DEĞİŞKENLİK ÖLÇÜLERİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DEĞİŞKENLİK ÖLÇÜLERİ"

Transkript

1 DEĞİŞKENLİK ÖLÇÜLERİ

2 Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm date alara heaplaa tattlere değşel(yayılım) ölçüler adı verlr.

3 Frea Aşağıda gra = 500 hacml alıa arlı öre doğrultuuda oluşturula htogramlardır. Her öre ortalamaı yalaşı olara 00 olduğua göre öreğ ayı aaütlede alıdığı öyleeblr m? ,33 8,33 95,33 09,33 3, ,33 8,33 95,33 09,33 3,33 X X 3

4 İ öreğ ayı aaütlede geldğ öyleemez. Buu ede alıa öre oucuda oluşturula htogramda dağılımları ortalama etraıda arlı olmaıda ayalamatadır. Dağılımları brbrde ayırt etmede ullaıla yayılım ölçüler artmet ortalama etraıda değşmler date ala taımlayıcı tattlerdr. Br ver etde artmet ortalamalarda her br gözlem arı alııp bu değerler tümü topladığıda oucu 0 olduğu görülür. 4

5 Öre: 4,8,9,3,6 şelde verle br bat er ç; Bu örete görüleceğ üzere gözlemler artmet ortalamada uzalığı alıp topladığıda 0 elde edldğde dolayı bu problem mutlaa değer ullaara veya areel uzalı alıara ortada aldırılır. 5

6 ) Ortalama Mutla Sapma(OMS) Ver etde her br gözlem değer artmet ortalamada arlarıı mutla değerler toplamıı öre hacme bölümeyle elde edlr. Gözlem değerler artmet ortalamada alarıı toplamı 0 olacağıda bu problem ortada aldırma ç mutla değer ade ullaılır. Bat erler İç: OMS Gruplamış erler İç: Sıılamış Serler İç : OMS OMS m 6

7 Öre: İtatt I der ala 0 öğrec vze otları aşağıda gb ıralamıştır. Bua göre vze otları ç ortalama mutla apma değer heaplayıız. 30,4,53,6,68,79,8,88,90, OMS 45 4,

8 Öre: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı ortalama mutla apmaıı heaplayıız. Sıılar m I ( m )I da az 33 I(33-46,6)I 36-4 de az 6 39 I6(39-46,6)I 4-48 de az 0 45 I0(45-46,6)I da az 7 5 I7(5-46,6)I de az 4 57 I4(57-46,6)I de az 63 I(63-46,6)I Toplam 30 63, m 46,6g. OMS m 63, 5,44g. 30 8

9 ) Varya Ortalama mutla apmada ullaıla mutla değerl adeler le şlem yapmaı zor hatta bazı durumlarda maız olmaı ebebyle ye değşel ölçüüe htyaç duyulmatadır. Mutla değer adede zorlu artmet ortalamada arları areler alımaıyla ortada almatadır. Ver etde her br gözlem değer artmet ortalamada arlarıı areler toplamıı öre hacm br eğe bölümede elde edle değşel ölçüüe öre varyaı adı verlr. 9

10 0 Bat erler İç: Populayo Varyaı: m : Populayo Ortalamaı N : Populayo Hacm Öre Varyaı : Gruplamış Serler İç: Sıılamış Serler İç : N m ) ( m ) (

11 ade tattte br ço ormülde ullaılır ve areler toplamı olara adladırılır. Matematel olara heaplama olaylığı ağlamaı açııda ormüllerde areler toplamıı açılımı ola aşağıda eştl ullaılablr.

12 m m Gruplamış Serler İç: Sıılamış Serler İç : Bat Serler İç:

13 3) Stadart Sapma Varya heaplaıre ullaıla verler areler alıdığıda verler ölçü brm are varyaıda ölçü brm mevcut ölçü brm are olur. Öre: g, cm gb. Bu teledrme verler açııda br alam taşımayacağıda varya yere ortalama etraıda değşm br ölçüü olara ou pozt areöü ola tadart apma ullaılır. 3

14 4 Bat erler İç: Populayo Stadart Sapmaı: m : Populayo Ortalamaı N : Populayo Hacm Öre Stadart Sapmaı : Gruplamış Serler İç: Sıılamış Serler İç : N m ) ( m ) (

15 Öre: İtatt I der ala 0 öğrec vze otları aşağıda gb ıralamıştır. Bua göre vze otları ç varya ve tadart apmayı heaplayıız. 30,4,53,6,68,79,8,88,90, , 504, 9 504,,45 İtatt I vzede alıa otları ortalama etraıda yalaşı olara pua değştğ görülmetedr. 5

16 Ayı oru areler ortalamaıı açılımı ullaılara çözüldüğüde ayı ouçları verecetr. 30,4,53,6,68,79,8,88,90, , , ,45 6

17 Öre: Yada tabloda br Samug bayde LCD televzyoları era boyutlarıa göre atış mtarları verlmştr. Frea dağılımıı varya ve tadart apmaıı heaplayıız. Grup Frea = ,67 47,67,5 7

18 Öre: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı varyaıı ve tadart apmaıı heaplayıız. Sıılar m ( m ) da az 33 (33-46,6) 36-4 de az (39-46,6) m 4-48 de az (45-46,6) da az 7 5 7(5-46,6) 46, de az (57-46,6) de az 63 (63-46,6) Toplam , ( m ) 579, 30 54,46 54,46 7,38g. g. 8

19 4) Rage (Değşm Aralığı) Ver etde yayılımı ade etmede ullaıla e bat tatt değşm aralığıdır. Geel olara bat erler ç ullaılır. E büyü gözlem değer le e üçü gözlem değer araıda ar değşm aralığıı verr. Değşm aralığı, ver etde te br gözlem aşırı derecede üçü veya büyü olmaıda etledğ ç br başa adeyle örete yer ala adece ver ullaılara heapladığıda tüm ver et değşelğ açılamada yeterz almatadır. 9

20 R = X ma X m R = X ma X m + X: SÜREKLİ ŞANS DEĞİŞKENİ X: KESİKLİ ŞANS DEĞİŞKENİ Öre: Br abrada çalışa 5 edütr mühed bldğ yabacı dl ayıları aşağıda verlmştr. Bua göre bu mühedler bldğ yabacı dl ayıı ç değşm aralığıı heaplayıız.,0,,,0 X İ = 0,0,,,. = 5 :,,3,4,5. R = X ma X m + = 0 + = 3 0

21 5) Değşel(Varyayo) Katayıı Stadart apmayı ortalamaı br yüzde olara ade ede ve veya daha azla populayoda varyayou (değşelğ) arşılaştırmada ullaıla ölçüye varyayo(değşel) atayıı der. İ veya daha azla populayo üzerde ayı şa değşeler ç yapıla araştırmalarda değşeller arşılaştırılmaı ç ullaıla br ölçüdür. Öre: İtabul da ve Aara da yaşaya aleler aylı gelrler değşeller arşılaştırılmaı C V Varyayo Katayıı: X *00

22 Öre: Kuruyemş ata br düada br hatalı ürede atıla lebleb, ıtı ve bademler ortalamaları ve tadart apmaları aşağıda verlmştr. Bua göre uruyemşler değşeller açııda arşılaştırıız ve uruyemş değşelğ daha azla olduğuu belrtz. Lebleb 30 g. 5 g. Fıtı 40 g. 4 g. Badem 0 g. 3 g. CV lebleb CV ııtı CVBADEM X 5 * 00 *00 6,67 30 %6,67 4 * 00 *00 0 %0 X 40 3 * 00 *00 30 %30 X 0 Üç uruyemş değşeller arşılaştırıldığıda e üçü tadart apma değer bademde olmaıa rağme e büyü varyayo atayııa ahp olduğuda, e azla değşelğ bademde olduğu görülür. Artmet ortalamalar çerde tadart apma yüzdelere baıldığıda e büyü yüzde bademdedr.

23 Çarpılı (Ametr) ve Baılı Ölçüler Populayoları brbrde ayırma ç her zama yalızca yer ve yayılım ölçüler yeterl olmayablr. Aşağıda arlı populayoda alımış öreler ç oluşturula htogramlar verlmştr. 0 m A A 0 m B 3

24 Şelde görüleceğ üzere A ve B öreler ayı ortalamaya ve yalaşı olara ayı değşelğe ahp olmalarıa rağme bu öreğ açıça ayı populayoda gelmedğ öyler. Ametr (çarpılı) ade metr olmaya alamıı taşımatadır. Şellere baıldığıda reaları A da daha ço ol tarata (üçü değerlerde), B de e daha ço ağ tarata (büyü değerlerde), topladığı görülmetedr. 4

25 Ametr ve baılı ölçüler br erde gözlem değerler dağılımıı şel ortaya oya ölçülerdr. Bu ölçüler yorumlaıre ormal dağılım özelller date alıır. Normal dağılım eğr metr ve ormal br baılığa ahptr. Ametr ölçüü er rea dağılımıı metr dağılımda uzalaşma derece göterre, baılı ölçüü verler ormal dağılıma göre ortalama etraıda e adar yoğu br şelde dağıldığıı götere ölçülerdr. Ametr ölçüüü şaret büyülüğü ver çarpılığıı yö ve şddet göterre, baılı ölçüüü büyülüğü verler ortalama cvarıda aşırı yoğulaştığıa, üçülüğü e verler ortalamaya etraıda azla dağıı olduğua şaret etmetedr. 5

26 Ametr Ölçüler Ortalamaya Dayaa Ametr (PEARSON) Ölçüü Ametr ha erlerde ortalamalar araıda aşağıda gb br lş öz ouudur. ( mod) 3.( medya ) Bu lş her taraı tadart apmaya oraladığıda ametr ölçüü elde edlr. S p mod 3( med ) S p veya S P < 0 Negat çarpı(sola) S P > 0 Pozt Çarpı(Sağa) S P = 0 e dağılış metr 6

27 Yuarıda ametr ölçülerde daha ço brc ullaılır. Modu heaplaamadığı durumlarda c ormül ullaılara ametr belrler. Bu ametr ölçüü ± e yalaştıça çarpılı uvvetl hale gelre, 0,5 e yalaştıça orta şddette 0 a yalaştıça ha şddette çarpılı öz ouu olur. Sağa çarpı durumda gözlem değerler büyü br ımı modu ağıda, ola çarpı durumda e oluda yer alacatır. Dğer br deyşle ağa çarpı erlerde artmet ortalama ağa doğru (büyü değerler yöüe) ayare, ola çarpı erlerde artmet ortalama ola (üçü değerler yöüe) ayma götermetedr. 7

28 Kartllere Dayaa Ametr (BOWLEY) Ölçüü Smetr erlerde Q 3 -Q = Q -Q olduğu blmetedr. Eğer Q 3 -Q > Q -Q e er ağ taraıda br yoğulaşma olduğu, a halde ol tarata br yoğulaşma olduğu öyleeblr. Bu durumu daha y ortaya oyma ç Bowley taraıda gelştrle aşağıda ametr ölçüü ullaılablr. S b ( Q 3 Q ) ( Q Q ) Q 3 Q S b < 0 Negat çarpı(sola) S b > 0 Pozt Çarpı(Sağa) S b = 0 e dağılış metr Bu ölçü ııra yalaştıça ametr haler. ± e yalaştıça ametr uvvetl hale gelr. 8

29 Smetr Dağılım A.O = Med = Mod Sağa çarpı dağılım A.O > Med > Mod Sola çarpı dağılım A.O < Med < Mod İ modlu metr dağılım Modu olmaya dağılım Tedüze dağılım 9

30 Öre: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımıda elde edle bazı taımlayıcı tattler verlmştr. Bua göre pearo ve bowley ametr ölçüler heaplayıp yorumlayıız. A r t m e t O r t. Mod Medya Q Q S p 46,6 45,4 46, 4,5 5,9 54,46 3( X med) 3(46,6 46,) 54,46 0,6 0 Sağa Çarpı, Pozt Ametr S p mod 46,6 45,4 54,46 0,6 0 Sağa Çarpı, Pozt Ametr S b ( Q 3 Q ) ( Q Q Q 3 Q ) (5,9 46,) (46, 4,5) 5,9 4,5 0,4 0,0 0 Sağa Çarpı, Pozt Ametr 30

31 Baılı Ölçüü Aşağıda A ve B dağılımlarıı ortalamaları, değşel ölçüler ayı olmaıda dolayı ve hatta de metr olmalarıda dolayı bu dağılışı ayırt etme ç Baılı Ölçüü ullaılır. A B m A = m B 3

32 Herhag br olaılı oyouu şel le lgl parametrelerde br tae de baılı ölçüüdür. Mometlere dayaa baılı ölçüü, ametr ortalamaya göre 4. momet tadart apmaı 4. uvvete oralamaı le elde edlr. 4 m 4 4 Sııladırılmış Ser İç m 4 ( m X ) 4 4 = 3 e er baılığı ormaldr. 4 < 3 e er ormal dağılıma göre daha baıtır. 4 > 3 e er ormal dağılıma göre daha vrdr. 3

33 Öre Aşağıda er baılı ölçüüü buluuz. Sıı Aralığı Toplam 50 33

34 Sıı Aralığı m m Toplam X m ,6 34

35 Artmet ortalamaya göre mometler m X ( m X ) ( m X -3,6-36 9,6-466,56 679,66 -, ,8 37,68 0,4 4 9,6 3,84,536,4 48 5, 76,48 663,55 4, ,6 85, ,096 Toplam ,8 640,48 ) ( m X 3 ) ( m X ) 4 35

36 Artmet ortalamaya göre mometler: ( m X ) 0 m 0 ( m X ) m 3, ( m X ) 4 460,8 ( m X ) m3 3,07 640,48 m 4, ametr ölçüü: m3 3 m 3,84,96 3 3,07 3 0,4 0 3 (,96) olduğuda er ağa çarpıtır.

Değişkenlik (Yayılım) Ölçüleri

Değişkenlik (Yayılım) Ölçüleri Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm date alara heaplaa

Detaylı

DEĞİŞKENLİK ÖLÇÜLERİ

DEĞİŞKENLİK ÖLÇÜLERİ DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm

Detaylı

Box ve Whisker Grafiği

Box ve Whisker Grafiği www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ mehmet.aarayl@deu.edu.tr Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri Taımlayıcı İtattler Bölüm 3 Taımlayıcı İtattler Br ver et taıma veya brde azla ver et arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le rea dağılışlarıı ayıal olara özetleye değerlere taımlayıcı

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstler Taımlayıcı İstatstler Br veya brde azla dağılışı arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere taımlayıcı statstler der.

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri 0.0.06 Taımlayıcı İstatstler Bölüm 3 Taımlayıcı İstatstler Br ver set taıma veya brde azla ver set arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Meta-analizinde kategorik verilerin birleştirilmesinde kullanılan istatistiksel yöntemler: Aktif ve pasif sigara içicilerin değerlendirilmesi

Meta-analizinde kategorik verilerin birleştirilmesinde kullanılan istatistiksel yöntemler: Aktif ve pasif sigara içicilerin değerlendirilmesi İtabul Üverte İşletme Faülte Derg Itabul Uverty Joural o the School o Bue Admtrato lt/vol:38, Sayı/No:2, 2009, 34-46 ISSN: 303-732 - www.derg.org 2009 Meta-aalzde ategor verler brleştrlmede ullaıla tattel

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

REGRESYON VE KORELASYON ANALİZİ

REGRESYON VE KORELASYON ANALİZİ REGRESYON VE KORELASYON ANALİZİ.. Doğrusal İlşler.. Yalı (ast) Regreso... E Küçü Kareler Metodu a) Normal Delemler Çözümü ) Determat metodu c) Orj Kadırma... Regresou Stadart Sapması..3. Regresou Duarlılığı..4.

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

İstatistik Araştırma Dergisi, Cilt: 02, No: 02, Sayfa: , 2003.

İstatistik Araştırma Dergisi, Cilt: 02, No: 02, Sayfa: , 2003. İstatst Araştırma Dergs, Clt: 0, No: 0, Sayfa: 03-7, 003. İstatstsel Parametre Kestrm Teler Webull Dağılımıı Parametreler Hesaplamasıda Kullaımı Ve Deprem Verler Webull Dağılımıa Uygulaması Veysel YILMAZ

Detaylı

İSTATİSTİKSEL HİPOTEZ TESTLERİ

İSTATİSTİKSEL HİPOTEZ TESTLERİ İSTATİSTİKSEL İPOTE TESTLERİ (t z tetleri Doç. Dr. Mehmet AKSARAYLI www.mehmetakarayli.com ipotez Nedir? İPOTE, parametre hakkıdaki bir iaıştır. Bu ııfı ot ortalamaıı 75 olduğua iaıyorum. Parametre hakkıdaki

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ 3 İstatst Serler ve Freas Tabloları TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Mehmet Al CENGİZ Üte: 3 İSTATİSTİK SERİLERİ ve FREKANS TABLOLARI

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Ölçme Belirsizliği ve 50 mm Nominal Uzunluktaki Ölçü Bloğuna Uygulanması

Ölçme Belirsizliği ve 50 mm Nominal Uzunluktaki Ölçü Bloğuna Uygulanması Poltekk Derg Joural of Polytechc Clt:0 Sayı: 4.363-370, 007 Vol: 0 o: 4 pp.363-370, 007 Ölçme Belrzlğ ve 50 mm omal Uzuluktak Ölçü Bloğua Uygulamaı Murat DOĞA *, Muammer ALBAT ** * Gaz Üverte, Fe Blmler

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Merkez Eğlm Ölçüler 4... Artmetk Ortalama 4... Ağırlıklı Artmetk Ortalama 4..3. Keslmş artmetk ortalama 4..4. Geometrk Ortalama 4..5. Harmok Ortalama 4..6. Kuadratk Ortalama

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi r. Mehme Akaraylı ağılımı ve ei oç. r. Mehme AKSARAYLI.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehme.akarayli@deu.edu.r Sude ağılımı Küçük öreklerde (

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır.

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır. .GİRİŞ Güümüde hıla gelşe eolo ve blg brm saesde her geçe gü e elero chalar ürelmee ve mevcu freas badıı eers alması edele ürecler üse freaslara öelmeedrler. Yüse freas ullaıldığıda se chaları bouları

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

1. KODLAMA KURAMINA GİRİŞ 1

1. KODLAMA KURAMINA GİRİŞ 1 ÖNSÖZ Bu çalışmaı oluşumu esasıda emeğ, blgs ve sosuz desteğyle baa yol göstere değerl hocam Prof. Dr. Erol BALKANAY a; alayışı, desteğ ve atılarıda ötürü değerl hocam Yrd. Doç. Dr. Recep KORKMAZ a teşeürlerm

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği Öğretim Üyesi Mehmet Zeki COŞKUN Y. Doç. Dr. İşaat Fak., Jeodezi ve Fotogrametri Müh. Ölçme Tekiği Aabilim Dalı (1) 85-6573 coskumeh@itu.edu.tr http://atlas.cc.itu.edu.tr/~cosku Adres Öğreci görüşme saatleri:

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ İ AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 7 Her haı salıdır ÖZET Dotora Tez SONLU KARMA DAĞILIMLARDA PARAMETRE

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi Far Delemler Çzümüde Parametreler Değşm Ytem *Hüsey Koama Saarya Üverstes, Fe-Edebyat Faültes, Matemat Blümü, 587, Saarya Özet: İçersde e az br mertebede,,,, E b solu arları buluduğu osyoel delemlere Far

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ SAÜ 6. BÖLÜM DEĞİŞKELİK (YAYIKLIK) ÖLÇÜLERİ PROF. DR. MUSTAFA AKAL İÇİDEKİLER 1. DEĞİŞKELİĞİ TAIMI VE ÇEŞİTLERİ. AALATİK OLMAYA DEĞİŞKELİK ÖLÇÜLERİ 3. ORTALAMA MUTLAK SAPMA 3.1. Bast Serde Ortalama Mutla

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2016 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2016 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 06 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

ASİMETRİ (ÇARPIKLIK) VE BASIKLIK ÖLÇÜLERİ

ASİMETRİ (ÇARPIKLIK) VE BASIKLIK ÖLÇÜLERİ SAÜ 7. BÖLÜ ASİETRİ (ÇARPIKLIK) VE BASIKLIK ÖLÇÜLERİ PROF. DR. USTAFA AKAL İÇİNDEKİLER. ÇARPIKLIK VE BASIKLIK. ORTALAALAR YARDIIYLA ÇARPIKLIĞIN (ASİETRİ, SKEWNESS) HESAPLANASI.. erez Eğlm Ölçüler Yardımıyla

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON BÖÜ EĞRİ UYDURA VE İTERPOASYO - Grş İterpolo polomlrı Bölümüş rlr 4 Eşt rlılı ot dğılımlrı ç bt rlr 5 Küb ple eğrler Kım üb ple eğrler 7 Br üze üzerde terpolo 8 E-üçü reler lşımı Bölüm - Eğr udurm ve terpolo

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

BÖLÜM 4 ADİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ

BÖLÜM 4 ADİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ BÖLÜM ADİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ. Grş. alor sers ötem. Euler ötem ve değş ugulamaları. Ruge-Kutta ötemler. Ço adımlı ötemler.6 Yüse-derecede delemler ve delem sstemler.7 Sıır değer problemler

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ4 FİZİKTE BİLGİSAYAR UYGULAMALARI (DERS NOTLARI Hazırlaa: Pro.Dr. Ora ÇAKIR Aara Üverstes Fe Faültes Fz Bölümü Aara 07! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER DENKLEM

Detaylı

YAPISAL İZLEME ANALİZLERİNDE ÇOK DEĞİŞKENLİ KONTROL GRAFİĞİ YAKLAŞIMI

YAPISAL İZLEME ANALİZLERİNDE ÇOK DEĞİŞKENLİ KONTROL GRAFİĞİ YAKLAŞIMI III. Uzakta Algılama ve Coğrafi Bilgi Sitemleri Sempozyumu, 3 Ekim 00, Gebze KOCAELİ YAPISAL İZLEME ANALİZLERİNDE ÇOK DEĞİŞKENLİ KONTROL GRAFİĞİ YAKLAŞIMI H. Pehliva, Ö. Aydı Gebze Yükek Tekoloji Etitüü,

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı