HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER"

Transkript

1 İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER Araş. Gör. Dr. Handan YOLSAL İstanbul Ünverstes İktsat Fakültes Ekonometr Bölümü

2 180 ÖZET Modern fnansal ekonomnn en öneml problemlernden br hsse sened pyasasında beklenen getr ve rsk arasındak lşkdr. Tek br hsse senednn getrlern tahmn çn genellkle Fnansal Varlıkları Fyatlandırma Model (FVFM) kullanılırken, portföy getrlern tahmn çn Fama-French (F-F) üç faktör model önerlr. Beklenen getrler FVFM de yalnızca pyasa rsk prm tarafından açıklanırken, F-F model çn frma büyüklüğü ve defter değer/ pyasa değer oranı değşkenler de önemldr. Bu çalışmanın amacı İstanbul Menkul Kıymetler Borsasında beş yıllık dönemde aylık ver kullanılarak tek tek hsse senetler çn k modeln performansını karşılaştırmaktır. ABSTRACT One of the most mportant problems of modern fnancal economcs s the relaton between rsk and expected return n the stock market. The Captal Asset Prcng Model (CAPM) s generally used for estmaton of returns on ndvdual stocks and the Fama-French (F-F) three factor model s recommended for estmaton of portfolo returns. Whle the expected returns are only explaned dependng on market rsk premum n the CAPM, frm sze and book-to-market equty ratoare addtonally mportant varables n the F-F model. The purpose of ths paper s to compare the performance of these two models for ndvdual stocks on the İstanbul Stock Exchange usng fve years of monthly data. GİRİŞ Sermaye pyasalarının en öneml sorunlarından br getr ve rsk arasındak lşky tahmn etmektr. Hsse sened getrlernn tahmn; portföy yönetm, bütçeleme ve performans değerleme gb pek çok fnansal kararın merkeznde yer aldığından, gerek kurumsal yatırımcılar, gerekse breysel yatırımcılar açısından önem taşımaktadır. Beklenen getr ve rsk arasındak lşky açıklayablmek amacıyla gelştrlen modeller tek endeks modeller (sngle ndex model) ve çoklu endeks modeller (mult-ndex veya mult-factor model) olmak üzere k grupta toplanmaktadır. Tek endeks model olarak gelştrlen fnansal varlıkları fyatlandırma model (FVFM- Captal asset prcng model) beklenen getr ve rsk arasında lşk kurarak, rskn nasıl ölçüleceğne dar tatmn edc tahmnler yapmayı amaçlamaktadır (Cuthbertson,1996: ). Ancak bu model dayandığı çok sayıdak bastleştrc varsayım nedenyle, uygulamada oldukça zayıf kalmaktadır. Modele getrlen en öneml eleştr beklenen getry tek br rsk faktörüne bağlı olarak açıklamaya çalıştığı, dolayısıyla yetersz olduğu yönündedr. Böylece bu modele başka

