BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II"

Transkript

1 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký saklýdýr. Tüm haklarý br ire Eðitim Yaýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de olsa alýntý apýlamaz. Metin ve sorular, kitapçýðý aýmlaan þirketin önceden izni olmaksýzýn elektronik, mekanik, fotokopi a da herhangi bir kaýt sistemile çoðaltýlamaz aýmlanamaz. PRL - I f( )=a +b+c ikinci dereceden bir bilinmeenli fonksionlarýn grafiklerine parabol denir. Örnek: f( )= fonksionunun grafiðini çiziniz. 0 f() ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri Uarı: =a parabolünde, a>0 ise parabolün kolları ukarı doğrudur. a<0 ise parabolün kolları aşağı doğrudur. Parabolün tepe noktası orijindir. Parabolün simetri ekseni =0 doğrusudur. a değeri büüdükçe parabolün kolları birbirine aklaşır. Örnek: Örnek: f()= fonksionunun grafiðini çiziniz. 0 f() ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri (,) noktasý =(m ) parabolü üzerinde olduðuna göre, m kaçtýr? Örnek: þaðýda =a, =b ve =c parabolleri çizilmiþtir. =c =b Örnek: f()= fonksionunun grafiðini çiziniz. 0 f() ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri =a una göre, a, b ve c i küçükten büüðe doðru sýralaýnýz DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

2 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ Örnek: 6 = + fonksionunun grafiðini çiziniz. 0 ire Dershaneleri ire Dershaneleri ire Dershaneleri Örnek: 9 = fonksionunun grafiðini çiziniz. 0 =f() Örnek: 7 = + fonksionunun grafiðini çiziniz. 0 ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri a) Parabolün eksenini kestiði noktalarýn apsisleri: Uarı: =a +c parabolünde, Parabolün simetri ekseni =0 doğrusudur. Parabolün tepe noktası ekseni üzerindedir. Parabolün tepe noktası ekseni üzerinde olduğundan b=0 dır. Tepe noktası (0,c) dir. Örnek: 8 f( )= (m ) +(m ) parabolünün tepe noktasý ekseni üzerindedir. a) una göre, m nin deðerini bulunuz. ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri b) Parabolün eksenini kestiði noktanýn ordinatý: c) Parabolün simetri ekseni: b) Parabolün simetri eksenini bulunuz. c) Parabolün tepe noktasýný bulunuz. d) Parabolün eksenini kestiði noktaý bulunuz. ire Dershaneleri ire Dershaneleri ire Dershaneleri d) Parabolün tepe noktasýnýn koordinatlarý: DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

3 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ Uarı: a +b+c=0 denkleminde, Δ>0 ise denklemin ve gibi farklı iki gerçek kökü vardır. =r c r k T(r,k) ire Dershaneleri ire Dershaneleri ire Dershaneleri e) Parabolü çiziniz. ve değerleri parabolün eksenini kestiği noktaların apsisleridir. f()=a +b+c parabolünün eksenini kestiği nokta (0,c) dir. f()=a +b+c parabolünün simetri ekseni + b = r = = doğrusudur. a f()=a +b+c parabolünün tepe noktası: T(r,k) b ac b r = ise k = f(r) = a a Örnek: 0 = +8 a) Parabolünün eksenini kestiði noktanýn ordinatýný bulunuz. b) Parabolünün eksenini kestiði noktalarý bulunuz. c) Parabolünün simetri eksenini bulunuz. ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri Uarı: f()=a +b+c fonksionunun grafiği çizilirken, Parabolün varsa eksenini kestiği noktalar bulunur. Parabolün eksenini kestiği nokta bulunur. Parabolün tepe noktası bulunur. Örnek: f()= m+ parabolünün simetri ekseni = doðrusu olduðuna göre, m kaçtýr? Örnek: f()= +(m )+n parabolünün tepe noktasý T(, ) olduðuna göre, m+n toplamý kaçtýr? d) Parabolünün tepe noktasýný bulunuz. ire Dershaneleri ire Dershaneleri ire Dershaneleri Uarı: =a +b+c parabolünün tepe noktasını tam karee tamamlama öntemi ile de bulabiliriz. =a +b+c = a( r) +k parabolünün tepe noktası T(r,k) dır DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

4 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ Örnek: =( ) + parabolünün tepe noktasýný bulunuz. ire Dershaneleri ire Dershaneleri ire Dershaneleri Örnek: 6 þaðýda tepe noktasý T(,) olan ve eksenini (0,) noktasýnda kesen =f() parabolü çizilmiþtir. =f() T Örnek: = (+a) +b parabolünün tepe noktasý T(,) olduðuna göre, a+b toplamý kaçtýr? ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri una göre, f() kaçtýr? Uarı: f()=a +b+c parabolünde, =r simetri ekseni ise f(r+m)=f(r m) Örnek: = +m parabolünün tepe noktasý = doðrusu üzerinde olduðuna göre, m kaçtýr? ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri Örnek: 7 þaðýda tepe noktasý analitik düzlemin üçüncü bölgesinde olan =a +b+c parabolü çizilmiþtir. =a +b+c una göre, aþaðýdakilerden hangisi anlýþtýr? ) a>0 ) a.b.c<0 C) a+b c>0 D) b ac>0 E) b.c>0 ire Dershaneleri ire Dershaneleri ire Dershaneleri DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

5 PRL I. f()=(m ) + n +m+n fonksionunun grafiði parabol olduðuna göre, m+n toplamý kaçtýr? ) 9 ) 8 C) 7 D) 6 E) ire Dershaneleri ire Dershaneleri ire Dershaneleri. þaðýda orijinden geçen = m+m parabolü çizilmiþtir. = m+m KNU TESTÝ una göre, m kaçtýr?. þaðýdaki noktalardan hangisi f()= + parabolünün üzerindedir? ) (, ) ) (, 8) C) (, ) D) (, 7) E) (, 0) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ) 0 ) C) D) E). þaðýda =m parabolü çizilmiþtir. =m (, ) noktasý parabolün üzerinde olduðuna göre, m kaçtýr?. þaðýdakilerden hangisi = fonksionunun grafiði olabilir? ) C) ) D) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ) ) C) D) E) 6. þaðýdakilerden hangisi = fonksionunun grafiði olabilir? ) C) ) D) E) ire Dershaneleri ire Dershaneleri ire Dershaneleri E) DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

6 PRL I KNU TESTÝ 7. =f() ire Dershaneleri ire Dershaneleri ire Dershaneleri 0. f()= a+b parabolünün tepe noktasý T(, ) olduðuna göre, a+b toplamý kaçtýr? ) ) C) 9 D) E) Yukarýdaki =f() parabolünün simetri ekseni aþaðýdakilerden hangisidir? ) =0 ) = C) = D) = E) = ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri. þaðýda tepe noktasýnýn apsisi olan ve eksenini ve noktalarýnda kesen =f() parabolü çizilmiþtir. 8. = +a++a parabolünün simetri ekseni = doðrusudur. una göre, parabol eksenini hangi noktada keser? ) (0, 7) ) (0, 6) C) (0, ) D) (0, ) E) (0, ) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri = olduðuna göre, noktasýnýn apsisi kaçtýr? ) ) C) D) E) 9. þaðýdaki parabollerden hangisinin tepe noktasý analitik düzlemin III. bölgesindedir? ) = 6+7 ) = ( ) C) =( ) D) = (+) + E) =(+) DF - MTEMTÝK - II (MF-TM) / (LYS) - 09 ire Dershaneleri ire Dershaneleri ire Dershaneleri 6. = +m parabolü eksenini iki farklý noktada kestiðine göre, m nin alabileceði en büük tam saý deðeri kaçtýr? ) ) C) D) E)

7 PRL I. þaðýdakilerden hangisi = ++ fonksionunun grafiði olabilir? ) C) E) ) 9 D) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri 6. þaðýda eksenini (,0) ve (,0) noktalarýnda kesen =f() parabolü çizilmiþtir. una göre, f() f( 6) ifadesinin deðeri kaçtýr? ) ) 0 C) D) E) 7. þaðýda (,) ve (7,) noktalarýndan geçen =f() parabolü çizilmiþtir. 7 KNU TESTÝ =f() =f(). þaðýda = 9 parabolü çizilmiþtir. = 9 C una göre, C üçgeninin alaný kaç br dir? ) 9 ) C) 6 D) E) 7 ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri una göre, =f() parabolünün eksenini kestiði noktalarýn apsisleri toplamý kaçtýr? ) ) C) D) E) 6 8. þaðýda eksenini orijin ve noktasýnda kesen =f() parabolünün içine tepesi parabolün tepe noktasýnda bulunan eþkenar üçgeni çizilmiþtir.. =a +6 parabolünün eksenini kestiði noktalar arasýndaki uzaklýk 8 br olduðuna göre, a kaçtýr? ) ) C) D) E) ire Dershaneleri ire Dershaneleri ire Dershaneleri 7 =6 br olduðuna göre, parabolün tepe noktasýnýn ordinatý kaç birimdir? ) ) C) D)6 E) DF - MTEMTÝK - II (MF-TM) / (LYS) - 09

8 PRL I KNU TESTÝ 9. þaðýda noktasý = parabolü üzerinde olan C karesi çizilmiþtir. C ire Dershaneleri ire Dershaneleri ire Dershaneleri. þaðýda = (+) parabolü çizilmiþtir. C =f() una göre, C karesinin alaný kaç br dir? ) ) C) D) E) = (m+) m parabolünün eksenini kestiði noktalarýn apsisleri toplamý tür. una göre, parabolün eksenini kestiði noktanýn ordinatý kaçtýr? ) ) C) 0 D) E). þaðýda parabolünün iç bölgesine eþkenar üçgeni çizilmiþtir. []// tir. ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri <<0 olduðuna göre, C dikdörtgeninin alaný aþaðýdakilerden hangisi ile ifade edilebilir? ) (+) ) (+) C).( ) D) (+) E) (+). þaðýda tepe noktasý IV. bölgede olan =a +b+c parabolü çizilmiþtir. T =a +b+c una göre, aþaðýdakilerden hangisi kesinlikle anlýþtýr? ) a>0 ) a.c<0 C) a.b.c>0 D) b+c<0 E) b+c a>0 una göre, noktasýnýn apsisi kaçtýr? ) ) C) D) E) ire Dershaneleri ire Dershaneleri ire Dershaneleri. f()= a+ parabolünün tepe noktasýnýn ordinatý ( ) olduðuna göre, apsisi aþaðýdakilerden hangisi olabilir? ) 6 ) C) D) E) - -E -D -E - 6-C 7-C 8-9-E 0-C -D -D -D -E - 6-C 7-C 8-C 9-0-E - - -E DF - MTEMTÝK - II (MF-TM) / (LYS)

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - II MF TM LYS 3 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IV MF TM LYS Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý Bölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IX MF TM LYS 6 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol den :... LYS GOMTRİ Ödev Kitapçığı 1 (M-TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve þkenar Üçgen Üçgende

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer?

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer? PARABOL TEST /. Aþaðýdaki fnksinlardan hangisinin grafiði parabl belirtir? 5. Aþaðýdaki fnksinlardan hangisinin grafiði A(0,) nktalarýndan geçer? A) f()=5 f()=+ C) f()= D) f()= f()= 4 + + A) f()= f()=

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna Artan - Azalan Fonksionlar Ma. Min. ve Dönüm Noktalarý ÖSYM SORULARI. Aþaðýdaki fonksionlardan hangisi daima artandýr? A) + = B) = C) = ( ) + D) = E) = + (97). f() = a + fonksionunda f ý () in erel (baðýl)

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý LYS GEOMETRÝ Soru Çözüm ersi Kitapçığı 1 (MF - TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende lan u yayýnýn her hakký saklýdýr. Tüm

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

LYS - 1 GEOMETRÝ TESTÝ

LYS - 1 GEOMETRÝ TESTÝ LYS - 1 GMTRÝ TSTÝ ÝKKT : 1. u testte toplam 3 soru vardýr. 2. evaplamaa istediðiniz sorudan baþlaabilirsiniz. 3. evaplarýnýzý, cevap kaðýdýnýn Geometri Testi için arýlan kýsmýna iþaretleiniz.. Safalar

Detaylı

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6.

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6. LYS ÜNÝVERSÝTE HAZIRLIK ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI A Soru saýsý: 0 Yanýtlama süresi: dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

Polinomlar II. Dereceden Denklemler

Polinomlar II. Dereceden Denklemler Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - II Ödev Kitapçığı 1 (MF-TM) Polinomlar II. Dereceden Denklemler Adý Soyadý :... BÝREY DERSHANELERÝ MATEMATÝK-II ÖDEV KÝTAPÇIÐI

Detaylı

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler LYS MATEMATÝK II Soru Çözüm Dersi Kitapçığı 1 (MF - TM) Polinomlar II. Dereceden Denklemler Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I BÝRE DERSHANEERÝ SINIF ÝÇÝ DERS UUAMA FÖÜ (MF) DERSHANEERÝ S FÝÝ - 13 ADIRMA UVVETÝ - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ADIRMA UVVETÝ - I Adý Soyadý :... Bu

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir?

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir? 8. SINI ÜÇGN YRII NR TTi YÜSÝ üçgenin köþesinden kenarýna ait dikme inþa ediniz. yný iþlemi köþesinden kenarýna ve köþesinden kenarýna da uygulayýnýz. areli kaðýda çizilmiþ olan üçgenin kenarýna ait yüksekliði

Detaylı

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür.

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür. 8. SINIF COÞMY SORULRI 1. ÖLÜM DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. 1. 1 1 1 1 1 1 D E F 1 1 1 C 1 ir kenarý 1 birim olan 24 küçük kareden oluþan þekilde alaný 1 birimkareden

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. a, b, c birbirinden farklý rakamlardýr. 2a + 3b - 4c ifadesinin alabileceði

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. 3 2x +1 = 27 olduðuna göre, x kaçtýr? A) 0 B) 1 C) 2 D) 3 E) 4 4. Yukarýda

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý LYS GMTRÝ ÇLIÞM ÝTI LYS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik l l l EÞÝTSÝZLÝKLER I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik Çift ve Tek Katlý Kök, Üslü ve Mutlak Deðerlik Eþitsizlik l Alýþtýrma 1 l Eþitsizlik

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - I MF TM LYS 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim Matematik 1. Fasikül ÜNÝTE 1 Geometriye Yolculuk ... ÜNÝTE 1 Geometriye Y olculuk Çevremizdeki Geometri E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme Geometrik Þekilleri Ýnceleyelim E E E E E Üçgenler

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 01

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 01 LİSANS YERLEŞTİRME SINAVI- MATEMATİK-GEOMETRİ SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI BU SORU KİTAPÇIĞI LYS- MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. . Bu testte 5 soru vardýr. MATEMATİK TESTİ. Cevaplarýnýzý,

Detaylı

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü Üçgenler Geometrik isimler önüþüm Geometrisi Örüntü ve Süslemeler Ýz üþümü 119 120 Üçgenler Üçgenler 4 cm 2 cm 2 cm Yukarýdaki çubuklarýn uzunluklarý 4 cm, 2 cm ve 2 cm dir. u üç çubuðun uç noktalarýný

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM 7. SINIF COÞMAYA SORULARI 1. BÖLÜM DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? 2 1 1 2 A) B) C) D) 3 2 3

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

4. 5. x x = 200!

4. 5. x x = 200! 8. SINIF COÞMY SORULRI 1. ÖLÜM 3. DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. adým (2) 2. adým (4) 1. x bir tam sayý ve 4 3 x 1 7 5 x eþitsizliðinin doðru olmasý için x yerine

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

1. Böleni 13 olan bir bölme iþleminde kalanlarýn

1. Böleni 13 olan bir bölme iþleminde kalanlarýn 4. SINIF COÞMAYA SORULARI 1. BÖLÜM 3. DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. Böleni 13 olan bir bölme iþleminde kalanlarýn toplamý kaçtýr? A) 83 B) 78 C) 91 D) 87

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

YAZILIYA HAZIRLIK SORULAR ve ÇÖZÜMLERİ

YAZILIYA HAZIRLIK SORULAR ve ÇÖZÜMLERİ _ i f: _-, A $ R, f() + - fonksionunun görüntü kümesini bularak grafiðini çiziniz - i _- i + _-i- ( - i -8- f _ i + - ( i + - b r - - - a - i _- i + _i - -- - + - _ + i - biçiminde azýlýrsa; TN_, - i olureksenleri

Detaylı

Yönergeyi dikkatlice oku. Gözden hiçbir þeyi kaçýrmamaya dikkat et. Þifrenin birini testin iþaretlenen yerine ( Adayýn Þifresi ), diðer þifreyi de

Yönergeyi dikkatlice oku. Gözden hiçbir þeyi kaçýrmamaya dikkat et. Þifrenin birini testin iþaretlenen yerine ( Adayýn Þifresi ), diðer þifreyi de ADAYIN ÞÝFRESÝ Eðitimi Geliþtirme Dairesi DENEME DEVLET OLGUNLUK SINAVI ÖÐRENCÝLERÝN BÝLGÝ VE BECERÝLERÝNÝ DEÐERLENDÝRME SEKTÖRÜ Öðrencilerin Bilgi Ve Becerilerini Deðerlendirme Sektörü BÝRÝNCÝ deðerlendiricinin

Detaylı

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No:

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No: LİSANS YERLEŞTİRME SINAVI - GEOMETRİ TESTİ ÖRNEK Ad Soyad : T.C. Kimlik No: Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının Metin Yayınları nın yazılı

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I ÝRY RSHNLRÝ SINI ÝÇÝ RS UYGULM ÖYÜ (M-TM) RSHNLRÝ LYS GOMTRÝ - 1 ÜÇGN LN - I ers nltým föyleri öðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Soydý :... u kitpçýðýn her hkký sklýdýr. Tüm hklrý bry

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir?

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir? . BÖLÜM TÜREVİN GEOMETRİK YORUMU TEST TEST - 4 + 4=9 eğrisinin (, ) noktasındaki teğetinin denklemi nedir?. f()=( ). ( 5) fonksionun =4 noktasındaki teğetinin eğimi kaçtır? A) 4 B) C) D) E) 6. fonksionun.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

MODÜLER ARÝTMETÝK TEST / 1

MODÜLER ARÝTMETÝK TEST / 1 MODÜLER ARÝTMETÝK TEST / 1 1. m Z, x y(mod m) ise xy=m.k, k Z olduðuna göre, aþaðýdaki eþitliklerden hangisi yanlýþtýr? 5. 3x+1 2(mod 7) olduðuna göre, x in en küçük pozitif tam sayý deðeri kaçtýr? A)

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr.

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr. 5. ACB + AC BC iþlemine göre, A.C çarpýmý kaçtýr? 0. 4a5, b7 ve cd üç basamaklý sayýlardýr. 4a5 b7 cd A) B) 4 C) 5 D) 6 E) olduðuna göre, c + b a + d ifadesinin deðeri kaçtýr? A) 8 B) C) 5 D) 7 E) 8 (05-06

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

ünite1 1. Aþaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur? A. ýþýn, B. doðru parçasý, d C. nokta, A D. doðru,

ünite1 1. Aþaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur? A. ýþýn, B. doðru parçasý, d C. nokta, A D. doðru, ünite1 Geometri Matematik E 1 3. 1. þaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur?. ýþýn, B B. doðru parçasý, d. nokta,. doðru, B Y erilen açýnýn gösterimi aþaðýdakilerden hangisi olabilir?.

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

www.mehmetsahinkitaplari.org

www.mehmetsahinkitaplari.org MATEMA www.mehmetsahinkitaplari.org T T r. P ALME YA YINCILIK Ankara I PALME YAYINLARI: 76 Sinif Matematik Konu Anlatım / Mehmet Şahin Yaına Hazırlama : PALME Dizgi-Grafik Tasarım Birimi Yaın Editörü :

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Çarpanlara Ayırma 5 52 Polinomlar 53 100 İkinci Dereceden Denklemler 101 120 Karmaşık Sayılar

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı