Merkezi Yığılma ve Dağılım Ölçüleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Merkezi Yığılma ve Dağılım Ölçüleri"
  • Su Koz
  • 1 yıl önce
  • İzleme sayısı:

Transkript

1 Merkezi Yığılma ve Dağılım Ölçüleri hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu özetleyen ölçülerdir. Grupların ölçülecek özellik bakımından yorumlanmasını kolaylaştırır. MERKEZİ EĞİLİM ÖLÇÜLERİ Mod Medyan Aritmetik Ortalama Ölçülen özellikle ilgili en yüksek frekansa sahip değerdir. Sıralanmış bir veri grubunun tam ortasındaki değerdir. Puanların toplanarak kişi sayısına bölünmesiyle bulunur. MERKEZİ YIĞILMA (EĞİLİM, VASAT) ÖLÇÜLERİ 1

2 Mod Bir dağılımda en çok tekrarlanan yani en fazla frekansa sahip değere mod denir. Az sayıda veriye dayalı olarak hesaplandığından yeterince güvenilir bilgi vermez. ÖRNEK:, 16, 0, 0, 0, 80, 80 f=1 f=1 f=3 f= Bu sayı dizisinde 0 değeri 3 kez tekrar ettiği için yani frekansı 3 olduğu için, bu dizinin modu 0 dir. Mod Bir frekans dağılımında bütün değerlerin frekansı aynı ise bu frekans dağılımının modu yoktur.,, 4,4, 7,7, 9,9 f= f= f= f=

3 Mod Bir dizi ölçümde ardışık en büyük frekansa sahip iki değerin modu, bu iki değerin ortalamasına eşittir. 1,1, 3,3, 5,5,5, 7,7,7, 10, 13, 15 f= f= f=3 f=3 f=1 f=1 f=1 Bu dizinin modu = 6 olur. Mod Bir dizi ölçümde ardışık olmayan iki değer en fazla frekansa sahipse bu dizinin iki farklı modu vardır. 1,1, 14, 18,18,18, 19, 0,0,0, 5, 3 f=3 f=3 3

4 Medyan (Ortanca) Bir dizi ölçüm büyükten küçüğe veya küçükten büyüğe sıralandıktan sonra diziyi tam ortadan ikiye bölen değere medyan (ortanca) denir. Medyanın kullanılabilmesi için ölçmenin en az sıralama düzeyinde olması gereklidir. Medyan, ölçme sonuçlarına ilişkin dağılımdaki uç değerlerden ve bu değerlerin sayısal büyüklüklerinden etkilenmez. Bu özelliği, medyanın diğer merkezi eğilim ölçülerinden üstün olan yönüdür. Medyan (Ortanca) Medyanı bulmak için; Ölçümde yer alan veri sayısına n dersek ve n tek ise, n +1 ortancanın bulunduğu değerdir. Örnek:, 3, 5, 6, 7, 9, 10 şeklinde sıralı halde verilmiş olan puan dağılımının ortancası, = 4. değer (yani 6) ortancadır. 4

5 Medyan (Ortanca) Medyanı bulmak için; Ölçümde yer alan veri sayısına n dersek ve n çift ise, n n. değer ve. değerlerinin ortalaması ortancadır. +1 Örnek: 5, 8, 10, 14, 3, 34 şeklinde sıralı halde verilmiş olan puan dağılımının ortancası, 6. değer 10, 6 = = 4. değer = 1 Aritmetik Ortalama Verilerin tamamının veri sayısına bölünmesi ile elde edilen değere aritmetik ortalama denir. Aritmetik ortalama, ölçme sonuçlarının ağırlık merkezidir. Ortanca ve mod değerlerinde olduğu gibi, sadece bir kaç veri değil, bir dağılımda yer alan tüm ölçme sonuçlarını dikkate aldığından, dağılım hakkında daha fazla bilgi verir. X + X X n 1 n X = formülüyle hesaplanır. 5

6 AĞIRLIKLI ORTALAMA Sınıflandırılmamış bazı veri kümelerinde verilerin önem dereceleri farklı olabilir. Bu farkların etkisi de ağırlık biçiminde hesaplamaya katılarak Ağırlıklı Ortalama elde edilir. Ağırlıklı ortalama aşağıdaki eşitlik ile hesaplanmaktadır. Örnek: Bir öğrencinin bir dönem boyunca aldığı derslere ilişkin ders kredisi ve not değerleri aşağıda verilmektedir. Kredisi Harf Notu Not Değeri Kredi x Not Matematik 4 BA 3,5 14 Okuma Becerileri BB 3 6 Kimya I 4 CB,5 10 Fizik I 4 CC 8 Türk Dili I AA 4 8 KREDİ TOP 16 TOPLAM 46 Ağırlıklı Ort=46/16=,87 6

7 Merkezi değişim ölçüleri genellikle merkezi eğilim ölçüleriyle birlikte yorumlanır ve ölçme sonuçlarının vasat değer etrafında nasıl yayılım gösterdiğine ilişkin bilgi verir. Bir gruptaki öğrencilerin ölçülen özellik bakımından değişimini görebilmek için kullanılan merkezi değişim ölçüleri ranj (Dizi genişliği), çeyrek sapma ve standart sapmadır. MERKEZİ DAĞILMA ÖLÇÜLERİ Ranj(Dizi Genişliği) Bir veri grubunda en büyük ölçme sonucu ile en küçük ölçme sonucu arasındaki farka ranj denir. Ranjın değerini, dağılımdaki uç değerler belirler. Ranjın hesaplanması kolaydır. Ancak sadece dağılımdaki uç değerler üzerinden hesaplandığı ve dağılımdaki diğer değerleri göz ardı ettiği için kullanışsız bir ölçüdür. Ranj = En büyük ölçüm En küçük ölçüm Merkeze yığılma ölçüsü olarak sadece modun kullanılabildiği verilerde dağılım ölçüsü olarak da ranj kullanılır. 7

8 Ranj(Dizi Genişliği) ÖRNEK 10, 60, 64, 64, 78, 85, 90 en küçük puan en büyük puan Ranj, = 80 olur. Bir gruptaki ranjın büyük çıkması grubun heterojenliğini gösterir. Bu da ölçülen özellik bakımından testin ayırtediciliğinin iyi olduğunu gösterir. Aynı zamanda testin ayırtediciliğini artırdığı için testin güvenilir olduğunu gösterir. Ayırtedicilik için ranj en az testteki soru sayısının yarısı kadar olmalıdır. Örneğin 40 soruluk bir testten ranjın 40/ = 0 den büyük olması gerekir. Örnek 8

9 Örnek Standart Sapma Standart sapma, ölçme sonuçlarına ilişkin dağılımı niteleyen ve dağılımdaki ölçme sonuçlarının yayılımı hakkında bilgi veren bir istatistiktir. Standart sapma ne kadar büyük olursa puanların yayılımı o kadar geniş olur. Bu durum aynı zamanda ölçülen özellik açısından grubun heterojen (farklı) yapıya sahip olduğunu gösterir. 9

10 Standart sapma hesaplanırken aşağıdaki işlem sırası izlenir: Aritmetik ortalama hesaplanır.( X ) Her ölçümün aritmetik ortalamadan farkı alınır. ( ) X i X Farkların kareleri alınıp toplanır. ( ( X i X ) ) Bulunan toplam öğrenci sayısına bölünerek ölçümlere ait varyans elde edilir. ( ( X ) i X S = ) n 1 Hesaplanan varyansın karekökü alınır. ( ( ) = X i X S ) n 1 Standart Sapmanın Hesaplanması için Örnek Çalışma Tablosu x x-x (x-x) ,5 = -6, ,5 = -4, ,5 = -3, ,5 = -, ,5 = 1,5 1 17,5 = 3,5 17,5 = 4,5 5 17,5 = 7,5 4,5 0,5 1,5 6,5,5 1,5 0,5 56,5 Toplam 0,00 17 S = 17 =

11 Standart sapmanın büyük olduğu durumlar: Ölçme aracının ediciliği yüksektir. Grup heterojendir. Puanlar arasındaki farklar fazladır. Öğrenci puanlarının grup ortalamasından farkı fazladır. Standart sapmanın küçük olduğu durumlar: ölçme aracının ayırt ediciliği düşüktür. Grup homojendir. Puanlar arasındaki farklar azdır. Öğrenci puanlarının grup ortalamasından farkı azdır 11

12 Çeyrek Sapma Bir puan dizisindeki yüzde 75 lik sıraya denk gelen puan ile yüzde 5 lik sıraya denk gelen puanın farkının yarısına eşittir. Çeyrek sapma Q75 = Yüzde 5 lik değer Q5 = Yüzde 5 lik değer formülüyle hesaplanır. Q = Q75 Q5 Çeyrek Sapma (örnek) Sıra Puan Öncelikle puanlar küçükten büyüğe doğru sıralanır. Sıralanan puanlar dört parçaya (çeyreklere) ayrılır. İlk çeyrek ve son çeyrek atıldıktan sonra geriye kalan puanların en yükseğinden en düşüğü çıkarılarak ikiye bölünür. Yani ¼. Ve ¾. Değerler arasındaki yarısıdır. Q Q 5 = = 4 75 = = 4 N N N = 4 3. değer olan 40 3N = 4 9. değer olan 80 Q75 Q Q = = 0 1

13

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir.

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Dr. Sedat Şen 1 Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Değer nedir? Bir veriyi (puanlar dizisini)

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

TEST VE MADDE ANALİZLERİ

TEST VE MADDE ANALİZLERİ TEST VE MADDE ANALİZLERİ Madde güçlüğü Madde ayırt ediciliği Madde varyansı ve madde standart sapması Madde güvenirliği Çeldiricilerin işlerliği Test Analizleri Merkezi Eğilim(Yığılma Ölçüleri) Merkezi

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

MADDE VE TEST ANALİZİ. instagram: sevimasiroglu

MADDE VE TEST ANALİZİ.  instagram: sevimasiroglu MADDE VE TEST ANALİZİ Sunu Sırası Madde Analizi Madde Güçlüğü Madde Ayırıcılık Gücü Test Analizi Dizi Genişliği Ortanca Ortalama Standart Sapma Testin Ortalama Güçlüğü Testin Çarpıklık Düzeyi Test Güvenirliği

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu 2013-2014 Eğitim Öğretim yılından itibaren Fakültemizin kayıtlı tüm öğrencilerinin (hem eski hem de yeni müfredata tabi olan öğrencilerin) başarı notları

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Örnek...3 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...3 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Toplumsal nitelikteki olaylarla ilgili sayısal (kantitatif) verileri toplamak, bu verileri analiz etmek ve bunlardan sonuçlar çıkarılmasında kullanılan matematiğe dayalı bilim dalına istatistik

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR)

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) SAÜ 5. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. HASSAS OLMAYAN ORTALAMALAR 1.1. Mod (Tepe Noktası) 1.1.1.1. Basit Serilerde Mod 1.1.1.2.

Detaylı

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ İstatistiK Yrd.Doç.Dr. Levent TERLEMEZ istatistik birimlerin ya da bireylerin sayılabilir, tartılabilir ve ölçülebilir özellikleri ile ilgili bilgilerin yani verilerin toplanması toplanan verilerin açık

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 8. HAFTA Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 6. SUNUM Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Ders 5: ÖLÇME VE DEĞERLENDİRME. Prof. Dr. Tevhide Kargın

Ders 5: ÖLÇME VE DEĞERLENDİRME. Prof. Dr. Tevhide Kargın Ders 5: ÖLÇME VE DEĞERLENDİRME Prof. Dr. Tevhide Kargın Ölçme ve Değerlendirme Ölçme (measurement), bireylerin ya da nesnelerin belirli özelliklere sahip olup olmadığının, sahip ise, sahip oluş derecesinin

Detaylı

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ 28.07.2010 SENATO 2010/7-I BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ Amaç MADDE 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

ACİL SAĞLIK HİZMETLERİ

ACİL SAĞLIK HİZMETLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ACİL SAĞLIK HİZMETLERİ İSTATİSTİKSEL İŞLEMLER II 462I00008 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan

Detaylı

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU İçerik Giriş... 2 Puanlama... 2 Puanların Dağılımı... 3 Klasik Test Kuramına Göre Madde İstatistikleri... 4 Madde zorluk katsayıları...

Detaylı

MATEMATİK DENEMESİ +3

MATEMATİK DENEMESİ +3 MATEMATİK DENEMESİ +3 1. 0,3 1 2 + 0,5 4. a ve b pozitif tamsayılar ve a

Detaylı

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi (KTÜ) Ön Lisans ve Lisans

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği BÖLÜM 3 Ölçme Araçlarında Bulunması Gereken Nitelikler Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Ölçme Araçlarında Bulunması Gereken Nitelikler Geçerlik Güvenirlik Kullanışlılık Geçerlik Geçerlik,

Detaylı

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır.

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır. : OLASILIK VE 2. BÖLÜM: PERMÜTASYON, KOMBİNASYON, OLASILIK VE ISTATISTIK 1. Verilen bir gerçek yaşam durumuna uygun serpilme grafiği ve kutu grafiği çizer ve bu grafikler üzerinden çıkarımlarda bulunur.

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ÖLÇME VE DEĞERLENDİRME Ders No : 0310380127 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 3 Ders Bilgileri Ders Türü Öğretim Dili

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ Amaç Madde 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması ile ilgili esasları

Detaylı

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı, Avrasya Üniversitesi bünyesindeki önlisans ve lisans programlarındaki ölçme ve değerlendirmeye

Detaylı

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı Adana Bilim ve Teknoloji Üniversitesi ne bağlı fakülte, yüksekokul ve enstitülerde

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) <

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) < Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 6 Kasım 2008 Matematik Soruları ve Çözümleri. Aşağıdaki kesirlerin en büyüğü hangisidir? 0 A) B) 2 2 C) 3 2 D) 22 24 E)

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

TÜRK-ALMAN ÜNİVERSİTESİ LİSANS ÖLÇME VE DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

TÜRK-ALMAN ÜNİVERSİTESİ LİSANS ÖLÇME VE DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar TÜRK-ALMA ÜİVERSİTESİ LİSAS ÖLÇME VE DEĞERLEDİRME YÖERGESİ BİRİCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MADDE 1 - (1) Bu düzenlemenin amacı, Türk Alman Üniversitesi bünyesindeki lisans programlarında

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ İSTATİSTİĞE GİRİŞ ÜNİTE 1 TEMEL KAVRAMLAR İSTATİSTİĞİN TANIMI İstatistik; herhangi bir konuyla ilgili verilerin toplanması, düzenlenmesi, özetlenmesi, sunulması, uygun yöntemlerle analizi ve bu analizlerle

Detaylı

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1- (1) Bu yönergenin amacı, Kahramanmaraş Sütçü İmam Üniversitesi

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ATATÜRK İLKELERİ VE İNKILAP TARİHİ I Ders No : 0310330040 Teorik : 2 Pratik : 0 Kredi : 2 ECTS : 2 Ders Bilgileri Ders Türü

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ. Bağıl Değerlendirme Sistemi

T.C. KIRIKKALE ÜNİVERSİTESİ. Bağıl Değerlendirme Sistemi T.C. KIRIKKALE ÜNİVERSİTESİ Bağıl Değerlendirme Sistemi Bağıl Değerlendirme Sistemi Üniversitemizde 2013-2014 eğitim öğretim yılından itibaren birimlerde yapılan seviye tespit sınavları ile yabancı dil

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

SIKÇA SORULAN SORULAR

SIKÇA SORULAN SORULAR SIKÇA SORULAN SORULAR 1- Bağıl değerlendirme sistemi nedir; nasıl hesaplanır? Cevap: Bağıl sistemin esası, aynı sınıfta olan ve aynı dersi alan öğrencilerin başarılarının sınıf ortalamasına göre belirlenmesidir.

Detaylı

ÖLÇME VE DEĞERLENDİRME

ÖLÇME VE DEĞERLENDİRME ÖLÇME VE DEĞERLENDİRME Ölçme ve değerlendirme süreci olmadan planlı bir eğitim süreci söz konusu olamaz. Planlı eğitim sürecinde cevap verilmesi gereken bazı sorular Cevap aranan soru Ortaya çıkan eğitim

Detaylı

M d a d dd e A l na i li i z

M d a d dd e A l na i li i z Mdd Madde Analizi i Madde: Ölçme araçlarının (testlerin, ölçeklerin, vb.) kendi başına ş puanlanabilen en küçük birimidir. Ölçme sonuçlarına dayalı olarak bir testi oluşturan ş maddeler analiz edilerek

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE İSTATİSTİKLERİ

EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE İSTATİSTİKLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ, İZLEME VE DEĞERLENDİRME DAİRE BAŞKANLIĞI 2015-2016 EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı