negatif iyonlar arasındaki etkileşime iyonik bağ denir Na Na + + e - Cl + e

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ

MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ 1.GİRİŞ Deney tesisatı; içerisine bir ısıtıcı,bir basınç prizi ve manometre borusu yerleştirilmiş cam bir silindirden oluşmuştur. Ayrıca bu hazneden

Detaylı

TMM. Teknik Bilgi. Tahribatsız Malzeme Muayene San.ve Tic.Ltd.Şti Non-Destructive Inspection Co. 20.08.2007

TMM. Teknik Bilgi. Tahribatsız Malzeme Muayene San.ve Tic.Ltd.Şti Non-Destructive Inspection Co. 20.08.2007 Magnetik Partikül Çatlak Kontrolü ve Demagnetizasyon Giriş Magnetik Partikül yöntemi 100 yıla yakın bir süredir endüstriyel anlamda yüzey ve yüzey altı hataların muayenesinde kullanılmaktadır. 1930 yıllarından

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02 DERS 02 Özer ŞENYURT Mart 10 1 DA DĐNAMOSUNUN ÇALIŞMA PRENSĐBĐ Dinamolar elektromanyetik endüksiyon prensibine göre çalışırlar. Buna göre manyetik alan içinde bir iletken manyetik kuvvet çizgilerini keserse

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri DENEY 3 MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri AMAÇ: Maddelerin üç halinin nitel ve nicel gözlemlerle incelenerek maddenin sıcaklık ile davranımını incelemek. TEORİ Hal değişimi,

Detaylı