LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ"

Transkript

1 YS / GMTİ NM ÇÖZÜMİ eneme b desek olu. b Ç ` j cm olduğundn + b b - dı. de ot tbnı çizilise benzelik ydımıyl biim bulunu. ' olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn m^\ h m^\ h 70c bulunu. evp b Üçgen eşitsizliği ile - b + 0 b 0 -, di. hlde,! " 6, 7, 90,,, olduğundn beş tne ikiz ken üçgen çizilebili. evp. 0 üçgeni pisgou 6 sğldığındn ^ h 0 m ^X h 90c di. m ^\ h m^\ h desek dik üçgeninde sin olu. 0 hlde, ^ h $ $ $ sin 0 $ $ $ 60 cm bulunu. evp. 96 m ^\ h m^\ h (iç tes çı çifti) m ^\ h m^\ h ( ikiz ken üçgeninde tbn çılı eşitti) m ^\ h m^\ h ( plel kenınd kşılıklı çıl eşitti) m ^\ h m ^\ h ( ikiz ken üçgeninde tbn çılı eşitti) üçgeninde iki iç çının toplmı üçüncü dış çıy eşit olduğundn; + 96c+ c bulunu.. m G c m b m 9 m m m de + m de b + b m G de c + c 7 m Sevily Hnım ın ldığı toplm yol m bulunu. evp 6. h evp de pisgo ile + cm bulunu. üçgeninde ln eşitliği ile; $ h $ 60 h cm bulunu. hlde, 60 $ ^ h 90 cm di. evp çözümle d iğe syfy geçiniz

2 eneme - YS / GMTİ NM ÇÖZÜMİ 7. y ( k, k) (0, k) (, 0) b b (0, ) d d 9. d d c d e b$ c b b$ d 6 d b$ e olduğundn. d + y + 0 olduğundn y 0 - ^-0, h ve 0 y - ^0, -h dü. $ ^ h 9 cm di. 9 ^h $ ^h $ cm di. d y k olduğundn ^0, kh dı. d + y + 0 doğusund y k + k k olduğundn ^- -k, kh dı. k ve -- k k+ olduğundn ^ k $ k + + h ^ h k -6k- 0 ^k+ h$ ^k- 9h 0 k - ve k 9 bulunu. evp y (, 0) (, ) ^ - h + ^-0h b di. b olduğundn de pisgo ise + ^ h b di. un göe 0 ^, h di. 0 ^h 0 b 0 0 ^ h $ 0 0 b bulunu. evp 0. c d e 6 c d e c k, d k ve e k dı. b$ d 6 ve $ d olduğundn b 6 b b m ve m di. hlde, m$ k 6 b 6 ise ^h m$ 6k mk 0 b di. S h S S S S S S S h h h ltıgenin lnı eltoidin lnı S + S S + S dü. evp evp. 0 ye d dik çizilise üçgeni ile 0 0 cm ve cm olu. 0 noktsındn kuvvet uygulsk; $ $ cm di. + 0 cm bulunu. doğu pçsı kiişini dik otldığı için çptı. 0 hlde, Yıçp 0 cm di. evp çözümle d iğe syfy geçiniz

