ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır."

Transkript

1 ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu olmadığını gösteriniz. Çözüm: w=k u+k v olmalıdır. ya da (9 7)= k ( -)+k (6 ) =(k +6k, k +k, -k +k ) k +6k =9 k +k = -k +k =7 Sistem çözüldüğünde k =- ve k = sonuç olarak, w=-u+v. Benzer olarak, z=k u+k v olmalıdır. ya da ( - 8)= k ( -)+k (6 ) =(k +6k, k +k, -k +k ) k +6k = k +k =- -k +k =8

2 Sistem tutarsızdır. k ve k bulunamaz.. Verilen üç vektörün v =( ), v =( ), v =( ) vektör uzayını türetip türetemeyeceğini araştırınız. Çözüm: vektör uzayındaki her hangi bir b=(b b b ) vektörünün bu üç vektörün doğrusal kombinasyonu olarak, b=k v +k v +k v ifade edilip edilemeyeceği araştırılmalıdır. (b b b )=k ( )+k ( )+k ( ) ya da =(k +k +k, k +k, k +k +k ) k +k +k =b k +k =b k +k +k =b sistemin, Ax=b, tutarlı olabilmesi için katsayı matrisinin, A = tersi alınabilmelidir. Diğer bir ifade ile A olmalıdır. Fakat verilen sistem için A = olduğundan, v, v, v vektörleri vektör uzayını türetemez.

3 . Verilen üç vektörün v =( - ), v =(5 6 -), v =( ) doğrusal bağımlı olup olmadıklarını araştırınız. Çözüm: Doğrusal bağımsızlık için, c v + c v + c v = vektör denklemi sadece c = c = c = için sağlanmalıdır. c ( - )+c (5 6 -)+c ( )=( ) ya da c +5c +c = -c +6c +c = c -c +c = denklem sisteminin çözümü, c =(-/)t c =(-/)t c =t olduğundan vektörler doğrusal bağımlıdır. İkinci bir yöntem katsayı matrisinin determinatını hesaplamaktır. A ise vektörler doğrusal bağımsız, A = ise vektörler doğrusal bağımlıdır. 5 A = 6 =

4 .Teorem 6. için ispat yapınız. Çözüm: S kümesi V vektör uzayını türettiği için V uzayındaki her vektör S kümesindeki vektörlerin doğrusal kombinasyonu olarak yazılabilir: v = c v + c v + L + c v n n İkinci bir doğrusal kombinasyon, v = k v + k v + L + k v n n olsun. İkinci denklem ilk denklemden çıkartılarak, ( c k ) ( c k ) L ( c k ) v = v + v + + v n n n S kümesi baz olduğundan içerdiği vektörler doğrusal bağımsız olmalıdır: c k =, K, cn kn = Sonuç olarak v vektörü için her iki ifade eşit olmak zorundadır. 5. Üç vektörden v =( ), v =( 9 ), v =( ) oluşan bir {,, } S = v v v kümesinin vektör uzayı için bir baz tanımladığını gösteriniz. Çözüm: S kümesinin vektör uzayı için bir baz oluşturduğunu göstermek için ilk olarak, her hangi bir b=(b b b ) vektörünün bu üç vektörün doğrusal kombinasyonu olarak,

5 b=k v +k v +k v ifade edilip edilemeyeceği araştırılmalıdır (b b b )=k ( )+k ( 9 )+k ( ) =(k +k +k, k +9k +k, k +k ) ya da doğrusal denklem sistemi k +k +k =b k +9k +k =b k +k =b b vektörünün tüm seçimleri için bir çözüme sahip olmalıdır. İkinci olarak S kümesindeki vektörler doğrusal bağımsız olmalıdır. Diğer bir ifade ile k v +k v +k v = homojen denklem sisteminin tek çözümü sıfır çözüm, k = k = k = olmalıdır: k +k +k = k +9k +k = k +k = Her iki sistemde aynı katsayı matrisine, A = 9

6 sahiptir. Bu katsayı matrisinin tersi alınabiliyor (determinantı sıfırdan farklı) ise S kümesi vektör uzayı için bir baz tanımlar, (türetir ve bağımsızdır). Sonuç olarak A bulunduğundan S kümesi vektör uzayı için bir baz tanımlar. 6. Bir önceki örnekte {,, } S = v v v kümesinin vektör uzayı için bir baz tanımladığı gösterilmişti. a. v=(5-9) vektörünün S kümesine göre koordinat vektörünü bulunuz. b. S bazına göre koordinat vektörü ( v ) = (,, ) olan vektör S uzayındaki vektörü bulunuz. Çözüm: a. k v +k v +k v =v eşitliğini sağlayan skalerler bulunmalıdır. (5-9)=k ( )+k ( 9 )+k ( ) k +k +k =5 k +9k +k =- k +k =9 sonuç olarak, k =, k =-, k = ve ( v ) (,, ) S = b. Koordinat vektörü tanımı kullanılarak, v= (-)v +()v +()v = (-)( )+ ()( 9 )+ ()( )

7 v=( 7) bulunur. 7. Aşağıdaki homojen doğrusal denklem sisteminin x + x x + x = 5 x x + x x + x = 5 x + x x x = 5 x + x + x = 5 a. Çözümünü bulunuz. b. Çözüm uzayının boyutunu bulunuz. Çözüm: a.sistemin satır Echelon matrisi ve sistem olarak, x + x + x = 5 x 5 x + x = = Çözüm yapısı,

8 x = x x x x 5 = x 5 = Parametrik değişken olarak x =s ve x 5 =t alınarak, çözüm kümesi: x s t x s x = t x t x 5 Sıfır çözüm s=t= için elde edilir. b. Çözüm vektörü yapay (parametrik) değişkenlere göre ayrıştırılarak, x s t s t x s s x = t = + t = s + t x x t t 5 Çözüm uzayını türeten vektörler:

9 v =, v = Olup birbirinden bağımsızdır. Bu nedenle çözüm uzayının bazını tanımlarlar. Çözüm uzayı iki boyutludur. 8. Aşağıdaki vektörlerin türettiği uzayın bazını bulunuz. v = ( ), v = ( ), = ( ),,,, ( ) v =,6,8,8,6., 5,,,6 v,5,5,,, Çözüm: Bu vektörlerin türettiği uzay aşağıdaki matrisin satır uzayıdır: Bu matrisin satır echelon matrisi, Sıfırdan farklı satır vektörleri:

10 w = ( ), w = ( ), w = ( ),,,,,,,,,,,, v, v, v, v vektörlerinin türettiği uzay için baz oluştururlar. Bu aynı zamanda satır uzayıdır. Not: Bulunan baz vektörlerin tümü orijinal matristeki sıra vektörleri ile aynı değildir. 9. A matrisinin sütun uzayının bazını bulunuz. A = 6 7 Çözüm: Matrisin satır echelon yapısı, R = Bu matrisin içerdiği birim vektörler, = c, c =, c = R matrisinin sütun uzayı için bir baz oluşturur. Teoreme göre A matrisinin karşılık gelen vektörleri de

11 = c, 5 c =, c 6 = 7 A matrisinin sütun uzayı için bir baz oluşturur.. A matrisinin sütun uzayının bazını bulunuz. A 5 6 = Çözüm: Matrisin satır echelon yapısı, R = R matrisinin ilk üç sütunu pivot değerini vermektedir. Bu üç sütun R matrisinin sütun uzayı için bir baz oluşturur. A matrisinin sütun uzayının bazı ise karşılık gelen sütun vektörleridir: = c, 5 c =, c 5 6 = 5 8

12 . A matrisinin satır uzayının bazını bulunuz. A 5 6 = Çözüm: A matrisinin transpoz matrisi, A T = İndirgenmiş satır echelon matris, 5 R = A T matrisi için sütun uzayının bazı: c =, 5 c =, c 6 6 =8 8 6

13 A matrisinin satır uzayı için baz vektörler: r = [ ], r = [ ] [ ] r = Aşağıdaki vektörler için; v = [ ], v = [ ], v = [ ] 5 6 v = [ ], v = [ ] a. Türetilen uzayın bazını bulunuz. b. Baz olmayan vektörleri, baz vektörlerin doğrusal kombinasyonu olarak bulunuz. Çözüm: a. Yukarıdaki vektörleri, sütun vektörleri olarak kullanan matris; v v v v v indirgenmiş satır echelon matrisi,

14 w w w w w 5 R = Sütun uzayı için baz vektörler {,, } matris için, {,, } v v v. w w w olup orijinal b. R matrisi kullanılarak, baz olmayan w ve w 5 vektörleri, baz vektörlerin doğrusal kombinasyonu olarak, w = w w v = v v w5 = w + w + w v5 = v + v + v yazılır. Not: w vektörü kendinden önceki baz vektörlere göre, (w, w ). w 5 vektörü de kendinden önceki baz vektörlere göre, (w, w, w ).. A matrisinin rankını ve boş uzayını bulunuz. 5 7 A =

15 Çözüm: A matrisinin satır echelon matrisi, R = Sıfırdan farklı iki satır olduğu için satır uzayı (aynı zamanda sütun uzayı) iki boyutludur ve r(a)=. Matrisin boş uzayını bulmak için Ax= homojen doğrusal denklem sisteminin çözüm uzayının boyutu bulunmalıdır. İndirgenmiş (echelon) matris kullanılarak denklem sistemi, x x 8x 7x + x = 5 6 x x x 6x + 5x = 5 6 Asal değişkenlere (x,x ) göre; x = x + 8x + 7x x 5 6 x = x + x + 6x 5x 5 6 Sistemin genel çözümü; x = r + 8s + 7t u x = r + s + 6t 5u x x x5 x6 = r = s = t = u

16 Çözüm uzayı için baz vektörler: x 8 7 x 6 5 x = r + s + t + u x x 5 x 6 Dört adet olduğu için n(a)=.. Ax=b doğrusal denklem sistemi, x x = 9 x ise b vektörünün A matrisinin sütun uzayında olduğunu gösteriniz ve b vektörünü A matrisinin sütun vektörlerinin doğrusal kombinasyonu olarak ifade ediniz. Çözüm: Sistemin çözüm kümesi, x =, x =-, x = sistem tutarlı olduğu için b vektörü A matrisinin sütun uzayındadır. c -c +c =b

17 5. Teorem 6. yi ispatlayınız. Çözüm: x vektörü Ax=b sisteminin belirli bir çözümü x vektörü ise aynı sistemin her hangi bir çözümü olsun. Ax =b ve Ax=b İki denklem birbirinden çıkarılarak, Ax-Ax = ya da A(x-x )= Bu durumda x-x vektörü Ax= homojen denklem sisteminin bir çözümüdür. Bu sistemin çözüm uzayının bazı v,,v k vektörleri ise x-x vektörü baz vektörlerin doğrusal bir kombinasyonu olarak yazılabilir: x x = + c v + L + c v k k x = x + c v + L + c v İspat tamamlanır. k k 6. Aşağıdaki denklem sisteminin özel çözümünü ve genel çözümlerini bulunuz. x + x x + x = 5 x + 6x 5x x + x x = 5 6 5x + x + 5x = 5 6 x + 6x + 8x + x + 8x = Çözüm: Denklem sisteminin çözüm kümesi,

18 x =-r-s-t, x =r, x =-s, x =s, x 5 =t, x 6 =/ vektör yapısında çözüm kümesi, x r s t x r x s = = + r + s + t x s x 5 t x 6 Özel çözüm: x = Ax= için genel çözüm: x = r + s + t Ax=b ve Ax= sistemlerinin genel çözümleri aynı sayıda yapay değişkene sahiptir.

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI Sıralı n-li Tanım: n tane nesnenin belli bir öncelik sırasına göre düzenlenip, tek bir nesne gibi düşünülmesiyle elde edilen ifadeye sıralı n li denir. Örnek: : Sıralı ikili :

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

3. BÖLÜM MATRİSLER 1

3. BÖLÜM MATRİSLER 1 3. BÖLÜM MATRİSLER 1 2 11 21 1 m1 a a a v 12 22 2 m2 a a a v 1 2 n n n mn a a a v gibi n tane vektörün oluşturduğu, şeklindeki sıralanışına matris denir. 1 2 n A v v v Matris A a a a a a a a a a 11 12

Detaylı

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 =

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 = Naım K. Ekinci Matematiksel İktisat Notları 0.6. DOĞRUSL DENKLEM SİSTEMLERİ ax + bx = α cx + dx = gibi bir doğrusal denklem sistemini, x ve y bilinmeyenler olmak üere, çömeyi hepimi biliyoru. ma probleme

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

.:: BÖLÜM I ::. MATRİS ve DETERMİNANT

.:: BÖLÜM I ::. MATRİS ve DETERMİNANT SAKARYA ÜNİVERSİTESİ İŞLETME FAKÜLTESİ İŞLETME BÖLÜMÜ.:: BÖLÜM I ::. MATRİS ve DETERMİNANT Halil İbrahim CEBECİ BÖLÜM I 1. Matris Cebirine Giriş MATRİS VE DETERMİNANT Sayıların, değişkenlerin veya parametrelerin

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 6 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4: Toplam Süre: 6 Dakika Lütfen adınızı ve soyadınızı

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur.

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Bölüm 2 Determinantlar Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Söz konusu fonksiyonun değerine o matrisin determinantı denilir. A bir kare matris ise, determinantı

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

2.3. MATRİSLER Matris Tanımlama

2.3. MATRİSLER Matris Tanımlama 2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Elementer matrisler, ters matrisi bulmak, denk matrisler

Elementer matrisler, ters matrisi bulmak, denk matrisler 4.Konu Elementer matrisler, ters matrisi bulmak, denk matrisler 1. Elementer matrisler 2. Ters matrisi bulmak 3. Denk matrisler 1.Elementer matrisler 1.Tanım: tipinde Tip I., Tip II. veya Tip III. te olan

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı:

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı: Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama Giriş ve Projenin Amacı: Bu projenin amacı; matrisler ile diskriminant analizi yaparak, bir düzlem üzerine el ile yazılan bir sayının

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar MATE 409 SAYILAR TEORİSİ BÖLÜM: 8 LİNEER KONGRÜANSLAR Muazzez Sofuoğlu 067787 Nebil Tamcoşar 8.1. Bir Değişkenli Lineer Kongrüanslar a,b ve m/a olmak üzere; Z ax b(modm) şeklindeki bir kongrüansa, birinci

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 2X2 BLOK MATRİSLERDE MOORE-PENROSE İNVERSLER İÇİN BAZI YENİ GÖSTERİMLER TUĞÇE TOPAL YÜKSEK LİSANS TEZİ

T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 2X2 BLOK MATRİSLERDE MOORE-PENROSE İNVERSLER İÇİN BAZI YENİ GÖSTERİMLER TUĞÇE TOPAL YÜKSEK LİSANS TEZİ T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 2X2 BLOK MATRİSLERDE MOORE-PENROSE İNVERSLER İÇİN BAZI YENİ GÖSTERİMLER TUĞÇE TOPAL YÜKSEK LİSANS TEZİ ORDU 2016 ÖZET 2X2 BLOK MATRİSLERDE MOORE-PENROSE

Detaylı

MATRİSLER. Şekil 1 =A6:B7+D6:E7

MATRİSLER. Şekil 1 =A6:B7+D6:E7 MATRİSLER Bir A matrisi mxn adet gerçel veya sanal elemanların sıralı koleksiyonudur. Bu koleksiyon m satır ve n sütun ile düzenlenir. A(mxn) notasyonu matrisin m satırlı n sütunlu olduğunu gösterir ve

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Önsöz. Mustafa Özdemir Antalya 2016

Önsöz. Mustafa Özdemir Antalya 2016 Önsöz Bu kitap üniversitelerimizin Mühendislik Fakültelerinde, Doğrusal Cebir veya Lineer Cebir adıyla okutulan lisans dersine yardımcı bir kaynak olması amacıyla hazırlanmıştır. Konular, teorik anlatımdan

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER ELE40/50 06/7 GÜZ ÖDEV - ÇÖZÜMLER -) Lyapunov kararlılığı için = 0, V( ) = 0 0, V( ) > 0 biçiminde bir Lyapunov fonksiyonu 0, V( ) 0 eşitsizliğini sağlanmalıdır. Asimptotik kararlılık için 0, V( ) < 0

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

DENKLEM DÜZENEKLERI 1

DENKLEM DÜZENEKLERI 1 DENKLEM DÜZENEKLERI 1 Dizey kuramının önemli bir kullanım alanı doğrusal denklem düzeneklerinin çözümüdür. 2.1. Doğrusal düzenekler Doğrusal denklem düzeneği (n denklem n bilinmeyen) a 11 x 1 + a 12 x

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

matrisleri bulunmuş olur. X A. B yardımıyla değişkenlere ulaşılır. Bu yolda A ne ulaşmak güç olduğu gibi A ni bulamama durumunda söz konusudur.

matrisleri bulunmuş olur. X A. B yardımıyla değişkenlere ulaşılır. Bu yolda A ne ulaşmak güç olduğu gibi A ni bulamama durumunda söz konusudur. PROJE RAPORU Projenin Adı: Üç bilinmeyenli Rasyonel Katsayılı Denklem Sistemi Çözümü Projenin Amacı: Üç bilinmeyenli rasyonel katsayılı denklem sisteminin Gauss indirgenme metodu ile çözümünü algoritmaya

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi N. K. Ekinci Ekim 2015 İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi 1. Tek Sektörlü Ekonomide Gelir Dağılımı Tek mal (buğday) üreten bir ekonomi ele alalım. 1 birim buğday üretimi

Detaylı

Lineer Cebir (MATH 275) Ders Detayları

Lineer Cebir (MATH 275) Ders Detayları Lineer Cebir (MATH 275) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir MATH 275 Her İkisi 4 0 0 4 6 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar 3. Ders Mahir Bilen Can Mayıs 11, 2016 1 Önceki Dersteki Sorular ile İlgili Açıklamalar Lie nin üçüncü teoremi oarak bilinen ve Cartan tarafından asağıdaki gibi güçlendirilmiş bir teorem ile başlayalım:

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

Projenin Amacı: Rasyonel terimi her hangi bir 3x3 matrisin tersi bulunurken çözüm basamaklarının da gösterildiği yeni bir yöntem geliştirmek.

Projenin Amacı: Rasyonel terimi her hangi bir 3x3 matrisin tersi bulunurken çözüm basamaklarının da gösterildiği yeni bir yöntem geliştirmek. PROJE RAPORU Projenin Adı: 3x3 Matrisin Tersinin Satır İndirgeme (Row Reduced Echelon Form) İşlemleri ile Tersinin Bulunması ve Çözüm Basamaklarının Gösterilmesine Dair Yeni Bir Uygulama Projenin Amacı:

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 8 Ocak 28 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı