Diferansiyel denklemler uygulama soruları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Diferansiyel denklemler uygulama soruları"

Transkript

1 . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin, 3) aralığında d = y e) y 3) = d 3y) denklemi için kapalı bir çözüm olğunu gösteriniz. 3. φ) = denkleminin 0, ) aralığında d y = y denkleminin açık bir çözümü olğunu gösteriniz. d 4. d y = sin, yπ) = 5 başlangıç değer probleminin tek bir çözümü olğunu gösteriniz. d = y + sin. f, y) = y + sin fonksiyonu }{{} 0 = π, y 0 = 5 civarında süreklidir, ayrıca f y, y) = f,y) fonksiyonu da 0 = π, y 0 = 5 civarında süreklidir. Dolayısıyla Varlık ve Teklik teoremi gereğince verilen başlangıç değer probleminin tek bir çözümü vardır. 5. Aşağıdaki diferansiyel denklemlerin ayrılabilir olup olmadığını belirleyiniz. a) sin + y) = 0 d b) d = 4y 3y 6. Aşağıdaki denklemleri çözünüz a) d dt = 3t c) ds dt = t lnst ) + 8t d) d = ye+y + b) d = y + e) y + 3y ) d = 0 f) s + ds dt = s + st c) d dt = t e t+ a) = ce t3 b) y 3 = + ) 3/ 6 + ) / + c c) 4) e = t )e t + c 7. d = denklemini çözünüz. y ) / y ) / d = 0. Her terimin ayrı ayrı integrali alınırsa, y + ) / = c 0 veya y + ) / = c bulunur. 8. d = 3 y + ), y0) = başlangıç değer problemini çözünüz. y + = 3 d olarak yazılabildiği için denklem ayrılabilirdir. Her iki tarafın integralini alırsak y) = tan 3 + c ) çözümünü elde ederiz. Başlangıç koşulunu uygulayıp y) = tan 3 + π ) çözümünü elde ederiz )y + 4)d 4y ) = 0 denklemini çözünüz. ) 3+8 y +5+6d y +4 = 0 veya 3+8 y +)+3) d y +4 = 0 veya y y +4 = 0. Her terimin ayrı ayrı integrali alınırsa, ln + ) + ln + 3) lny + 4) = ln c veya + ) + 3) = cy + 4) bulunur y )d y = 0 denklemini çözünüz.

2 Diferansiyel denklemler uygulama soruları d = 3 y y = 3 y y. y = v alınırsa, v + d = 3 v v veya d = 3 v v) veya ln 3 + lnv ) = ln c elde edilir. Burada v değeri yerine yazılırsa, y ) = c bulunur.. d = y + y diferansiyel denklemini çözünüz. Verilen diferansiyel denklem, d = y y ) + şeklinde yazılabilir. Burada y = v alınırsa, v + d = v + v olup v = sin ln + c) olarak bulunur. v = y yerine yazılırsa, y = sin ln + c) çözümü elde edilir.. d = y + y denklemini çözünüz. d = y ) + y ), v + d = v + v, d = v + v olur. Buradan da çözüm v+ v = c0 değeri konulursa, y = c c olur. 3. y + 3)d + ) = 0 denklemini çözünüz. olarak elde edilir. v yerine = ve N = olğu için verilen diferansiyel denklem bir tam diferansiyel denklemdir. u, y) = y + 3)d = y hy) u = + h y) = h y) = hy) = y + c. Buna göre çözüm u, y) = y + 3 y + c olur sin y)d + cos y y) = 0 diferansiyel denklemini çözünüz. M y, y) = cos y ve N, y) = cos y olğuna göre, tam diferansiyellik koşulu sağlanır. u, y) = + sin y)d = + sin y + fy) çözümü bulunur. u y, y) = cos y + f y) = cos y y olğundan fy) = y + c olarak bulunur. Sonuç olarak u, y) = + sin y y + c = 0 çözümü elde edilir. 5. y + e y )d + y + e y ) = 0 diferansiyel denklemini çözünüz. M, y) = y + e y ve N, y) = y + e y olğuna göre, = N = + ey tam diferansiyellik koşulu sağlanır. F = Md + φy) = y + e y + φy) çözümü bulunur. = N = + e y + φ y) olğundan φ y) = y ve buradan da φy) = y çözüm yerine yazılırsa olur. F, y) = y + e y + y + c = 0 çözümü elde edilir. Bu 6. 3y )d y) = 0 diferansiyel denkleminin genel çözümünü bulunuz. Page

3 Diferansiyel denklemler uygulama soruları = 3 ve N = 3 olğundan, verilen diferansiyel denklem bir tam diferansiyel denklemdir. = 3y )d + φy) = 3 y 3 + φy). Bu F fonksiyonunun y ye göre kısmi türevini alalım. = 3 y 3 + φy) ) = 3 + dφ. Diğer taraftan, = N, y) olğundan 3 + y = 3 + dφ φy) = y + c 0 olur, buradan bulunur. φ yi yerine yazarsak elde edilir. 3 y 3 + y = c 7. y)d = 0 denklemini çözünüz. Burada M = y ve N = dir ve dolayısıyla denklem bir tam diferansiyel değildir. Bu rumda eğer varsa, diferansiyel denklemin integral çarpanının bulunması gerekir. Önce λ integral çarpanının yalnız in bir fonksiyonu olğunu kabul edelim, bu rumda, N N ) = bulunur. Bu rumda λ integral çarpanının yalnızca in bir fonksiyonu olarak düşünebiliriz. λ) = e d = e bulunur. Denklemin bütün terimlerini integrasyon çarpanı λ) = e ile çarparsak, elde edilir. Bu denklem bir tam diferansiyel denklemdir. e y)d e = 0 8. d = y y denklemini çözünüz. N N ) = y elde edilir. Bu ifade yalnızca in bir fonksiyonu değildir. Bu rumda diğer ifadeyi kontrol edelim. N M ) = y elde edilir. Yani ifade yalnız y nin bir fonksiyonur. Buna göre, bulunur. Verilen denklemin terimleri y ile çarpılırsa, λy) = y y 3 d + y y) = 0 denklemi elde edilir. Bu denklem bir tam diferansiyel denklemdir ve genel çözümü y 3 + y 3 y4 4 = c. 9. y = denkleminin genel çözümünü bulunuz. d Page 3

4 Diferansiyel denklemler uygulama soruları Bu denkleme ait integral çarpanı λ) = e d = e dır. Buradan dye ) = e olur. Bu ifadenin her iki tarafının integralini alırsak çözümü elde edilir. 0. y + y = sin denklemini çözünüz. İntegral çarpanı λ) = olarak elde edilir. Buradan y = + ce dy) = sin.. olur, her iki tarafın integralini alırsak çözümü elde edilir. d y = sin + y = e, y0) = başlangıç değer problemini çözünüz. cos + c ) Burada integral çarpanı λ) = e olarak bulunur. d ye = e + ce olur. Başlangıç değer koşulunu da uygularsak, y) = ) e + e d + y = y3 denklemini çözünüz. Burada u = y değişken dönüşümü yapılarak 3 y d + y = e e d integralleri hesaplanırsa y) = d 4 u = bulunur. Bu denklemin integral çarpanı λ) = 4 dir. Buradan olur. u = y yerine yazılarak çözümü elde edilir. 3. d + y = 6 y 4 denklemini çözünüz u = u = c 4 ) c 4 4 y d + y 3 = 5 Burada y 3 = u dönüşümü yapılarak denklem lineer denkleme dönüştürülür. d 3 u = 65 Elde edilen bu lineer denklem için integral çarpanı λ) = 3 olğundan olur, u = y 3 değerini yerine yazarsak çözümmü elde edilir. y = u = + c c ) /3 Page 4

5 4. d y = 4 denklemini çözünüz Denklemin her iki tarafını ile bölerek Diferansiyel denklemler uygulama soruları d y 3 = şeklinde bir Bernoulli denklemi ende ederiz. Bu denklemde v = 3 dönüşümü yaparak + 6 y v = 3 lineer diferansiyel denklemini elde ederiz. Bu denklem için integral çarpanı λy) = y 6 olup genel çözüm olur. v = 3 değerini yerine yazarsak çözümü elde edilir. v = 3 7 y + cy 6 3 = 3 7 y + cy 6 5. d + 6y = 3y4/3 diferansiyel denkleminin genel çözümünü bulunuz. Denklemimizi d + 6 y = 3y4/3 şeklinde yazarsak P ) = 6, Q) = 3 ve n = 4/3 olğundan bir Bernoulli denklemidir. n = 4/3 olğu için n = /3 olacak ve v = y /3 dönüşümü yapacağız. Lineer denklemi elde ettik. İntegral çarpanımız d 3 6 )v = 3 3 d v = µ) = e P )d = e d = dır.denklemimizin her iki tarafınıda integral çarpanımızla çarparsak Her iki tarafın integralini alalım d d [ v)] = ) v) = d + C = + C v) = + C v = y /3 idi, olarak çözümümüzü buluruz. y /3 = + C 6. + y + d + y + tan ) = 0 diferansiyel denkleminin çözümünü bulunuz. Denklemimizde dir. Tam lık kriterine bakıldığında M, y) = + y + ve N, y) = y + tan = + ve N = + Page 5

6 Diferansiyel denklemler uygulama soruları kısmi türevler eşit olğu için denklemimiz tamdır.denklemimiz TAM olğu için, çözümümüz olan F, y) = C fonsiyonu için ve = M, y) = + y + = N, y) = y + tan olğunu söyleyebiliriz. Bu denklemlere bakıldığında ikincisini integrallemek daha kolaydır. = y + tan ) + Φ) Şimdi Φ) yi bulmalıyız.bulğumuz F, y) = y + y.tan + Φ) F, y) = y + y.tan + Φ) fonksiyonun ye göre kısmi türevi M, y) olmali ki çözümümüz olsun. ye göre kısmi türev alalım = y. + + d d Φ) = + y + }{{ } M,y) y. + + d d Φ) = y d d Φ) = + d d Φ) = + Φ) yi bulmak için integral alırsak Φ) = ln + ) + A olarak bulunur. A keyfi sabit). Sonuç olarak F, y) = y + y.tan + ln + ) + A = C F, y) = y + y.tan + ln + ) = K K = C A, keyfi sabit) sin y)d + 4 cos y) = 0 diferansiyel denkleminin çözümünü bulunuz. Denklemimiz ayrılabilir ve lineer değildir. Denklemimizde dir. Tam lık kriterine bakıldığında M, y) = sin y ve N, y) = 4 cos y = 33 cos y ve N = 43 cos y eşit olmadığı için TAM DEĞİLDİR.Tam yapmak için integral çarpanımızı bulalım; eğer N N ) ifadesi sadece e bağlıysa integral sabitimiz e bağlı çıkacak. Görüldüğü gibi sadece e bağlı. İntegral çarpanımız: N N ) = 4 cos y 33 cos y 4 3 cos y) = α) = e N N ) α) = e = Page 6

7 Diferansiyel denklemler uygulama soruları Denklemimizi integral çarpanımız α) = ile çarpalım, Bu denklemin tam olup olmadığını kontrol edersek TAM dır. Yukarıdaki TAM diferansiyel denklemin çözümü dir sin y)d + 4 cos y) = sin y)d + 3 cos y) = 0 = 3 cos y = N + 3 sin y)d + 3 cos y) = 0 F, y) = + 3 sin y = C 8. y + )y = + y diferansiyel denkleminin çözümünü bulunuz. Homojen mi diye bir bakalım. Mλ, λy) = λ) + λy) = λ + y ) Öyleyse diferansiyel denklem homojendir. Denklemimizi y z = y dönüşümü yapalım. y Denklemimiz, e dönüşür. Nλ, λy) = λ)λy) + λ) = λ y + ) in cinsinden yazmaya çalışalım d = + y y + = + y ) y + ) = + y ) ) y + ) = z d = dz d + z dz d + z = + z z + dz d = z z + değişkenlerine ayrılabilir diferansiyel denklemi elde etmiş oluruz. Bu diferansiyel denklemin çözümü dür. 9. y 4 y + ) = 0 denklemini çözünüz. y 3ln y/ = ln + C v = 4 y dönüşümü uygulanırsa, v = 4 v + ) ayrılabilir denklemi elde edilir. v + v 3 = d v v + 3 = ce 4 4 y 4 y + 3 = ce y = e 9y denklemini çözünüz. v = 9y dönüşümü uygulanırsa, v = 9e v ayrılabilir denklemi elde edilir. 9e v = d v = ln9 ce ) 9y = ln9 ce ) Page 7

8 Diferansiyel denklemler uygulama soruları d = )y + )y denkleminin bir çözümü y = ise denklemin genel çözümünü bulunuz. y çözümü verildiğine göre y = y + dönüşümü, verilen diferansiyel denklemi lineer diferansiyel denkleme u dönüştürecektir. y = + u d = u d u = ) + + ) + d u) ) u d = u + Bu elde edilen lineer diferansiyel denklemin çözümü için integral çarpanı µ) = e dir. Dolayısıyla lineer denklemin çözümü u = + ce olarak elde edilir. u = ters dönüşümünü uygularsak, verilen diferansiyel denklemin genel y çözümünü y = + olarak buluruz. + ce d + y + ) = denkleminin bir çözümü y = ise denklemin genel çözümünü bulunuz. y çözümü verildiğine göre y = y + dönüşümü, verilen diferansiyel denklemi lineer diferansiyel denkleme u dönüştürecektir. y = + u d = u d u d + + u + ) = d u = Bu elde edilen lineer diferansiyel denklemin çözümü için integral çarpanı λ) = e dir. Dolayısıyla lineer denklemin çözümü u = + ce olarak elde edilir. u = ters dönüşümünü uygularsak, verilen diferansiyel denklemin genel y çözümünü y = + ce olarak buluruz. 33. y 3)d + + y ) = 0 denklemini uygun dönüşümü yaparak çözünüz. Denklemi a + b y + c )d + a + b y + c ) = 0 şeklinde düşünerek a ve b a b a b olğuna göre = X + h ve y = Y + k dönüşümlerini uygulayabiliriz. Buna göre a b olup buradan 0 dy dx = Y X {}}{ h + k + 3 X + Y +h + k }{{} 0 oranlarını kontrol edelim. h k 3 = 0 h + k = 0 denklem sistemini çözerek h = ve k = sayılarına ulaşabiliriz, yani yaptığımız dönüşümler = X + ve y = Y olmalıdır. Buradan da dy dx = Y X X + Y homojen diferansiyel denklemini elde ederiz. Bu homojen diferansiyel denklemi çözmek için Y = V X dönüşümünü uygulayalım. + V + V dv = X dx arctan V + ln + V ) = ln X + c V = Y, X = ve Y = y + ters dönüşümlerini uygularsak X arctan y + + ln + Page 8 ) ) y + = ln ) + c

9 Diferansiyel denklemler uygulama soruları genel çözümünü elde ederiz y + 4)d + 3 y + ) = 0 denklemini uygun dönüşümü yaparak çözünüz. Denklemi a + b y + c )d + a + b y + c ) = 0 şeklinde düşünerek a ve b a b 3 3 olğuna göre = u + h ve y = v + k dönüşümlerini uygulayabiliriz. Buna göre u 3v +h 3k + 4) + 3u v +3h k + ) = 0 }{{}}{{} 0 0 oranlarını kontrol edelim. olup buradan h 3k + 4 = 0 3h k + = 0 denklem sistemini çözerek h = ve k = sayılarına ulaşabiliriz, yani yaptığımız dönüşümler = u + ve y = v + olmalıdır. Buradan da 3v = u 3u v homojen diferansiyel denklemini elde ederiz. Bu homojen diferansiyel denklemi çözmek için v = zu dönüşümünü uygulayalım. z 3 z dz = u u4 z + ) 5 = cu ) z = v, u = ve v = y ters dönüşümlerini uygularsak u genel çözümünü elde ederiz. + y 3) 5 = cy ) y + )d 6 y 3) = 0 denklemini uygun dönüşümü yaparak çözünüz. Denklemi a + b y + c )d + a + b y + c ) = 0 şeklinde düşünerek a ve b oranlarını kontrol edelim. a a = b olğuna göre z = 3 y dönüşümünü uygulayabiliriz. Buradan dz = 3d olur, bu ifadeleri denklemde a b yerine yazarsak, z 3 5z 0 dz = d 5 z + lnz ) = + c 5 elde edilir. z = 3 y dönüşümünü tekrar yerine yazarak genel çözümü elde edilir. 3 y) + ln3 y ) = 5 + c y 3)d + + y + 4) = 0 denklemini uygun dönüşümü yaparak çözünüz. b Denklemi a + b y + c )d + a + b y + c ) = 0 şeklinde düşünerek a ve b oranlarını kontrol edelim. a b = olğuna göre z = + y dönüşümünü uygulayabiliriz. Buradan dz = d + olur, bu ifadeleri denklemde yerine yazarsak, 7d + z + 4)dz = z + 4z = c elde edilir. z = + y dönüşümünü tekrar yerine yazarak y) y) = c genel çözümü elde edilir. Page 9

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

MAT 2011 MATEMATİK III

MAT 2011 MATEMATİK III } MAT 20 MATEMATİK III Ders Notları } Öğr. Gör. Volkan ÖĞER 205 İçindekiler Birinci Mertebeden Diferansiyel Denklemler 3. Diferansiyel Denklemler ve Matematiksel Modeller............................ 3.2

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Diferansiyel Denklemler ve Matematiksel Modeller. Diferansiyel Denklemler ve Matematiksel Modeller. Diferansiyel Denklemler ve Matematiksel Modeller

Diferansiyel Denklemler ve Matematiksel Modeller. Diferansiyel Denklemler ve Matematiksel Modeller. Diferansiyel Denklemler ve Matematiksel Modeller Diferansiyel Denklemler ve Matematiksel Modeller Evrenin yasaları matematik dilinde yazılır. Cebir, birçok statik problemi çözmek için yeterlidir; ancak en ilginç doğal olaylar değişim içerir ve değişen

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ

İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 203-204 GÜZ DÖNEMİ Diferansiyel Denklemler Ders Notları Yrd.Doç.Dr. Ahmet Altundağ İSTANBUL 2 İçindekiler BİRİNCİ MERTEBEDEN DİFERANSİYEL

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

SDÜ Matematik Bölümü Analiz-IV Final S nav

SDÜ Matematik Bölümü Analiz-IV Final S nav Dersin Kodu: MAT0 Dönemi: 00-0 Bahar Tarihi: 0.0.0 Saat:. 00 Yer: Am III-IV Süre: 90 Dakika Dersin Sorumlusu Gözetmenler SDÜ Matematik Bölümü Analiz-IV Final S nav : Prof. Dr. Seril PEHL IVAN : Araş. Gör.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 10 SAYISAL ANALİZ BÖLÜM 9-DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ 1 GİRİŞ Diferansiyel denklemler, mühendislikte fiziksel olayların modellenmesinde sık karşılaşılan denklemlerdendir. Dolayısıyla bu

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

5 Mayıs Fen Liseleri, Sosyal Bilimler Liseleri, Spor Liseleri, Anadolu Liseleri Öğretmenlerinin Seçme Sınavı. Matematik Soruları ve Çözümleri

5 Mayıs Fen Liseleri, Sosyal Bilimler Liseleri, Spor Liseleri, Anadolu Liseleri Öğretmenlerinin Seçme Sınavı. Matematik Soruları ve Çözümleri Mayıs 7 Fen Liseleri, Sosyal Bilimler Liseleri, Spor Liseleri, Anadolu Liseleri Öğretmenlerinin Seçme Sınavı Matematik Soruları ve Çözümleri 6. Aşağıdakilerden hangisi verildiğinde p q önermesinin doğruluk

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SOYADI : TG 9 Haziran DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1 Kısmi Türevler Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine

Detaylı

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz.

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine izin verelim.

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler 1 ĐÇĐNDEKĐLER KONU Sayfa No Diferansiyel Denklem, Mertebe ve Derecesi... 3 Diferansiyel Denklemlerin Çözümleri... 3 Konu ile ilgili Alıştırmalar... 3 1. Mertebeden Diferansiyel Denklemler... 4 Değişkenleri

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Mehmet ÖZCEYLAN TRAKYA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI 006 EDİRNE Tez Yöneticisi: Yard. Doç.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında Bölüm #2 Laplace Dönüşümü F (s) = f(t)e st dt s > şeklinde tanımlanan dönüşüme LAPLACE dönüşümü adı verilir ve kısaca L{f(t)} ile sembolize edilir. Diferansiyel denklemlerin Çözümünde Laplace dönüşümü

Detaylı

Potansiyel Engeli: Tünelleme

Potansiyel Engeli: Tünelleme Potansiyel Engeli: Tünelleme Şekil I: Bir potansiyel engelinde tünelleme E

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

Adi diferansiyel denklemler notlari. Arzu Erdem

Adi diferansiyel denklemler notlari. Arzu Erdem Adi diferansiyel denklemler notlari Arzu Erdem c 9/ Güz dönemi mühendislik notları. Kayley Rectorys- Survey of Applicable Analysis. William Boyce and Richard DiPrima - Elementary differential equations

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar MATE 409 SAYILAR TEORİSİ BÖLÜM: 8 LİNEER KONGRÜANSLAR Muazzez Sofuoğlu 067787 Nebil Tamcoşar 8.1. Bir Değişkenli Lineer Kongrüanslar a,b ve m/a olmak üzere; Z ax b(modm) şeklindeki bir kongrüansa, birinci

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

İKİNCİ MERTEBEDEN LİNEER DİFERANSİYEL DENKLEMLER İÇİN HAREKETLİ SINIR DEĞER PROBLEMİ

İKİNCİ MERTEBEDEN LİNEER DİFERANSİYEL DENKLEMLER İÇİN HAREKETLİ SINIR DEĞER PROBLEMİ Yüksek Lisans Tezi Tezi Hazırlaуan Kalima MOLDOKULOVA Matematik Anabilim Dalı 2014 KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İKİNCİ MERTEBEDEN LİNEER DİFERANSİYEL

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA

BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA OPTİMİZASYON Şekil.1 i dikkate alalım. Maksimum nokta olan A ve minimum nokta olan B de z=f(x) fonksiyonunun bir durgunluk değeri vardır. Bir başka ifadeyle, z nin bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler.

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Schrödinger denklemi Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Köşeli parantez içindeki terim, dalga fonksiyonuna etki eden bir işlemci olup, Hamilton

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

DERS ÖĞRETİM PROGRAMI FORMU

DERS ÖĞRETİM PROGRAMI FORMU DERS ÖĞRETİM PROGRAMI FORMU Dersin Adı Kodu Normal Kredisi ECTS Ders 4 Yarıyılı Kredisi uygulama 0 Diferansiyel Denklemler 0252311 3 4 6 Laboratuvar 0 (Saat/Hafta) Dersin Dili Türkçe Dersin Türü Zorunlu

Detaylı

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV KARŞILA ILAŞTIRMALI DURAĞANLIK ANLIK VE TÜREV Karşılaştırmalı durağanlık, dışsal değişkenlerin ya da parametrelerin farklı değerler alması durumunda oluşabilecek farklı denge değerlerini karşılaştırılarak

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Üç Veya Daha Fazla Değişkenli Fonksiyonlar

Üç Veya Daha Fazla Değişkenli Fonksiyonlar Üç Veya Daha Fazla Değişkenli Fonksiyonlar Üç Veya Daha Fazla Değişkenli Fonksiyonlar Üç değişkenli bir f fonksiyonu, bir D R 3 tanım kümesindeki her (x,y,z) sıralı üçlüsüne, f(x,y,z) ile gösterilen tek

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6.

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6. İ s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik -Bilgisayar Bölümü MB500, MC 56, MC 56 - NÜMERİK ANALİZ (I) 0 Ocak 0 CEVAPLAR Talimatlar Sınav süresi 5 dakikadır. İlk 0 dakika sınav salonunu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İNTEGRAL İŞLEMLER LEMLERİ

İNTEGRAL İŞLEMLER LEMLERİ İKTİSADİ DİNAMİKLİK K VE İNTEGRAL İŞLEMLER LEMLERİ 2 İktisat biliminde dinamiklik kavramı, değişkenlerin değişim süreçlerini, dengeye geliş ya da uzaklaşmalarını içeren bir analiz tipidir. Daha önce karşılaştırmalı

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

10 Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri. Öğretmenlerini Seçme Sınavı

10 Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri. Öğretmenlerini Seçme Sınavı Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri Öğretmenlerini Seçme Sınavı Matematik Soruları ve Çözümleri p : Her gerçek sayısı için > q

Detaylı