3 YS / GMTİ NM ÇÖZÜMİ eneme -. desek ve noktsındn kuvvet uygulsk $ $ $ 0 $ ^ + h cm bulunu. + (.. benzeliği) olduğundn 6 0 cm bulunu. evp.. dım:. dım: 60 / H 0 H de ile ln b di. hlde,. dım: T 60 0 eşken üçgeninde noktsı ğılık mekezi olduğundn H b ve H + b di. H ve ^ h b di. M eşken üçgeninde noktsı ğılık mekezi olduğundn M b ve TM + b di. M TM de ile T b ve M b di. hlde, ^Mh b di. ^h ^Çembeh M ^ h evp. > ;;? m olsun. $ 9 9m S m S + S S > ;;? $ 9 9m 0 S S + S 9 (ie diliminin lnı yy uzunluğu ile yıçp uzunluğunun çpımının yısıdı.) hlde, S + S S + S S S dü. 0c S S $ $ 9 9 cm bulunu. 60c evp devilmede; noktsı mekezli, cm yıçplı çeyek çembe yyını çize. 90c ldığı yol $ $ cm di. 60c. devilmede; noktsı mekezli, cm yıçplı çeyek çembe yyını çize. 90c ldığı yol $ $ cm di. 60c. devilmede; noktsı dönme mekezi olcğındn heket etmez. hlde, noktsı toplm + cm yol lı. evp 9 9 de pisgo ile ^- 9h + ^ -h ^-7h$ ^- h 0 7 y d S S S. ineğin 60. ineğin otldığı ln 60 otldığı ln S S S tk otlnn ln evp S 6 m 60c S $ $ 60c - 6 ^-6 h m tk tlnn ln S + S ^96-7 h cm di. evp çözümle d iğe syfy geçiniz

4 eneme - YS / GMTİ NM ÇÖZÜMİ. S M. 0 P 0 h H 0 0 T M çık şekli veilen ksenin kplı şeklini çizip oluşn kesik pimitin hcmini bulusk lbileceği en çok sütün miktını d bulmuş oluuz. PS ^ h 7$ cm di. P evp 9. oğ, şeit ypıştımyı yüzeylee ypıştıcğındn kullnılck yüzeylein çınımını çizelim. 0 0 V V oğ, şeiti dn ye ypıştııken,, ve V yüzeyleini kullnıs en z miktd kullnı. Tlı dik üçgende pisgo uygulnıs + 7 cm bulunu. evp 0. oninin yıçp uzunluğu, silindiin yıçp uzunluğu ve yüksekliklei de h olsun; oninin içindeki suyun hcmi $ $ $ $ h di. 7 Su silindie boşltıldığınd silindiin hcimce ü dolcğındn 9 $ $ h $ $ $ h bulunu. 7 evp. Öncelikle çekmecenin klınlıklını çıkk iç kısmının yıt uzunluklını bullım: Yn yüzeylein klınlıklını çıkısk genişlik 7 cm, ön ve k yüzeylein klınlıklını çıkısk deinlik 0 cm, lt tbnın klınlığını çıkısk yükseklik 0 cm olu. hlde, iç kısmın hcmi $ 0 $ cm olu. evp de pisgo ile 0 cm di. P noktsı lt tbnın ğılık mekezi olduğundn P cm di. PT dikdötgen olduğu için T cm di. M de pisgo ile M 0 cm di. noktsı üst tbnın ğılık mekezi olduğundn M 0 cm di. un göe, TM 0 - cm di. TM de pisgo ile T cm di. un göe, T P cm di. H + HM olduğundn; h 0 h cm di. h + 0 hlde, ksenin hcmi $ - $ cm dü. evp. Veilen ştl uygun vektölei çizip istenilen iç çpımı bullım. b b, c $ $ cos c $ $ b b 0 du.. evp + ^, -,- h " + ^, -,-h - ^-,, h " - ^-6,, h hlde, ^-0,, h ^-0,, h d ı. ^- h b di. evp çözümle d iğe syfy geçiniz

5 YS / GMTİ NM ÇÖZÜMİ eneme -. ^-, 0h noktsın ve ^0$ y+ - 0h doğusun eşit uzklıktki noktlın geometik yei ^y, h ise -_-i + _ y - 0i y - + y 0$ y ` y j _ - i -0- denklemli pbol. + y elipsine ^, - h noktsındn çizilen teğetin denklemi için; + y $ + y$ y denkleminde y ^, - h noktsı ve y yeine yzılıs $ + y$ ^- h - y denklemli doğu bulunu. evp evp 6. üzlemde, fklı iki nokty uzklıklı toplmı sbit oln noktlın kümesi elipsti. Soud çivile odklı temsil edeken ipin uzunluğu değişmeyeceği için klem elips şeklinde iz bıkı. 9. şlngıç : b. dım : b + $ b. dım : b + $ b + $ b. dım : b + $ b + $ b + $ b 6 b di. evp Ç Ç evp 0. - z, y d ^, 0, h - y+ $ z- 0 N ^, -, h oğu ile düzlem plel iken d N olcğındn; $ + 0$ ^- h + $ 0 - bulunu. 7. (,, ) evp - y+ z+ 0 - $ + $ + + ^-h + b di. hlde, küe yüzeyinin lnı b di. evp çözümle d iğe syfy geçiniz

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MTMTİK NM ÇÖZÜMLRİ eneme -. ) - - + ) - 7 - + ) - - +. + m ; + m + ^ ^ > H + ) - - + ^ ) 7- - + Sılın plı eşit olduğun göe, pdsı en üük oln sı en küçüktü. un göe seçeneğindeki sının pdsı en üük olduğundn

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / EETRİ EEE ÇÖZÜERİ enee -.. H E desek E E EH (E uğund ot tn) olu. ` j $ $ c hlde, ^h $ $ 0 0 0 0 üüüş esfesi 0 c di. ulunu. evp de 0 0 0 ile c di. de 0 0 0 ile c di. hlde, lnın nık klcğı üüüş esfesi

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ YS / TTİ N ÇÖZÜRİ eneme -. +. + + ti. - + + - + + > ise - + - + evp. ^ + ^- ^- +. z z + + + + evp z + -. c- m z z + - + + + z z z ^ ^ evp. çift sı olmlı Ç+ T T. Ştı sğln sdece vdı.. + + lde tne sl sı vdı.

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MEMİK ENEME ÇÖZÜMLERİ enee -. - + - + - - + - + - 7 - evp E. - + + 9 ifdelei tf tf çplı. ^- h^ + + 9h - 7. + + + ifdesinde zlı. + 7 ise + 7 evp + + + + + + + + + + +. z + z + + + z + z + dı. z z

Detaylı

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A 0 - LYS/MT GOMTRİ ÇÖZÜMLRİ NM.. 70 k k 70 40 m ( X ) m ( ) m ( ) 70 kolsun.. k ln( ) sn m ( ) 80-40 40 + 40 70 0 evp: de sn olduğun göe k k ln( ). 8 cm k evp: 4.. 0 0 y y H çıotyın kollın ndlen dkmele

Detaylı

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -

Detaylı

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER KTI ÝSÝMLR KTI İSİMLR YILLR 1966 1967 1968 1969 1970 1971 197 197 197 1975 1976 1977 1978 1979 1980 1981 198 198 198 1985 1986 1987 1988 1989 1990 1991 199 1995 1996 1997 1998 1999 001 001 00 00 00 005

Detaylı

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir. I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri Öğenci Yeleştime Sınvı (Öys) Hzin 99 Mtemtik Soulı Ve Çözümlei. Rkmlı bibiinden fklı oln üç bsmklı en büyük tek syı şğıdkileden hngisine klnsız bölünebili? A) B) C) 6 D) 8 E) 9 Çözüm Rkmlı bibiinden fklı

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

BASİT MAKİNELER BÖLÜM 4

BASİT MAKİNELER BÖLÜM 4 BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7. KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Geometri Notları. Uzay Geometrisi. Gökhan DEMĐR, 2006

Geometri Notları. Uzay Geometrisi. Gökhan DEMĐR,  2006 www.mtemtikclub.com, 006 Geometi Notlı Gökn MĐR, gemi@yoo.com.t Uzy Geometisi Tnım : Üzeine çlışm yptığımız noktlın kümesine uzy eni. Öneğin tek nokt üzeine çlışıyos uzyınız bu noktı. un koşutsuz uzy,

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Sf No tek ve çok üeli kplı üele ve ktı cisimle.................................. KVRMSL IM EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Üç boutlu nesnelee ktı

Detaylı

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR UZY MRİ IN NL IRLMLR UZY SİYMLRI kı iki noktdn i tek doğu geçe oğus omyn fkı noktdn i tek düzem ÜÇ İM RMİ tı isim souını çözmede çok fydı i igidi geçe i doğu ve u doğu üzeinde uunmyn i nokt düzem eiti

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E - 8. LYS Mtemtik Soulı Ve Çözümlei M + +. eel sısının değei kçtı? M. > eşitsizliğinin en geniş çözüm kümesi şğıdkileden hngisidi? ) ) ÇÖZÜM : ve ) ) ve olduğundn di.. YNIT : ) ) R ) Z ) R + ) R {} ) R

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

ELEKTRIKSEL POTANSIYEL

ELEKTRIKSEL POTANSIYEL FİZK 14-22 Des 7 ELEKTRIKSEL POTANSIYEL D. Ali ÖVGÜN DAÜ Fizik Bölümü Kynkl: -Fizik 2. Cilt (SERWAY) -Fiziğin Temellei 2.Kitp (HALLIDAY & RESNIK) -Ünivesite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) www.ovgun.com

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise GMR erginin bu sy s nd Çokgenler ve örtgenler konusund çözümlü sorulr yer lmktd r. u konud, ÖSS de ç kn sorulr n çözümü için gerekli temel bilgileri ve prtik yollr, sorulr m z n çözümü içinde ht rltmy

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10 1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

Şekilde verilen kuvvet takımına ait tesir çizgisinin denklemi hangisidir? [] y=5 [] y=-5 [] x=5 [] y=x

Şekilde verilen kuvvet takımına ait tesir çizgisinin denklemi hangisidir? [] y=5 [] y=-5 [] x=5 [] y=x ÜZLM UVVTLR ileşke kuvvetin şiddeti kç Newton du? [] [] 5 [] 7 [] 9 [] 7 kuvvetinin bileşenlei ve di. + = olduğun göe kç deecedi? >0, >0 [] 5 [] 0 [] 55 [] 45 kuvvetinin ve doğultulındki bileşenlei sınd,

Detaylı

GENLEŞME BÖLÜM Çubuk İlk boy MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Uzama miktarı. Sıcaklık artışı ( C) X L 2T 2a. Y 2L 3T 3a.

GENLEŞME BÖLÜM Çubuk İlk boy MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Uzama miktarı. Sıcaklık artışı ( C) X L 2T 2a. Y 2L 3T 3a. GENEŞE BÖÜ 17 ODE SORU 1 DE SORURIN ÇÖÜER 4 60 1 Çubuk İlk boy Sıcklık tışı ( C) Uzm miktı 2 2 60 60 50 40 2 3 3 4 2 4 I,, çubuklının ilk boylı eşitti 2 3 2 2 3 2 3 2 4 4 2 2 > di ile ynı olbili, fklıdı

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ T BSNC ODE SORU - DEİ SORURN ÇÖZÜERİ... Şe kil - e : Şe kil - e :. olu F i. F F e ifl mez. CEV D Tuğllın e biinin ğılığın iyelim. Sistemlein e uyulıklı bsınç kuvvetlei ğılıklın eşitti. F F F Bun

Detaylı

ÇEMBERİN ANALİTİK İNCELENMESİ

ÇEMBERİN ANALİTİK İNCELENMESİ ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E. nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8 y - 0, y 90 & 0, y y - y 90 y - 0+ y- & y - y 0y+ -y 9+ y 9y+ 7 + y 8y + 5 5y 5 y 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık

Detaylı

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425 Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

TG 11 ÖABT İLKÖĞRETİM MATEMATİK

TG 11 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN BİLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖAB İLKÖĞREİM MAEMAİK Bu testlein he hkkı sklıdı. Hngi mçl olus olsun, testlein tmmının ve i kısmının İhtiç Yıncılık

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı