BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH"

Transkript

1 BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: 1

2 Hangi Grafik?Neden? 1. Veri çeşidine göre değişir. 2. Neyi göstermek istediğinize göre değişir. 3. Mevcut paket programa göre değişir. 2 2

3 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 3

4 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler (devam) Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 4

5 ÖRNEK-1(Sınıflayıcı) Tablo 1. Kullanılan ilaçlara göre dağılım İlaç Frekans Yüzde(%) A B Kontrol Toplam

6 ÖRNEK-1(Sıralayıcı) Tablo 2. VKI ye göre hastaların beden yapısı dağılımı Beden yapısı Frekans Oran (Kümülatif) Eklemeli Oran Zayıf Normal Hafif Şişman Şişman Toplam

7 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler (devam) Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 7

8 ÖRNEK-2 Şekil 1. VKİ ye göre vücut yapısı dağılımı Beden Yapısı Zayıf Normal Hafif şişman Şişman

9 Pasta Diyagramı (devam) 1.Toplamda sınıflar arası dağılımları gösterir. 2.Değişken düzeyleri arası farklılıkları ortaya koyar. 3.Açı Büyüklüğü (360 )(Yüzdelik) Mat. 10% Kategoriler 36 Bilg. 25% İst. 65% (360 ) (10%) = 36 9

10 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler (devam) Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 10

11 ÖRNEK-3 Şekil 2. VKİ ye göre vücut yapısı dağılımı 11

12 Çubuk (bar) Grafiği (devam) Sınıflayıcı değişkenler için yatay çubuklar 0.5 ya da 1 çubuk boşluğu Kategoriler Bilg. Mat. İst. Çubuk uzunluğu, frekans veya % gösterir. Çubuk genişlikleri eşit Sıfır Noktası Yüzdeler de kullanılabilir Frekans 12

13 Çubuk (bar) Grafiği (devam) Birth Order of Spring 1998 Stat 250 Students Percent n=92 students Middle Oldest Only Youngest Birth Order 13 13

14 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler (devam) Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 14

15 ÖRNEK-4 Tablo 3. Cinsiyete göre beden yapısı dağılım Erkek Kadın Beden yapısı Frekans (%) Frekans (%) Toplam Zayıf Normal H. Şişman Şişman Toplam

16 Örnek-4 (SPSS Tablosu) 16

17 1. Sınıflayıcı (Nominal) ve Sıralayıcı (Ordinal) Veriler İçin Tablo ve Grafikler (devam) Tek bir değişken için Frekans tablosu-örnek1 Pasta (pie)-örnek2 ve çubuk (bar) grafikleri-örnek3 İki değişken için Çapraz (contingency) tablo-örnek4 Çubuk grafikleri-örnek5 17

18 ÖRNEK-5 Şekil 3. Cinsiyete göre beden yapısı dağılımı 18

19 2. Nümerik Veriler için Tablo ve Grafikler Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 19

20 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 20

21 ÖRNEK-6 Tablo 4. Hastaların yaşlara göre dağılımı Yaş Frekans Yüzde(%) (Kümülatif) Eklemeli Yüzde Toplam

22 Örnek-6 (SPSS tablosu) 22

23 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 23

24 Gövde-Yaprak Diyagramı Ölçülebilir veriler için kullanılır. Her bir gözlem değeri gövde ve yaprak olarak ifade edilir. Önce, gövdeler bir kolon hizasında yazılır. Yapraklar da daha sonra gövdeye ilave edilir

25 Gövde-ve-Yaprak 1.Her bir gözlem Gövde ve Yaprak Değerler olarak bölünür. Gövde sınıf değerleri Yaprak frekans değerleri (Sayı) Veriler: 21, 24, 24, 26, 27, 27, 30, 32, 38, 41 25

26 ÖRNEK-7(Hasta-yaş dağılımı) A Yaş (yıl) B Kont Gövde Yaprak Yaş (yıl) Stem-and-Leaf Plot Frequency Stem & Leaf 11, , , , , , Stem width: 10,00 Each leaf: 1 case(s) 26

27 Gövde ve Yaprak Diyagramı (SPSS çıktısı) Stem-and-leaf of Shoes N = 139 Leaf Unit = (33)

28 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 28

29 ÖRNEK-8 (Hastaların yaş dağılımı) 29

30 Histogram (devam) Aralıklı ölçekte ölçülmüş verilerin özetinde kullanılır. Her bir aralık için bir çubuk çizilir. Çubuğun yüksekliği de, örneklemde o değerden bulunan sayı (yüzde) kadar olur. Çubuk grafik, nitel veri için; Histogram, nicel veriler için kullanılır

31 31 Frekans Sayı Histogram (devam) Alt Sınırlar Sınıf 15 x < x< x< 45 Frek Çubuklar birleşik 31

32 Histogram (devam) Age of Spring 1998 Stat 250 Students n=92 students Age (in years) 32 32

33 Histogram (devam) Age of Spring 1998 Stat 250 Students n=92 students Age (in years) Az sayıda aralık varsa; 33

34 Histogram (devam) GPAs of Spring 1998 Stat 250 Students 7 6 Frequency (Count) n=92 students GPA 34 Çok fazla sayıda aralık varsa; 34

35 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 35

36 ÖRNEK-9 (Hastaların yaş dağılımı) 36

37 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 37

38 ÖRNEK-10 Box grafiği 38

39 39

40 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 40

41 Örnek-11 (cinsiyete göre yaş dağılımı) 41

42 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 42

43 Örnek-12 (ilaç gruplarına göre VKİ dağılımı) 43

44 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 44

45 Nokta Diyagramı (devam) Ölçülebilir veriler içindir. Yatay eksen ölçümleri gösterir. Her bir gözlem değeri bir noktaya denk gelir

46 Örnek-13 46

47 Nokta Diyagramı (devam) 47 47

48 2. Nümerik Veriler için Tablo ve Grafikler (devam) Tek bir değişken için Sınıflandırılmış Verilerde Frekans Tablosu: değişkenin çok sayıda farklı değer aldığı durumlarda, veriler sınıflandırılmak zorundadır.örnek6 Gövde ve Yaprak Tablosu. Örnek7 Histogram (frekans tablosundaki bilgiler kullanılır) Örnek8, frekans poligonu Örnek9, box grafiği Örnek10 İki değişken için Frekans tablosu, gövde ve yaprak tablosu Frekans poligonu Örnek11, box grafiği Örnek12, nokta (dot) grafiği Örnek13, serpme(scatter) grafiği Örnek14. 48

49 Örnek-14 49

50 Serpme Diyagramı (devam) İki ölçülebilir değişken arasındaki ilişkiyi görmek için kullanılır. Yatay eksen bir değişkenin aldığı değerleri düşey eksen diğer bir değişkenin aldığı değerleri gösterir. Her bir nokta, her bir ölçüm çiftini göstermektedir

51 Serpme Diyagramı (devam) Foot sizes of Spring 1998 Stat 250 students n=88 students Left foot (in cm) 51

52 Serpme Diyagramı (devam) Lengths of left forearms and head circumferences of Spring 1998 Stat 250 Students n=89 students Head circumference (in cm) 52 İlişki yok 52

53 Hangi Grafik Ne Zaman Kullanılır? Gövde-ve-Yaprak diyagramı ve nokta diyagramı küçük veri grupları için kullanılır. Histogram büyük veri grupları için daha uygundur. Histogram, verilerin şeklini görmek için oldukça uygundur. Çubuk grafik, nitel veriler için; histogram, nicel veriler için kullanılır

54 Verilerin Sunumunda Yapılan Hatalar 54

55 Kalitesiz Grafik Kötü Sunum Minimum Maaş 1960: $ : $ : $ : $ $ İyi Sunum Minimum Maaş

56 Sıkıştırılmış dikey eksen Kötü Sunum İyi Sunum 200 $ Satışlar 50 $ Satışlar Q1 Q2 Q3 Q4 0 Q1 Q2 Q3 Q4 56

57 Dikey Eksende Sıfır Noktası Yok Kötü Sunum İyi Sunum 45 $ Aylık Satışlar 60 $ Aylık Satışlar O M M T E K O M M T E K 57

58 arası evlenme hızı İyi Sunum Kötü Sunum MARRIAGE YEAR

59 Özel Diş Hastanesi Örneği (devam) Özel Diş Hastanesi, İzmir ilinde faaliyet gösteren 5 farklı diş hastanesinden birisidir. Hastane yönetimi, karlılık açısından hastanenin ne durumda olduğunu merak etmektedir. Bu nedenle, görevlendirdiği bir maliyet uzmanını, İzmir ilindeki diş hastanelerinin maliyet analizlerini inceleyerek hastane yönetimine etkili bir sunum yapması ve rapor hazırlaması için görevlendirir. 59

60 Tablo 1. İzmir ili için 2015 yılına ait aylık ve yıllık toplam kar miktarları 2015 Yılı Özel Diş Hst. Beyaz Diş Hst. DişKo Hst. Ege Diş Hst. MediDiş Hst. Ocak Şubat Mart Nisan Mayıs Haziran Temmuz Ağustos Eylül Ekim Kasım Aralık Toplam

61 Bu tablodaki bilgileri göz önüne alarak kar miktarları için hangi tür grafik uygundur? 61

62 yılı için tüm hastanelerin aylık kar miktarları Özel Diş Hst. Beyaz Diş Hst. DişKo Hst. Ege Diş Hst. MediDiş Hst

63 2015 yılı için tüm hastanelerin aylık kar miktarları Özel Diş Hst. Beyaz Diş Hst. DişKo Hst. Ege Diş Hst. MediDiş Hst

64 Maliyet uzmanı, hastaların beklentilerini ve düşüncelerini öğrenmek üzere son bir ay içerisinde İzmir ilinde diş hastanelerine gelen 7500 kişiye, bir anket çalışması uygulanacağını ve sonuçlarını bir ay içinde bir rapor halinde sunacağını hastane yönetimine iletir. Bu anket çalışmasında kitleyi tanımlayınız. İzmir ilinde diş hastanesine başvuran hastalar 64

65 Siz olsanız hazırlayacağınız ankette Özel Diş hastanesine başvuran hastalara hangi soruları yöneltirdiniz? Yaşı, cinsiyeti, mesleği, gelir düzeyi, hangi nedenle hastaneye başvurduğu, hastaneye kaçıncı gelişi, memnuniyet düzeyi, hastane için önerileri... 65

66 Ankete katılanların cinsiyeti, yaşı, mesleği, hastaneye başvuru nedeni ve buna benzer verileri; veri türleri açısından nasıl sınıflandırılabilir? 66

67 1. Cinsiyeti, Nitel 2. Yaşı, Nicel 3. Mesleği, Nitel 4. Gelir düzeyi (düşük,orta, yüksek), Nitel 5. Hangi nedenle hastaneye başvurduğu, Nitel 6. Hastaneye kaçıncı gelişi, Nicel 7. Memnuniyet düzeyi (memnun, kararsız, memnun değil) Nitel 8. Hastane için önerileri. Nitel 67

68 Anket Sonuçları Tablo 1: Bireylerin cinsiyete göre dağılımı Cinsiyet Sayı Yüzde Kadın Erkek Toplam Cinsiyete gore dagilim Erkek Kadın Şekil 1: Bireylerin cinsiyete göre dağılımı 68

69 Anket Sonuçları-devam AGE Cases weighted by FREQUENC Şekil 2: Bireylerin yaş grubuna göre dağılımı 69

70 Anket Sonuçları-devam Mesleklere gore dagilim , , ,7 7,07 0 Memur İşçi Serbest Meslek İşsiz Şekil 3. Bireylerin mesleklerine göre dağılımı 70

71 Memur İşçi Serbest Meslek İşsiz Toplam Anket Sonuçları-devam Özel Diş Hst Beyaz Diş Hst DişKo Hst Ege Diş Hst MediDiş Hst Toplam Tablo 1. Meslek grubuna göre başvurulan diş hastanesi arasında çapraz tablo 71

72 Alıştırmalar 1. Aşağıdaki pasta diyagramında 50 kişilik bir sınıfta özel ders alan öğrencilerin yüzdeleri verilmektedir. Buna göre. dersini alan öğrenci sayısı 14 tür. Biyoloji 32% Matematik 24% Kimya 16% Fizik 28% 72

73 Alıştırmalar (devam) 1. Aşağıdaki pasta diyagramında 50 kişilik bir sınıfta özel ders alan öğrencilerin yüzdeleri verilmektedir. Buna göre fizik.. dersini alan öğrenci sayısı 14 tür. Biyoloji 32% Matematik 24% Kimya 16% Fizik 28% 73

74 Alıştırmalar (devam) 2. Çubuk grafik,. veriler için; histogram,. veriler için kullanılır. 74

75 Alıştırmalar (devam) 2. Çubuk grafik,.nitel. veriler için; histogram,.nicel. veriler için kullanılır. 75

76 Alıştırmalar (devam) 3. İki ölçülebilir değişken arasındaki ilişkiyi görmek için... kullanılır. 76

77 Alıştırmalar (devam) 3. İki ölçülebilir değişken arasındaki ilişkiyi görmek için serpme diyagramı... kullanılır. 77

78 Alıştırmalar (devam) 4. Bir diş hekiminin muayenehanesine gelen hastaların ağızlarındaki dolgu sayıları elde edilmiştir. Bu veri setinin grafiksel gösterimi için çubuk grafik uygun bir araçtır. Doğru 78

79 Alıştırmalar (devam) 5. Bir diş hastanesinde bir yıl boyunca yapılan alt çene ameliyatı sayısı için histogram çizilebilir. Yanlış 79

80 Alıştırmalar (devam) 6. Gövde-ve-Yaprak diyagramı ve nokta diyagramı küçük veri grupları için kullanılır. Doğru 80

81 Alıştırmalar (devam) 7. Grafiklerle ilgili olarak aşağıdakilerden hangisi yanlıştır? a. Pasta grafiği sınıflayıcı ölçekteki veriler için kullanılır. b. Çubuk grafiği gruplandırılmış nicel veriler için kullanılır. c. Histogram çizilebilmesi için verilerin en az aralıklı ölçekte ölçülmüş olması gerekir. d. Sıralayıcı ölçekteki veriler çubuk grafiği ile gösterilebilir. 81

82 Alıştırmalar (devam) 7. Grafiklerle ilgili olarak aşağıdakilerden hangisi yanlıştır? a. Pasta grafiği sınıflayıcı ölçekteki veriler için kullanılır. b. Çubuk grafiği gruplandırılmış nicel veriler için kullanılır. c. Histogram çizilebilmesi için verilerin en az aralıklı ölçekte ölçülmüş olması gerekir. d. Sıralayıcı ölçekteki veriler çubuk grafiği ile gösterilebilir. 82

83 Alıştırmalar (devam) 8. Aşağıdaki çubuk grafik şekli için aşağıdakilerden hangi tanım uygundur? a. Bir şey söylenemez b. Sağa çarpık c. Sola çarpık d. Simetrik

84 Alıştırmalar (devam) 8. Aşağıdaki çubuk grafik şekli için aşağıdakilerden hangi tanım uygundur? a. Bir şey söylenemez b. Sağa çarpık c. Sola çarpık d. Simetrik

85 9. Yukarıdaki histograma göre 3 ten küçük kaç gözlem vardır? a. 5 b. 7 c. 11 d

86 9. Yukarıdaki histograma göre 4 ten küçük kaç gözlem vardır? a. 5 b. 7 c. 11 d

87 MADENLER Bakır Çinko 7 Miktar (ton) ,5 4, , Yıllar 10. Verilen sütun grafik için hangisi doğrudur? a. Son 5 yılda çıkarılan toplam çinko miktarı toplam bakır miktarından fazladır. b. Çinko madeni bakır madeninden her zaman daha fazla çıkarılmıştır. c. Son 5 yılda çıkarılan bakır miktarı 30 tondan fazladır. d yılına kadar çıkarılan çinko miktarında artış gözlenmiştir. 87

88 MADENLER Bakır Çinko 7 Miktar (ton) ,5 4, , Yıllar 10. Verilen sütun grafik için hangisi doğrudur? a. Son 5 yılda çıkarılan toplam çinko miktarı toplam bakır miktarından fazladır. b. Çinko madeni bakır madeninden her zaman daha fazla çıkarılmıştır. c. Son 5 yılda çıkarılan bakır miktarı 30 tondan fazladır. d yılına kadar çıkarılan çinko miktarında artış gözlenmiştir. 88

89 Haftaya derste anlatılacak konular Uygulama 1 89

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Biyoistatistik. Uygulama 1

Biyoistatistik. Uygulama 1 Biyoistatistik Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi,Tıp Fakültesi,Biyoistatistik ve Tıbbi Bilişim A.D. Web: www.biyoistatistik.med.ege.edu.tr 1 DİŞ MACUNU-TEMDİŞ TEMPA Temizlik

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

BİYOİSTATİSTİK Veri Tipleri ve Sayısal Özetleme Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Veri Tipleri ve Sayısal Özetleme Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Veri Tipleri ve Sayısal Özetleme Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

VERİLERİN SINIFLANDIRILMASI

VERİLERİN SINIFLANDIRILMASI VERİLERİN SINIFLANDIRILMASI Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr NİTEL VE NİCEL VERİLERİN SINIFLANDIRMASI Sınıflandırma

Detaylı

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD.

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD. TABLO ve GRAFİKLER Epidemiyoloji Konferansları Serisi 14.05.2015 Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Neden gerekli? Tablo ve grafikler araştırma sonucunda elde edilen verilerin

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi BBY 606 Araştırma Yöntemleri 1 SPSS in açılması 2 SPSS programı 3 Veri giriş ekranı 4 Değişken giriş ekranı 5 Veri toplama Kayıtlardan yararlanarak Örneğin

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

TABLO ve GRAFİKLER. Dr. Gamze Aktuna 2016

TABLO ve GRAFİKLER. Dr. Gamze Aktuna 2016 TABLO ve GRAFİKLER Dr. Gamze Aktuna 2016 Tanımlama Tablo: Genellikle sayımla belirlenmiş ve gruplanmış verinin sunum şekli Verilerin satırlar ve sütunlar haline getirilmesi Grafik: İstatistiksel verilerin

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi 3. Ders Çok Boyutlu (Değişkenli) Veri Analizi Veri: Boy ölçüleri (boy-kol-omuz-kalça-bacak uzunluğu) Ölçü birimi: cm boy kol omuz kalca bacak 18 77 98 12 11 163 66 72 9 97 183 73 99 113 91 16 86 7 95 12

Detaylı

Değer Frekans

Değer Frekans Veri Rasgelelik içeren olgulardan elde edilen ölçüm (gözlem) değerlerine istatistiksel veri veya kısaca veri (data) diyelim. Verilerin deneyler sonucu veya doğal şartlarda olguları gözlemekle elde edildiğini

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler.

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler. GRAFİKLER Verilerin matematiksel temellere sahip şekiller olarak gösterilmelerine grafik adı verilir. Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Grafikler gözlem sonuçlarının

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Bütünleme WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İstatistiğe Giriş A Bu testte 20 soru

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

SPSS-Tarihsel Gelişimi

SPSS-Tarihsel Gelişimi SPSS -Giriş SPSS-Tarihsel Gelişimi ilk sürümü Norman H. Nie, C. Hadlai Hull ve Dale H. Bent tarafından geliştirilmiş ve 1968 yılında piyasaya çıkmış istatistiksel analize yönelik bir bilgisayar programıdır.

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

TÜRKİYE DE FEN BİLİMLERİ EĞİTİMİ TEZLERİ

TÜRKİYE DE FEN BİLİMLERİ EĞİTİMİ TEZLERİ XIII. Ulusal Eğitim Bilimleri Kurultayı, 6-9 Temmuz 2004 İnönü Üniversitesi, Eğitim Fakültesi, Malatya TÜRKİYE DE FEN BİLİMLERİ EĞİTİMİ TEZLERİ Sibel BALCI Rtb Eğitim Çözümleri sibel.balci@sbs.com.tr ÖZET

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

Bilim Uzmanı İbrahim BARIN

Bilim Uzmanı İbrahim BARIN ERCİYES ÜNİVERSİTESİ HASTANELERİNDE YATAN HASTALARIN HASTANE HİZMET KALİTESİNİ DEĞERLENDİRMELERİ Bilim Uzmanı İbrahim BARIN Erciyes Üniversitesi Tıp Fakültesi Hastaneleri AMAÇ Hasta memnuniyeti verilen

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

IKT-213 İSTATİSTİK PROF. DR. ARGUN KARACABEY DOÇ. DR. FAZIL GÖKGÖZ ~~ GİRİ ~~ Verilerin(data) toplanması. Analizlerin yapılması

IKT-213 İSTATİSTİK PROF. DR. ARGUN KARACABEY DOÇ. DR. FAZIL GÖKGÖZ ~~ GİRİ ~~ Verilerin(data) toplanması. Analizlerin yapılması IKT-213 İSTATİSTİK PROF. DR. ARGUN KARACABEY DOÇ. DR. FAZIL GÖKGÖZ ~~ GİRİ ~~ İstatistiksel bir çalışma yaparken sırasıyla aşağıdaki adımlar izlenir: Verilerin(data) toplanması Analizlerin yapılması Analiz

Detaylı

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application Ç.Ü. Fen Bilimleri Enstitüsü Yıl:21 Cilt:22-1 ALTI SİGMA VE BİR UYGULAMA Six Sigma And An Application Murat YİĞİT İstatistik Anabilim Dalı Sadullah SAKALLIOĞLU İstatistik Anabilim Dalı ÖZET Bu çalışmanın

Detaylı

Üniversite Hastanesi mi; Bölge Ruh Sağlığı Hastanesi mi? Ayaktan Başvuran Psikiyatri Hastalarını Hangisi Daha Fazla Memnun Ediyor?

Üniversite Hastanesi mi; Bölge Ruh Sağlığı Hastanesi mi? Ayaktan Başvuran Psikiyatri Hastalarını Hangisi Daha Fazla Memnun Ediyor? Üniversite Hastanesi mi; Bölge Ruh Sağlığı Hastanesi mi? Ayaktan Başvuran Psikiyatri Hastalarını Hangisi Daha Fazla Memnun Ediyor? Ebru Turgut 1, Yunus Emre Sönmez 2, Şeref Can Gürel 1, Sertaç Ak 1 1 Hacettepe

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

ÜNİTE. BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT İÇİNDEKİLER HEDEFLER TABLOLAR VE GRAFİKLER. Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler

ÜNİTE. BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT İÇİNDEKİLER HEDEFLER TABLOLAR VE GRAFİKLER. Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler HEDEFLER İÇİNDEKİLER TABLOLAR VE GRAFİKLER Giriş Tanımlayıcı İstatistikler Frekans Tabloları Grafikler BİYOİSTATİSTİK Prof. Dr. Ömer AKBULUT Bu üniteyi çalıştıktan sonra; Verileri frekans tablolarında

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 3 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU Şubat 10 2012 Yener YÜKSEL Mülkiye Başmüfettişi 0 İÇERİK Araştırmanın Amacı:... 3 Anket Ölçeklerinin Oluşturulması:... 3

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

Klinik Kodlama Süreç Analizi Anket Değerlendirmesi

Klinik Kodlama Süreç Analizi Anket Değerlendirmesi Klinik Kodlama Süreç Analizi Anket Değerlendirmesi Sağlık tesisleri tarafından verilen hizmetin tanımını sağlayan klinik kodlama; hastanın tesise kabul edilişinden taburcu edilişine kadar geçen süredeki

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler Yedi Temel Araç Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler Histogram Sebep Sonuç Diyagramı Kontrol Çizelgesi Pareto Diyagramı Kontrol Kartları Yayılım (Scatter) Diyagramları 7M Araçları (Yedi

Detaylı

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ 1 BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ Veri seti; satırlarında gözlem birimleri, sütunlarında ise değişkenler bulunan iki boyutlu bir matristir. Satır ve sütunların kesişim bölgelerine 'hücre

Detaylı

GeroBarometre OCAK- ŞUBAT 2017

GeroBarometre OCAK- ŞUBAT 2017 GeroBarometre OCAK- ŞUBAT 2017 Prof. Dr. İsmail Tufan İTGE Vakıf İçindekiler Tablosu İçindekiler Amaç 1 Anket 2 Yaşlılık kaç yaşında başlar? 2 Örneklem 2 3 Cinsiyete Göre Cevap Dağılımı 4 Sonuç 5 Sf.01

Detaylı

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ. Bazı Temel Kavramlar

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ. Bazı Temel Kavramlar BİLİMSEL ARAŞTIRMA YÖNTEMLERİ Bazı Temel Kavramlar TEMEL ARAŞTIRMA KAVRAMLARI Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerinin kestirilmesidir. Araştırma evreni (population) Evren, bütündeki

Detaylı

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ İstatistiK Yrd.Doç.Dr. Levent TERLEMEZ istatistik birimlerin ya da bireylerin sayılabilir, tartılabilir ve ölçülebilir özellikleri ile ilgili bilgilerin yani verilerin toplanması toplanan verilerin açık

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR 1. ve 2. Hafta İstatistik Nedir? Bir tanım olarak istatistik; belirsizlik altında bir konuda karar verebilmek amacıyla, ilgilenilen konuya ilişkin verilerin toplanması, düzenlenmesi,

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ. VERİ TOPLAMA ve ANALİZ BİRİMİ. Bilgi İşlem Daire Başkanlığı Anket Sonuçları

ONDOKUZ MAYIS ÜNİVERSİTESİ. VERİ TOPLAMA ve ANALİZ BİRİMİ. Bilgi İşlem Daire Başkanlığı Anket Sonuçları ONDOKUZ MAYIS ÜNİVERSİTESİ VERİ TOPLAMA ve ANALİZ BİRİMİ Bilgi İşlem Daire Başkanlığı Anket Sonuçları Ankete toplam 262 kişi katılmıştır. 262 kişinin 209 u öğrenci, 53 tanesi ise personeldir. Katılımın

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

İstatistik Nedir? Tanım 1:

İstatistik Nedir? Tanım 1: İSTATİSTİK 1 İstatistik Nedir? Tanım 1: İstatistik bilimi, verilerin toplanması, düzenlenmesi, özetlenmesi, takdimi, analizi ve bu analizler aracılığıyla elde edilen sonuçların yorumlanması ve bir karara

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı