P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8)"

Transkript

1 Bölüm 22 SEÇME AKS YOMU SEÇME AKS YOMU VE E DE ERLER 22.1 G R Bir X kümesi dü³ünelim. Bu küme ya bo³tur ya de ildir. De ilse, X kümesine ait bir ö e seçilebilir. imdi ba³ka bir Y kümesi daha dü³ünelim. X ile Y nin kartezyen çarpmn X Y ile göstermi³tik. E er X ile Y den birisi ya da ikisi de bo³sa X Y de bo³ olacaktr. E er her ikisi de bo³ de ilse, bir x X ve bir y Y vardr ve bu iki ö enin olu³turdu u (x, y) sral çifti X Y kartezyen çarpmna aittir; dolaysyla bu kartezyen çarpm bo³ küme de ildir. Bu dü³ünü³le, giderek, sonlu sayda bir kümeler ailesinin kartezyen çarpmnn bo³ olmas için, bu kümelerden en az birisinin bo³ olmasnn gerekli ve yeterli oldu unu söyleyebiliriz. Bunu ba³ka türlü söylersek, "Sonlu sayda bo³ olmayan kümelerin kartezyen çarpm bo³ de ildir" diyebiliriz. Gerçekten, bunu sonlu tüme varm yöntemiyle kolayca gösterebiliriz. Acaba ilk bak³ta pek do al görünen bu özeli i, sonsuz sayda kümeler ailesi için de söyleyebilir miyiz? Cebir, analiz, topoloji gibi alanlarda önemli bir araç olarak kullanlan bu özelik ve buna e³de er olan ba³ka özeliklerin varl ispatlanamad. Bunun üzerine, 1900 yllarnda Alman matematikçi Ernst Zermelo bu özeli in bir aksiyom olarak kabul edilmesini önerdi. "Seçme Aksiyomu" diye adlandrlan bu özeli i ³öyle ifade edebiliriz: Teorem [Seçme Aksiyomu] Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpm bo³ de ildir. Bunu daha iyi açklamak için herhangi bir {A ı : ı I} ailesinin kartezyen çarpmn anmsayalm: Π ı I A ı ile gösterdi imiz bu çarpm, her ı I için f(i) A ı ko³ulunu sa layan bütün f : I ı IA ı (22.1) 257

2 258 BÖLÜM 22. SEÇME AKS YOMU fonksiyonlarnn olu³turdu u küme idi. Bu f fonksiyonlarndan herbirisine bir seçme fonksiyonu denilir. Kartezyen çarpmn bo³ olmamas demek, en az bir seçme fonksiyonu var demektir (bkz. (22.1)) Hemen belirtelim ki Seçme Aksiyomu, yukardakine denk olan de i³ik ba³ka biçimlerde de ifade edilebilir. Biraz sonra onlar görece iz SEÇME AKS YOMU BA IMSIZDIR Seçme Aksiyomu matematikte önemli uygulamalar olan bir varsaymdr. Bu bakmdan, matematikçilere büyük bir çal³ma konusu olmu³tur. Burada, Seçme Aksiyomu için de, Sürey Hipotezi için elde edilen sonuçlarn benzerlerinin varl n söylemekle yetinece iz. Bu sonuçlar, yine, Kurt Gödel (1940) ve Paul Cohen (1965) tarafndan verilmi³tir. Ksaca özetlersek, Gödel, Kümeler Kuramnn aksiyomlarna Seçme Aksiyomu eklendi inde sistemde bir çeli³ki do mad n; yani, Kümeler Kuramnn öteki aksiyomlaryla birlikte Seçme Aksiyomunun çeli³mez bir sistem olu³turdu unu gösterdi. Cohen ise, Seçme Aksiyomunun, Kümeler Kuramnn öteki aksiyomlarndan ba msz oldu unu gösterdi. Buna göre, Seçme Aksiyomunu varsayan bir Kümeler Kuram kurulabildi i gibi, bu aksiyomu varsaymayan bir Kümeler Kuram da kurulabilir. Her iki sistem kendi içlerinde tutarldr (çeli³mez), ama birbirlerinden farkl sistemler olurlar. [10] 22.3 SAB T NOKTA TEOREM Tanm Tikel sral bir kümenin tümel sral her alt kümesi bir zincirdir. Özel olarak, tümel sral her küme bir zincirdir. Tanm (E, ) tikel sralanm³ sistem ve a E olsun. E nin a³a daki üç özeli e sahip bir B alt kümesine içeren bir küme diyece iz: (i) a B (ii) f(b) B (iii) B içindeki her zincirin en küçük üst snr yine B ye aittir. Teorem (E, ) tikel sralanm³ sistemi içindeki her zincirin bir üst snr var olsun. E er f : E E azalmayan bir fonksiyon ise, f fonksiyonu altnda sabit kalan bir w E ö esi vardr. spat: ise x E x f(x) (22.2) ( w E)f(w) = w (22.3)

3 22.3. SAB T NOKTA TEOREM 259 oldu unu göstermeliyiz. Bira E ö esi seçelim. Bu ispat boyunca seçti imiz bu a ö esi sabit kalacaktr. E nin bütün içeren alt kümelerinden olu³an aileye B diyelim. E kümesinin içeren bir küme oldu u apaçktr; yani B ailesi bo³ de ildir. Kolayca görülece i üzere içeren kümelerin arakesiti de içeren bir kümedir; öyleyse, A = B = {B : B B} (22.4) arakesiti, en küçük içeren kümedir. imdi A = {x E a x} (22.5) kümesini dü³ünelim. Bunun içeren bir küme oldu unu gösterece iz, a A oldu u apaçktr; yani A kümesi (i) ko³ulunu sa lar. A kümesinin ve f fonksiyonunun tanmndan, her x A için a x f(x) E çkar. Öyleyse f(a) A olur; yani (ii) ko³ulu sa lanr. Son olarak, A içinde herhangi bir Z zinciri alalm. Z nin en küçük üst snr t olsun. E er t / A olsayd, A nn tanm gere ince, t a olurdu. Öte yandan, her r Z için r t dir. u halde, her r Z için r t a olacaktr, ki bu, A kümesi Z yi kapsamaz, demektir. Bu çeli³ki kabulümüzden geldi ine göre, t A olmaldr; yani (iii) ko³ulu da sa lanr. Böylece A nn içeren bir küme oldu u görülüyor. Ohalde, en küçük içeren kümeyi kapsar; yani A A dr. Buradan (iv) x A a x oldu u çkar. imdi de bir P kümesini ³öyle tanmlayalm: P = {x A (y A y x) f(y) x} (22.6) Bu kümenin bo³ olmad m görmek için, örne in, a P (22.7) oldu unu hemen gösterebiliriz. Gerçekten, (iv) gere ince, hiçbir y A için y a olamayaca ndan, (22.6) tanmndaki önerme do ru olur. Buradan hemen görülece i üzere, a ö esi, P nin en küçük ö esidir. imdi P içinde sabit bir p ö esi seçelim ve buna ba l olan bir M p kümesini ³öyle tanmlayalm: M p = {m A m p f(p) m} (22.8) Teoremin ispatn a³a daki be³ admda tamamlayabilece iz. 1.Adm: M p içeren bir kümedir. a ö esi, P nin en küçük ö esi oldu undan, a p dir. Öyleyse, (22.8) den, a M p olur. Demek ki M p kümesi (i) ko³ulunu sa lyor. imdi M p nin (ii) ko³ulunu sa lad n gösterelim. Herhangi bir m M p seçelim. Üç durum vardr:

4 260 BÖLÜM 22. SEÇME AKS YOMU 1.Durum: E er f(p) m ise, (22.2) den, f(p) m f(m) olur, ki bu (22.8) gere ince f(m) M p olmas demektir. 2.Durum: m = p ise f(m) = f(p) olur. Oysa p M p ve f(p) M p oldu u (22.8) den hemen görülür. 3.Durum: m p ise, p P oldu undan, (22.6) gere ince, f(m) p olacaktr, ki bu (22.8) den f(m) M p olmas demektir. Böylece f(m p ) M p çkar. imdi de p M p nin (iii) ko³ulunu sa lad n gösterelim. N kümesi, M p içinde herhangi bir zincir ve N nin en küçük üst snr u olsun. N M p oldu undan, (22.8) gere ince, iki durum dü³ünülebilir: Ya her y N için y p dir ya da f(p) y ko³ulunu sa layan baz y N ö eleri vardr. Birinci durum varsa, p, N kümesinin bir üst snrdr; dolaysyla, p, N nin en küçük üst snrndan küçük olamaz; yani u p dir. Bu durumda, (22.8) gere ince, u M p olur. kinci durum varsa; yani baz (belki de her) y N için f(p) y ko³ulu sa lanyorsa, y u oldu undan, yine f(p) u olacaktr. Bu durumda da, (22.8) gere ince, u M p olur. Böylece M p nin içeren bir küme oldu unu göstermi³ oluyoruz. 2.Adm: M p = A dr. 1.Admdan M p B çkar. Ohalde (22.4) gere ince M p A olacaktr. Oysa (22.8) den, M p A olarak tanmlanm³tr. Demek ki M p = A dr. Bu e³itlikten ³u özeli i yazabiliriz: (v) (x P z A) (z x f(x) z) 3.Adm: P = A dr. a P oldu unu (22.7) den biliyoruz; yani P kümesi (i) ko³ulunu sa lar. imdi P nin (ii) ko³ulunu sa lad n gösterelim. Herhangi bir x P verilsin, f(x) P oldu unu gösterece iz. Bunun için, (22.6)) gere ince, (z A) (z f(x)) f(z) f(x) (22.9) oldu unu göstermeliyiz, (v) gere ince, x P ve z A varsaymmz ya z x ya da f(x) z olmasn gerektirir. Oysa ikinci durum z f(x) oldu u kabulümüze aylardr. Demek ki yalnzca z x durumu varolabilir. x P oldu undan, e er z x ise, (22.6) ve (22.2) den f(z) x f(x) olur. E er z = x ise f(z) = f(x) olur. Böylece x P ise f(x) P oldu u; yani f(p) P oldu u görülür. Son olarak, P nin (iii) ko³ulunu sa lad n gösterelim. P içinde bir F zinciri verilsin. F nin en küçük üst snrna v diyelim, v P oldu unu göstermek için, (22.6) ya göre, (z A z v) f(z) v (22.10)

5 22.4. SA VE E DE ERLER 261 oldu unu göstermeliyiz, (v) den hemen görülece i üzere, her x F için ya z x ya da x f(x) z olacaktr. E er ikincisi sa lanyor olsayd v z olurdu, ki bu kabulümüze aykrdr. Ohalde her x F için z x olacaktr. E er z x ise f(z) x v (P nin tanmndan) olur. E er z = x ise z v oldu undan, F içinde öyle bir y ö esi vardr ki z y olur; aksi halde F nin en küçük üst snr v de il z olmal idi, ki bu olamaz. Ohalde f(z) y v olacaktr. Demek ki her iki halde de (22.10) sa lanyor; Öyleyse v P dir. Böylece P nin içeren bir küme oldu u gösterilmi³ olmaktadr; dolaysyla (22.4) den P A çkar. Oysa (22.6) tanmndan P A dr. Demek ki P = A dr. 4.Adm: A kümesi E içinde bir zincirdir. A = P oldu unu dü³ünürsek (v) den her x,z A için ya z x ya da x f(x) z çkar; yani x,z A (z x) (x z) (22.11) olur, ki bu, A nn E içinde tam sral bir alt küme oldu unu, dolaysyla bir zincir oldu unu söyler. 5.Adm: A nn en küçük üst snr f nin sabit bir noktasdr. A mn en küçük üst snrna w diyelim. A kümesi içeren oldu undan, w A ve dolaysyla f(w) A dr. En küçük üst snr tanmna göre f(w) w olmak zorundadr. Oysa (22.2) den, w f(w) dr. öyleyse w = f(w) olacaktr SA ve E DE ERLER Matemati in birçok probleminde do rudan do ruya Seçme Aksiyomu (SA) kullanlmaz. Seçme Aksiyomu yerine ona e³de er olan baz özelikler kullanlr. Gerçekte, Seçme Aksiyomunun e³de erleri pek çoktur. Ancak burada, çok sk kullanlan üç tanesini vermekle yetinece iz. Önerme A³a daki önermeler birbirlerine e³de erdir. SA Seçme Aksiyomu: Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpm bo³ de ildir. HB Hausdor Büyükçelik lkesi: Bo³ olmayan tikel sralanm³ her küme içinde daima büyükçe (maksimal) bir zincir vardr. ZT Zorn Teoremi: Bo³ olmayan ve her zinciri bir üst snra sahip olan tikel sralanm³ bir kümenin büyükçe bir ö esi vardr. WO yi Sralama Teoremi: [Zermelo] Her küme iyi sralanabilir.

6 262 BÖLÜM 22. SEÇME AKS YOMU spat: Bu dört Önermenin birbirlerine denk oldu unu ispatlamak için ³u sray izleyece iz: [SA] [HB] [ZT] [WO] [SA] SA HB Seçme Aksiyomunu varsayarsak, gösterece iz ki bo³ olmayan tikel sralanm³ her küme içinde büyükçe bir zincir vardr. Bunu biraz daha açklayalm: (L, ) tikel sralanm³ bir küme olsun. L içindeki bütün zincirlerden olu³an aileye L diyelim; yani L, L nin tümel (tam) sral bütün alt kümelerinin ailesi olsun. L ailesi kapsama ba ntsna göre tikel sraldr. Gösterece iz ki (L, ) tikel sralanm³ sisteminin bir büyükçe ö esi vardr. spat olmayana ergi yöntemiyle yapaca z. (L, ) tikel sralanm³ sisteminin büyükçe bir ö esi var olmasn. Bu durumda her A ö esinden (kümesinden) daha büyük olan; yani A B olan, bir B L kümesi daima varolacaktr. Buna göre, her A L için ailesini tanmlayalm. olaca apaçktr, öyleyse L A = {B L A B} (22.12) L A L (22.13) A = {L A A L} (22.14) ailesi bo³ olmayan L A kümelerinden olu³an bo³ olmayan bir ailedir. Seçme Aksiyomuna göre (22.14) ailesinin kartezyen çarpm bo³ de ildir; yani öyle bir f : L L A (22.15) fonksiyonu vardr ki olur. (22.12) ve (22.16) den çkar. Oysa (22.13) ve (22.15) den A L A L f(a) L A (22.16) A L A f(a) (22.17) f : L L (22.18) yazabiliriz. (22.17) ko³ulu (L ) sistemi ile bu f fonksiyonunun Sabit Nokta Teoremi nin ko³ullarn sa lad n gösterir. Öyleyse ( Ω L)f(Ω) = Ω (22.19) olmaldr. (22.17) ile (22.18) nin çeli³ikli i, (L. ) sisteminin büyükçe bir ö esinin var olmad kabulümüzden gelmektedir. Demek ki L nin bir büyükçe ö esi vardr. L nin tanm gere ince, varl n söyledi imiz bu büyükçe ö e (L, ) içinde bir büyük zincirdir,

7 22.4. SA VE E DE ERLER 263 HB ZT: Hausdor Büyüklük lkesini kabul ederek Zorn Teoremini ispat edece iz. (L, ) tikel sralanm³ bir sistem olsun. [HBi] gere ince, bunun içinde büyük bir zincir vardr. Bu zinciri D ile gösterelim. [ZT] nin varsaymndan D nin bir üst snr vardr; buna x diyelim. Gösterece iz ki bu x ö esi (L, ) nin büyükçe bir ö esidir. Gerçekten, x y ko³ulunu sa layan bir y L \D ö esi var olsayd, D büyükçe bir zincir oldu undan D {y} kümesi de ayn ba ntsna göre bir zincir olurdu. Oysa D büyükçe bir zincir oldu undan bunu kapsayan ba³ka bir zincir var olamaz. O halde hiç bir y L için x y olamaz; yani x ö esi (L, ) sisteminin büyükçe(maksimal) bir ö esidir. ZT WO: S herhangi bir küme olsun. Bütün G S S grakleri içinde öyle bir tanesinin varl n gösterece iz ki, bu gra e tekabül eden ba nt, S üzerinde bir iyi sralama ba nts olacaktr. spat dört admda tamamlayaca z. 1.Adm: Grak ile ba nt birbirlerini tek olarak belirlediklerine göre, yalnzca graklerle ilgilenmek yetecektir. Önce bir gösterim tanmlayaca z: E er A, S nin herhangi bir G gra inin temsil etti i ba ntya göre iyi sralanm³ bir alt kümesi ise, bunu ksaca, (A, G) ile gösterelim. S kümesinin herhangi bir ba ntya göre iyi sralanm³ bütün alt kümelerinin ailesini Z ile gösterelim: Z = {(A,G) G, A S üzerinde bir iyi sralama gra idir} (22.20) Simdi Z üzerinde simgesiyle gösterece imiz bir ba nty ³öyle tanmlayalm: Her A,G),(A,G ) Z için (a) A A (A,G) (A,G ) (b) G G (c) x A y A \A (x,y) G (22.21) 2.Adm: olsun.(z, ) nin tikel sralanm³ bir sistem oldu u kolayca görülebilir. kümesi Z içinde bir zincir olsun. A = {(A ı,g ı ) ı I} A = ı IA ı G = ı IG ı diyelim. Bu durumda (A,G) Z dir. Gerçekten, A S olaca açktr. Öyleyse, G A A gra inin belirledi i ba ntnn A üzerinde

8 264 BÖLÜM 22. SEÇME AKS YOMU bir iyi sralama ba nts oldu unu göstermek yetecektir. imdi bunu gösterelim. Ba nt dönü³lüdür: x A ı(ı I x A ı ) (x,x) G ı G den istenen ³ey çkar. Ba nt antisimetriktir: (x,y),(y,x) G ( ı I)( j I)[(x,y),(y,x) G ı ] dr. Oysa A bir zincir oldu undan ya G ı G j ya da G j G ı dir. Birincisinin oldu unu varsayalm. Bu durumda (x,y) G j ve (y,x) G j dir. G j antisimetrik oldu undan, bu, x = y olmasn gerektirir. Ba nt geçi³lidir: (x,y),(y,z) G ( ı I)( j I)[(x,y),(y,z) G ı ] dir. Z bir zincir oldu undan ya G ı G j ya dag j G ı olacaktr. Birincisi varolsun. Bu, (x,y) G j (y,z) G?j olmasn ve bu da (x,z) G j G olmasn gerektirir. Buradan, söz konusu ba ntnn bir tikel sralama ba nts oldu unu söyleyebiliriz. Ba nt iyi sralamadr: Bunu göstermek için, sözkonusu sralama ba ntsna göre A nn her alt kümesinin en küçük ö esinin oldu- unu göstermeliyiz. A nn bo³ olmayan bir alt kümesine D diyelim. D B ı olacak ³ekilde bir ı I varolacaktr. D B ı B ı ve B ı iyi sral oldu undan D B ı B ı nin (B ı,g ı ) içinde en küçük ö esi vardr. Buna b diyelim: ( y D B ı ) (b,y) G ı dir. imdi bu b ö esinin D nin (A,G) içinde en küçük ö esi oldu unu gösterece iz. Bir x D seçelim. ki hal vardr: x A ı (b,x) G ı G x / A ı ( j I) x A j A j A ı (A j,g j ) (A ı,g ı ) (A ı,g ı ) (A j,g j ) dir. b A ı, x (A j \ A ı ) ve (A ı,g ı ) (A j,g j ) oldu undan (22.21) gere ince (b,x) G j G olacaktr. Öyleyse b, D nin (A, G) içinde en küçük ö esidir. 3.Adm: Bundan önceki admda kabul edilen varsaymlar altnda (A, G), A nn bir üst snrdr.

f 1 (H ) T f 1 (H ) = T

f 1 (H ) T f 1 (H ) = T Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR 15.1.1 Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T

Detaylı

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8) Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk

Detaylı

A = i I{B i : B i S} A = x A{B x A : B x S}

A = i I{B i : B i S} A = x A{B x A : B x S} Bölüm 4 TOPOLOJ TABANI 4.1 TOPOLOJ TABANI Tanm 4.1.1. Bir S P(X) ailesi verilsin. S ye ait kümelerin her hangi bir bile³imine e³it olan bütün kümelerin olu³turdu u aileye S nin üretti i (do urdu u) aile

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

Soyut Matematik Test A

Soyut Matematik Test A 1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde

Detaylı

Soyut Matematik Test 01

Soyut Matematik Test 01 1 Soyut Matematik Test 01 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. A³a dakilerden hangisi do rudur?

Detaylı

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27)

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27) 230 BÖLÜM 17. METR K UZAYLAR 17.2 METR K METR K UZAY KAVRAMI Normlanm³ bir uzay, her³eyden önce bir vektör uzaydr, yani (X, ) normlanm³ bir uzay ise, X kümesi üzerinde bir vektör uzay yaps vardr. Oysa,

Detaylı

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise 0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen

Detaylı

Soyut Matematik Test B

Soyut Matematik Test B 1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,

Detaylı

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm 6.1.1. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x

Detaylı

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x)

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x) Bölüm 13 MATEMAT KSEL YAPILAR 13.1 YAPI KAVRAMI Ça da³ Matematik kümeleri, kümeler üzerindeki yaplar, yaplar arasndaki dönü³ümleri inceler. Buraya dek ö e, küme, i³lem, fonksiyon kavramlarn kullandk. Bunlar

Detaylı

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? 1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme

Detaylı

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir?

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir? 1 TOPOLOJ TEST B 1. {( 1) n 1 n : n > 0} dizisi için a³a dakilerden hangisi do rudur? (a) Dizinin limiti 1 ve +1 dir; y lma noktas 1 ve +1 dir. (b) Dizinin limiti 1 ve +1 dir; y lma noktas yoktur. (c)

Detaylı

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz.

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 1 Ksm I TOPOLOJ SORULARI 1 Topological Notions 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 2. n Z olmak üzere (n, n + 1) aralklarnn bile³imi açktr. Gösteriniz. 3. {0} = ( 1 n, 1

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec çindekiler Önsöz................................. ix 1 MANTIK ve MATEMAT K 1 1.1 ÇA LARI A AN MATEMAT K.................. 1 1.1.1 Mantk tarihine ksa bir bak³................ 1 1.1.2 Matematiksel Mantk....................

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan 26.11.2013 No: Ad-Soyad: mza: Soru 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Toplam Puanlama 15 15 15 15 15 15 15 15 15 15 105 Alnan Puan 405024142006.1 CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI SORULARI (ÖRGÜN Ö

Detaylı

x(x a x b) = a = b (21.4)

x(x a x b) = a = b (21.4) Bölüm 21 AKS YOMLAR VE PARADOKSLAR KÜMELER KURAMININ AKS YOMLARI VE PARADOKSLAR 21.1 KÜMELER N AKS YOMAT K YAPISI Hatrlanaca üzere, bu dersin ba³langcnda, kümeler kuramn aksiyomatik olarak incelemeyece

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

Ksm I. Simgeler ve Terimler

Ksm I. Simgeler ve Terimler Ksm I Simgeler ve Terimler 1 Bölüm 1 S MGELER ve TER MLER 1.1 KÜMELER CEB R 1.2 FONKS YON 1.3 DENKL K BA INTISI 1.4 SIRALAMA BA INTILARI 1.5 SEÇME AKS YOMU SEÇME AKS YOMU ve E DE ERLER 3 4 BÖLÜM 1. S

Detaylı

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir?

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir? 1 TOPOLOGY TEST 02 1. S ailesi X kümesi üzerinde bir süzgeç ise, a³a dakilerden hangisi sa lanmaz? (a) / S (b) * S (c) X S (d) A, B S A B S (e) (V S ) (V W ) W S 2. A³a dakilerden hangisi bir süzgeç de

Detaylı

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)}

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)} Bölüm 3 KÜME KAVRAMI Okuma Parças Bu derste, Kümeler Kuramn belitsel (aksiyomatik) incelemeyi amaçlamyoruz. Burada, küme kavramn, sezgiye dayal olarak belirli nesnelerin bir toplulu u diye tanmlayacak

Detaylı

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi 25. Hausdorff Zincir Teoremi ve Zorn Önsav n n Kan t Tolga Karayayla Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi ve yis ralama Teoremi varsay larak Seçim Aksiyomu kan tland. Bu bölümde önce

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Mart 2013 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü A ustos 2012 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

Polinomlar. Polinom Kavram

Polinomlar. Polinom Kavram 1 2 Bölüm 1 Polinomlar Polinom Kavram Polinomlar, yalnz Matematikte de il, ba³ka bilim dallarnda da kar- ³la³lan bir çok problemin çözümünde etkili bir araçtr. Polinom kavram, farkl soyut biçimleriyle

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1) DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu

Detaylı

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN STANBUL KÜLTÜR ÜN VERS TES FEN B L MLER ENST TÜSÜ ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ Nazl DO AN 1109041005 Anabilim Dal: Matematik-Bilgisayar Program:

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

CHAPTER 1. Vektörler

CHAPTER 1. Vektörler iv CHAPTER 1 Vektörler Vektör kavram, ziksel kavram olarak ortaya çkm³ olsa da matematiksel sistemlerin temel kavram olmu³tur. Gerçekten vektör kavramn geli³imi matematikçilerden çok zikçiler ve kimyaclar

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

kili ve Çoklu Kar³la³trmalar

kili ve Çoklu Kar³la³trmalar kili ve Çoklu Kar³la³trmalar Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ 2 3 4 5 6 7 Bu bölümde, (2.1) modelinde, H 0 : µ 1 = µ 2 = = µ a = µ (1) ³eklinde ifade edilen sfr hipotezinin reddedilmesi durumunda,

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Okurun bir önceki bölümü okudu unu ve orada ortaya

Okurun bir önceki bölümü okudu unu ve orada ortaya 23. Zorn Önsav ve Birkaç Sonucu Okurun bir önceki bölümü okudu unu ve orada ortaya konulan sorunu anlad n varsay yoruz. O bölümde ele ald m z ama pek baflar l olamad m z kan tlama yönteminden, yani bir

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

6 Devirli Kodlar. 6.1 Temel Tan mlar

6 Devirli Kodlar. 6.1 Temel Tan mlar 6 Devirli Kodlar 6.1 Temel Tan mlar Tan m S F n q için e¼ger (a 0 ; a 1 ; : : : ; a n 1 ) 2 S iken (a n 1 ; a 1 ; : : : ; a n 2 ) 2 S oluyorsa S kümesine devirli denir. E¼ger bir C do¼grusal kodu devirli

Detaylı

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER 1 TEMEL YÖNTEM VE DE KEN DE T RME Bir kapal aralkta tanmlanm³ olan f ve F fonksiyonlar için e er bu aralkta F () f() ko³ulu sa lanyorsa F fonksiyonu, f fonksiyonunun

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK Karadeniz Teknik Üniversitesi Fen Fakültesi Matematik Bölümü çindekiler 1 Gruplar Teorisi 1 2 Altgruplar, Kosetler ve Lagrange Teoremi 15 3 Normal Altgruplar

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI T.C ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI ÖĞRETİM ÜYELERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR:

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu

Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu Ramsey Teoremi Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu odada bulunan herhangi iki kifli birbirlerini ya tan rlar ya da tan mazlar. Buras belli. Yan t belli olmayan soru flu: Bu odadan,

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

SAYILAR TEORÝSÝNE GÝRÝÞ

SAYILAR TEORÝSÝNE GÝRÝÞ OLÝMPÝK MATEMATÝK SERÝSÝ MATEMATÝK OLÝMPÝYATLARINA HAZIRLIK ÝÇÝN MERAKLISINA SAYILAR TEORÝSÝNE GÝRÝÞ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVÝ ÝZMÝR - 2013 Copyright Altýn Nokta Basým Yayýn Daðýtým Biliþim ISBN

Detaylı

Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n

Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n Seçim Beliti Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n herbiri bir teoremdir, kan tlanm fllard r. Ancak bu olgular, matematikte çok özel bir yeri olan Seçme Beliti kullan larak kan tlanm

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Denklik Bağıntıları 5 Bibliography 13 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük

Detaylı

Yan t Bilinmeyen Bir Soru

Yan t Bilinmeyen Bir Soru Yan t Bilinmeyen Bir Soru Ö nce yan t n dünyada kimsenin bilmedi i bir soru soraca- m, sonra yan t n dünyada kimsenin bilmedi i bu soru üzerine birkaç kolay soru yan tlayaca m. Herhangi bir pozitif do

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

! " # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. (

!  # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. ( !"#$ %& '()*' ' +,-. / 0 100$ 2 (.-3( 34.( ,-. '45 45 6#5 6+ 6"#0" '7086 $ $ 89 44" :#! ;{0, 1, 2, 3,..., 9}, L * olarak tanımlı olsun ve sadece 2 ye veya 3 e bölünebilen ve önünde 0 olmayan pozitif sayılara

Detaylı

Sonlu bir kümenin eleman say s n n ne demek oldu unu

Sonlu bir kümenin eleman say s n n ne demek oldu unu 30. Cennete Hoflgeldiniz! Sonlu bir kümenin eleman say s n n ne demek oldu unu herkes bilir. Örne in, {0, 2, 6, 7, 13} kümesinin 5 eleman vard r. Bu say m z n kapak konusunda, sonsuz bir kümenin eleman

Detaylı

Mikro 1: Bütçe Kst ve Tercihler

Mikro 1: Bütçe Kst ve Tercihler Mikro 1: ve N.E. Aydnonat 1 1 AÜ & GÜ & BÜ GS Mikroiktisat ve Outline 1 : Özellikler 2 le ilgili Ek Varsaymlar ve Özellikler imdilik sadece iki mal (x 1 ve x 2 ) oldu unu varsayalm. Buna ek olarak mallarn

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

Cahit Arf Matematik Günleri 10

Cahit Arf Matematik Günleri 10 Cahit Arf Matematik Günleri 0. Aşama Sınavı 9 Mart 0 Süre: 3 saat. Eğer n, den büyük bir tamsayı ise n 4 + 4 n sayısının asal olamayacağını gösteriniz.. Çözüm: Eğer n çiftse n 4 +4 n ifadesi de çift ve

Detaylı

ndrgemel Dzler Ders Notlar

ndrgemel Dzler Ders Notlar ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 2 Temmuz 2015 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir. B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık

Detaylı

Bölüm 4 Button 4.1 Button Nedir? Button (dü me), tkinter içinde bir snftr; ba³ka bir deyi³le bir widget'tir. Üstelik, Button, öteki GUI araç çantalarnn hemen hepsinde ayn ad ile var olan standart bir widget'tir.

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI LATİSLERDE TÜREVLER YÜKSEK LİSANS TEZİ UTKU PEHLİVAN DENİZLİ, OCAK - 2015 T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L Limit Bu bölümde, matematik analizde temel bir görevi olan it kavram incelenecektir. Analizdeki bir çok problemin çözümünde it kavram na gereksinim duyulmaktad r. Bunlardan baz lar ; bir noktada bir e¼griye

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 7 Temmuz 2016 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64 Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt 11 Fonksiyon 12 Fonksiyonel Denklemlere Giriş 14 Fonksiyonun Gragi 17 Fonksiyon Çeşitleri 18 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme 2. ÖLÇÜLER 2.1 BazıKüme Sınıfları SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin bir sınıfıolsun. A sınıfıx üzerinde bir σ cebir midir? ÇÖZÜM 1: A := {B P (X) : B sonlu} X / A

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64 Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt Fonksiyon 2 Fonksiyonel Denklemlere Giriş 4 Fonksiyonun Gragi 7 Fonksiyon Çeşitleri 8 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon 25

Detaylı

ANAHTARLANMI DO RUSAL S STEMLERE G R

ANAHTARLANMI DO RUSAL S STEMLERE G R ANAHTARLANMI DO RUSAL S STEMLERE G R Ça da³ TOPÇU Ocak 2009 Proje Dan³man: Yrd.Doç.Dr. brahim Beklan KÜÇÜKDEM RAL YILDIZ TEKN K ÜN VERS TES ELEKTR K - ELEKTRON K FAKÜLTESi ELEKTR K MÜHEND SL BÖLÜMÜ PROJE

Detaylı

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir. 2. Niceleme Mantığı (Yüklemler Mantığı) Önermeler mantığı önermeleri nitelik yönünden ele aldığı için önermelerin niceliğini göstermede yetersizdir. Örneğin, "Bazı hayvanlar dört ayaklıdır." ve "Bütün

Detaylı