3 181 rsk faktörlernn de eklenmes le çoklu endeks modeller gelştrlmştr. Bu noktada br pyasada fnansal varlıkları rasyonel olarak fyatlandırablmek çn başlıca k teork yaklaşım oluşturulmuştur. Bunlardan br arbtraj unsurlarına dayanan Arbtraj fyatlandırma teors (APT) dğer se uluslararası denge unsurları üzerne kurulan zamanlar arası FVF (Intertemporal CAPM-ICAPM) modeldr (Campbell, Lo, MacKnley, 1997:19). Fama ve French tarafından gelştrlen üç faktör model de son yıllarda yaygın olarak kullanılan çok endeks modellerndendr. Uygulamada tek br hsse senednn getrs çn FVFM önerlrken, portföy getrsn tahmn etmek söz konusu olduğunda üç faktörlü Fama-French (FF) model önerlmektedr. Bu çalışmada amaç; br portföyün beklenen getrs yerne, tek tek hsse sened bazında beklenen getry önce FVFM le ardından F-F üç faktör model le tahmn etmek ve böylece modellern performanslarını kıyaslamaktır. Çalışmanın brnc bölümünde fnansal varlıkları fyatlandırma modelnn teork çerçeves ve tahmn sürec, knc bölümde se Fama ve French tarafından gelştrlen üç faktör modelnn ne şeklde kurulduğu ve lave rsk faktörlern temsl eden değşkenlern nasıl oluşturulduğu anlatılacaktır. Üçüncü bölümde se İstanbul menkul kıymetler borsasından seçlen 100 hsse senednn aylık getrler, FVFM ve F-F üç model yardımıyla ayrı ayrı tahmn edlerek; her k modelle yapılan tahmnlern sonuçları karşılaştırılacaktır. 1. FİNANSAL VARLIKLARI FİYATLANDIRMA MODELİ Modern portföy teorsnde beklenen getr le rsk arasındak lşky tahmn etmekte Fnansal Varlıkları Fyatlandırma Model (FVFM-Captal Asset Prcng Model:CAPM) kullanılmaktadır. FVFM; rskten kaçınan ve rasyonel davranan br yatırımcının kârını maksmze etmek amacıyla oluşturacağı portföyü; Ver getr düzeynde rskn mnmze edecek, Ver rsk düzeynde se beklenen getrsn maksmze edecek şeklde seçeceğn varsayar. Böyle br modelde portföy rsknn ölçüsü olarak portföy varyansı kullanılır ve bu model etkn ortalama-varyans model (mean-varance effcent model) olarak adlandırılır.(fama- French, 004:) Bu durumda beklenen getr ve rsk arasındak lşknn test edleblmes çn, portföyün etkn portföy olması, dğer br fade le pyasadak fnansal varlık fyatlarının tüm yatırımcılara açık olması gerekr. Böyle br pyasada; t-1 dönemnde fnansal varlıkların fyatları tüm yatırımcılara açık olduğundan, yatırımcılar varlık getrlernn t dönemne lşkn bleşk dağılımı üzernde hemfkrdr. Pyasada rsksz br borç alma ve verme oranı mevcuttur k, bu oran yne tüm yatırımcılar çn aynıdır ve alınan veya verlen borcun mktarına bağlı değldr. Böyle br pyasada yatırımcı beklenen getrsn yükseltmek stedğnde, daha yüksek br oynaklığı (volatlty) veya rsk kabul etmek zorunda kalacaktır. Bu tür pyasalar blgye dayalı etkn pyasalardır. Etkn br pyasada FVFM; portföyün mnmum varyans sınırında olması gerektğn söyler. FVFM ne göre,. fnansal

4 18 varlığın beklenen aşırı getrs (beklenen getr (H.Levy,1978:643); rsksz varlığın getrs) E(R )-R f = [E(R m ) R f ] (1) olarak tanımlanır. Burada R,. Fnansal varlığın getrs; R f, rsksz varlığın getrsdr k tahmn dönem boyunca sabt varsayılır. R m, pyasa portföyünün getrsdr. Bu modelde pyasa portföyü dünyadak tüm fnansal varlıkları çeren ve gözlenemeyen br portföydür. se; =Cov(R,R m )/ şeklnde.varlığın pyasa portföyüne bağlı m sstematk rskdr ve sstematk rsk portföyün çeştlendrlmes le ortadan kaldırılamayan veya azaltılamayan rsk olarak tanımlanmaktadır. Beta katsayısı pyasa portföyündek değşmelere bağlı olarak hsse sened getrlernn duyarlılığının ölçüsüdür ve. varlığın getrs le pyasa getrs arasındak doğrusal regresyon modelnn eğmdr. se, pyasa portföy getrsnn varyansıdır ve [E(R m ) R f ] de m pyasa portföyünün rsk prmdr. Kurulan bu modelde amaç sstematk rsk ölçüsü y tahmn etmektr. Bu tahmn yapılırken (1) numaralı denklemde beklenen aşırı getrlerden yararlanılmıştır. Ancak uygulamada gerçekleşen değerler söz konusu olduğundan modellerde hsse senetlernn gerçekleşen ham getrler (R ) veya gerçekleşen aşırı getrler ( R -R f ) kullanılmaktadır. FVFM k aşamada tahmn edlr. İlk aşamada. hsse senedne at ham getrler kullanılarak (H.Levy,1978: ), R t = + R mt + t=1,,t 0 (-a) t veya aşırı getrler kullanılarak, R t - R f = + (R mt -R f )+ t=1,,t 0 (-b) t zaman sers regresyonunun tahmn yapılır. R t,. varlığın t dönemndek getrsn gösterrken, saf hata termdr ve sstematk olmayan portföy rskn dğer br fade t le çeştlendrme le ortadan kaldırılablen rsk gösterr. (-a) ve (-b) modellernde, pyasa portföyünün getrs sıfırken,. hsse senednn getrsn vermektedr. FVFM nn geçerl olduğu br pyasada tüm hsse senetler çn =0 olmalıdır.

5 183 İknc aşamada se, (-a) veya (-b) zaman sers regresyonlarından tahmn edlen ˆ sstematk rsk değerler açıklayıcı değşken olarak; R ˆ 0 1 =1,,N (3-a) veya R R f ˆ 0 1 =1,,N (3-b) şeklndek çapraz kest vers regresyonunda ortalama getrler açıklamak amacıyla kullanılmaktadır. Burada 1 =R m -R f rsk prm regresyon doğrusunun eğmdr ve statstksel olarak anlamlı ve poztf br katsayı olduğu varsayılmıştır. Aks takdrde beta hsse senetlernn aşırı getrlern açıklamakta yetersz kalacaktır. FVFM le hsse senetlernn getrler tahmn edlrken; hsse sened fyatlarında temettü ve bölünmelere lşkn düzeltme yapılıp yapılmadığı, hsse sened getrs olarak ham getrlern m yoksa aşırı getrlern m kullanıldığı, kullanılan ver sıklığı ve zaman dönem, pyasa portföyünü temslen hang endeksn kullanıldığı önemldr. FVFM çerçevesnde temettü ödemeler ve hsse sened bölünmelernn senet fyatlarına yansıtıldığı varsayılmaktadır. Bu nedenle çalışmalarda genellkle düzeltlmş hsse sened fyatları kullanılmaktadır. FVFM nn tahmnn yaparken önerlen, nceleme dönemn mümkün olduğunca uzun olması ve böylece gözlem sayısının artırılmasıdır. Betayı tahmn etmek çn uzun dönem kullanılması se, tahmn dönem çnde gerçek betada meydana gelecek değşmeler tahmne yansıtılamayacağından, yapılacak tahmnn sapmalı olmasına yol açar. Bunu engellemek çn tahmn dönemn kısaltmak yoluna gdlmektedr. Bu durumda da gözlem sayısı azalacaktır. Bu sakıncayı gdermek amacıyla ver sıklığı artırılmaktadır. Örneğn beş yıllık dönemde aylık verler kullanmak yerne k yıllık dönemde haftalık ver veya br yıllık dönemde günlük verlerden yararlanılmaktadır. Ancak bu durumda da dönem kısalıp, ver sıklığı artıkça; ver durağanlıktan uzaklaşmakta ve tahmnn etknlğ azalmaktadır. Yapılan çalışmalarda çeştl dönem ve

6 184 ver sıklıkları çersnde en makul olanın beş yıllık aylık ver kullanımı olduğu görülmüştür (Bartholdy, Peare, 003:5-14). FVFM de pyasa endeks tüm dünyadak menkul kıymetler çerdğ gb gayrmenkuller, beşer sermayey, tüketm malları vs. çerdğnden uygun br temslcsn bulmak oldukça zordur. Pyasa endeks temslcs olarak genellkle lgl ülkelerdek borsa bleşk endeksler seçlr. Örneğn ABD de yaygın olarak Standard & Poor s Composte Index kullanılmaktadır. Ancak son yıllarda yalnızca borsa endekslernden değl, bu endekslern yanı sıra ekonom endeksler ve gayrsaf mll hasıla gb ölçülerden de yararlanılmaktadır. Burada amaç ekonomnn her sektöründek mal ve hzmet değerlernn endeks tarafından temsl edlmesn sağlamaktır.. FAMA-FRENCH ÜÇ FAKTÖR MODELİ Fnansal varlıkların rasyonel olarak fyatlandırıldığı pyasalarda, FVFM beklenen getrler tek br rsk faktörüne bağlı olarak tahmn etmeye çalıştığı çn eleştrlmştr (Campbell, Lo, MacKnley,1997:18-184,19-). Rasyonel fyatlandırma bu tp modellere başka rsk faktörlernn de dahl edlmesn gerektrmektedr. Bu amaçla yapılan çeştl uygulamalı çalışmalarda modele frma büyüklüğü, fnansal kaldıraç oranı, fyat-kazanç oranı, nakt akışı, defter değer, frmanın geçmş dönem satışlarındak büyümeler, uzun dönem geçmş getrler, kısa dönem geçmş getrler gb çeştl değerler yen rsk faktörler olarak dahl edlmştr (Fama-French,199:47). Ortalama getrlerle bu değerler arasında kurulan k değşkenl bast lşkler çok güçlüdür. Ancak çoklu testlerde frma büyüklüğü ve defter değer bleşmnn; kaldıraç oranı, fyatkazanç oranı gb frmanın dğer karakterstk değerlernn ortalama getrler üzerndek etksn temsl edebldğ görülmüştür (Fama, French, 199: 47-49). Bunun üzerne Fama ve French (F-F) tarafından beklenen getrler tahmn etmek amacıyla FVFM ne alternatf olarak üç faktör model önerlmştr. Bu modele aşırı getrler açıklamaya tek br rsk faktörünün yeterl olmayacağı düşünces le frma büyüklüğü ve lgl frmaya at defter değer/pyasa değer oranı lave k faktör olarak eklenmştr. Üç faktör modelne göre hsse sened fyatlarının rasyonel olarak belrlendğ br pyasada, senede lşkn rskler çok boyutludur. Rskn br boyutu frma büyüklüğü ken, dğer boyutu defter değer / pyasa değer (DD/PD) oranıdır. Modelde frma büyüklüğünü temslen lglenlen hsse senednn pyasa değer kullanılmaktadır. Hsse senednn pyasa değer (PD), senedn fyatı le şlem gören hsse sened sayısı çarpılarak bulunur. Pyasa değernn ortalama getrlern pyasa betası tarafından açıklanmasına lave br katkı yaptığını görülmüştür. Öyle k, düşük PD ne sahp küçük hsselern ortalama getrler daha yüksekken, tersne yüksek PD ne sahp hsselern ortalama getrlernn daha düşük olduğu gözlenmştr (Fama-French, 1995: ). Frmaların kazanç beklentlern açıklayan dğer br faktör se, defter değer/ pyasa değer (DD/PD) oranıdır. Düşük DD/PD ne sahp hsse senetlernn yüksek DD/PD ne sahp senetlerden daha kârlı olduğu saptanmıştır. Frmanın düşük DD/PD ne

7 sahp olması, yüksek senet fyatına ve yüksek ortalama getrlere sahp olduğu anlamındadır (Fama-French, 1995: 13). 185 FVFM tüm bu değşkenlern neden olduğu değşmler yakalayamamaktadır. F-F üç faktör model se hsse senetlernn pyasa değer le defter değer/pyasa değer oranlarını temslen oluşturulan küçük eks büyük (KEB) ve yüksek eks düşük (YED) değşkenlern lave rsk faktörler olarak modele dahl etmştr. KEB ve YED ncelenen hsselere at frma büyüklüğü ve defter değer le lgl rsk faktörlerdr. KEB ve YED y oluşturablmek çn lglenlen hsse senetlernn tümünü çeren portföy altı ayrı alt portföye ayrılır. Analze alınan tüm hsseler her t yılının 30 hazran tarh tbaryle frma büyüklüklerne göre sıralanır. Frma büyüklüğü hsse sened fyatı le şlem gören hsse sened sayısının çarpımından oluşan pyasa değer (PD) yardımıyla belrlenr. Buna göre hsseler medyan PD değerne bağlı olarak büyük (B) ve küçük (K) portföy olmak üzere k gruba ayrılır. Ardından defter değer/pyasa değerne (DD/PD) göre büyükten küçüğe doğru sıralanan hsse sened getrler % 10 luk dlmlere ayrılarak, lk %30 luk dlm düşük (D), sonrak %40 lık dlm orta (O) ve üsttek %30 luk dlm yüksek (Y) değerl portföyü oluşturmak üzere üç gruba bölünür. Böylece k PD ve üç DD/PD grubunun kesşmnden K/D, K/O, K/Y, B/D, B/O, B/Y olmak üzere altı portföy oluşturulur. Burada örneğn K/D portföyünün çerdğ hsse senetler, küçük PD ve düşük DD/PD ne sahp olan hsseler grubuna dahldr. Böylece; KEB: üç küçük hsse portföyün (K/D, S/O, K/Y) bast artmetk ortalama getrs le üç büyük hsse portföyün bast artmetk ortalama getrs arasındak farktır. Böylece KEB aynı defter değer oranı le ağırlıklandırılmış küçük ve büyük hsselerden oluşan portföylern ortalama getrler arasındak fark olarak tanımlanır. YED: yüksek k DD/PD portföyünün (K/Y, B/Y) bast artmetk ortalama getrs le düşük k DD/PD portföyünün (K/D, B/D) bast artmetk ortalama getrs arasındak farktır. Böylece YED aynı frma büyüklüğü değer le ağırlıklandırılmış düşük ve yüksek değerdek DD/PD portföylernn ortalama getrler arasındak fark olarak tanımlanır (bkn: K. R. French homepage). Bu şeklde oluşturulan lave k rsk faktörü le F-F üç faktör model aynen FVFM de olduğu gb k aşamada tahmn edlr. Modeln lk aşamasında ham getrlerle; R t 1 Rmt KEB 3 YED t t=1,,t 0 (4-a) veya aşırı getrlerle, R t R f 1 Rmt R ft ) KEB 3 ( YED t=1,,t 0 (4-b) t

8 186 şeklndek zaman sers regresyonu tahmn edlr. Burada (R m R f ), pyasa rsk prm ken, KEB frma büyüklüğü le lgl rsk prm ve YED defter değer / pyasa değer le lgl rsk prmlerdr. ˆ 1, ˆ ˆ, 3 se bu faktörlere karşı duyarlılıkları gösteren eğm parametrelerdr. Modelde düşük kazançlı zayıf frmalar yüksek DD/PD ne sahp olduğundan poztf KEB le YED eğm vermeler beklenmektedr. Bu frmaların ortalama gelecek getrlernn yüksek olacağı beklents hâkmdr. Aksne yüksek kazanç getren güçlü frmaların düşük DD/PD ne sahp ve negatf YED eğm ve düşük gelecek getrler vermeler beklenmektedr (Fama-French, 1996:56). elde edlen Tahmnn lk aşamasında (4-a) veya (4-b) numaralı zaman sers denklemnden ˆ, ˆ, ˆ 1 3 tahmncler daha sonra FVFM de olduğu gb, R ˆ ˆ ˆ =1,,N (5-a) veya R ˆ ˆ ˆ =1,,N (5-b) R f çapraz kest regresyonunda açıklayıcı değşken olarak ortalama getrler tahmn etmek amacıyla kullanılır. 3. VERİ TASARIMI, ÖRNEK SEÇİMİ VE UYGULAMA Çalışmanın bu aşamasında FVFM le F-F üç faktör modellern uygulayarak, tahmn performanslarını kıyaslamak amacıyla 1999 yılının temmuz ayından 004 yılının ağustos ayına kadar İstanbul Menkul Kıymetler Borsası nda (İMKB) ulusal pazarda şlem gören 100 hsse sened seçlerek ncelenmştr yılında kurulan İMKB, yetklern kend sorumluluğu altında bağımsız olarak kullanan ve Sermaye Pyasası Kurulu nun gözetm ve denetm altında olan tüzel kşlğ haz br kamu kurumudur. Analzn başlangıç dönem olan 1999 yılında borsaya kote olmuş ve ulusal pazarda şlem gören 56 şrket ve temmuz ayı tbaryle mlyar TL lk şlem hacmne sahp İMKB, 004 yılı ağustos ayı tbaryle 71 şrket ve mlyar TL ye ulaşmış şlem hacm le gelşmekte olan br pyasadır yılı temmuz ayında İMKB de ulusal pazarda şlem gören hsse senetlernn pyasa değer mlyar TL ve defter değer / pyasa değer oranı 0.18 ken, bu değerler 004 yılı ağustos ayında sırasıyla mlyar TL ve olmuştur. Hsse senetler seçlrken nceleme dönem çnde ulusal pazarda tüm dönemlerde kesntsz olarak şlem gören,

9 pyasa değer ve defter değerler tam olarak yayınlanan hsseler olmalarına dkkat edlmştr. 187 Çalışmada pyasa değer ve defter değer/pyasa değer oranına göre oluşturulan tüm portföylerde, hsse senetlernn temettü ve hsse sened bölünmelerne göre düzeltlmş ay sonu kapanış fyatlarından hesaplanan getrler kullanılmıştır. Araştırmada kullanılan frmalar fnansal pyasalarda faalyet göstermeyen frmalar arasından seçlmştr. Fnansal pyasalarda faalyet gösteren frmaların yüksek fnansal kaldıraç oranlarına sahp olması beklendğnden bu tür frmaların dğerler le aynı analzde yer almasının sonuçları etkleyeceğ düşünülmektedr (Fama-French, 199:49). Blanço ve gelr tablolarına lşkn verlern kullanıldığı çalışmalarda, muhasebe verlernn genellkle geç açıklanmasından dolayı oluşacak br sapmayı önlemek amacıyla, mal yıl sonu le analz dönem arasında 6 aylık br boşluk olmasına dkkat edlmektedr. Bu nedenle KEB ve YED değşkenler oluşturulurken t-1 yılının mal yıl sonu (31 aralık) defter değer / pyasa değer verler t yılının temmuz ayından t+1 yılının hazran ayına kadar gerçekleşen hsse sened getrler le lşklendrlmştr. Defter değer negatf olan frmalar analze dahl edlmemştr. Pyasa değerne at verler se t yılı ortasında (30 hazran) gerçekleşen değerlerdr. Fama French model le FVFM nn kıyaslanırken, en uygun sayılan dönem uzunluğu 5 yıl olarak belrtldğnden, bu çalışmada da 5 yıllık br dönem alınmıştır (Bartholdy, Peare, 003: 5-14). Pyasa portföyünün temslcs olarak İMKB ulusal-100 bleşk endeks seçlmştr. Rsksz varlığı temslen üç aylık hazne bonolarının faz oranları kullanılmıştır. Ancak ülkemzde aynı vadeye sahp sürekl br hazne bonosu sers bulmak oldukça güçtür (Erol s157). Üstelk söz konusu dönemde yaşanan yüksek enflasyon oranı ve yüksek ç borç stokları dolayısıyla, analz dönem başında bono faz oranları yüksekken, ç borçlanma vade yapısının zaman çnde değştğ gözlenmştr. Bu durumda hazne bonosu sersn rsksz olarak tanımlamak da güçleşmektedr. Bu nedenlerle hazne bonosu yerne bankalar arası faz oranları sersnn kullanılması düşünülmüştür. Ancak araştırma dönemde bankalar arası faz oranları sers ncelendğnde borç alma oranları le borç verme oranları arasındak farkın oldukça yüksek olduğu gözlenmştr. Bu nedenle sakıncalarına rağmen çalışmada hazne bonosu sers kullanılmıştır. Aylık hazne bonosu faz oranları hesaplanırken üç ay vadel hazne bonolarına at ağırlıklı faz oranlarından yararlanılmıştır. Üç ay vadel hazne bonosu hracının gerçekleşmedğ dönemde se gerçekleştrlen en kısa vadel bono hraçlarının faz oranları alınmıştır. Böylece üç aylık hazne bonosu oranları; R 3 1 R 1/ 1 f ( ay) f ( üçay)

10 188 şeklnde aylık faz oranlarına çevrlerek kullanılmıştır. Burada R füçay üç aylığa dönüştürülmüş hazne bonosu faz oranları ve R fay br aylığa dönüştürülmüş hazne bonosu faz oranlarıdır. Tablo 1: Analzde kullanılan hsse senetlerne at 7/1999-8/004 dönemne lşkn verler Ortalama Standart Sapma Maksmum Mnmum R m R f R m -R f KEB YED İMKB ulusal-100 bleşk endeksnn ortalama getrs yaklaşık olup, standart sapması 0.18 dr. Aynı dönemde hazne bonosu faz oranları ortalaması ve standart sapması se olarak gerçekleşmştr. Buradan 1999 yılının temmuz ayından 004 yılının ağustos ayına kadar ncelenen dönemde İMKB ulusal-100 endeks getrlernn hazne bonosu getrlernden yaklaşık üç kat daha oynak (volatle) olduğu görülmektedr. Pyasanın oynaklığı maksmum ve mnmum getr değerlernden de görülmektedr. Borsaya yatırım yapan pyasa oyuncularının beklenen getrler endeksn tarhnde ulaştığı maksmum getr değer le tarhnde düştüğü mnmum getr değerler arasında değşmştr. İMKB ulusal 100 endeksnn ortalaması hazne bonosu faz getrler ortalamasının üzernde olduğundan pyasanın aşırı getrs olarak tanımlanan R m -R f farkı poztf olmuştur. Ancak aşırı getr ortalamada % 0.68 gb oldukça küçük br değerdr ( Her ay gerçekleşen aşırı getrler ve tablodak dğer değşkenlere at verler çn bkn: EK1). Aşırı getrler en yüksek değern pyasa portföyünün en yüksek olduğu tarh olan tarhnde ve en düşük değern yne tarhnde almıştır. KEB ve YED değşkenler hesaplanırken, hsse senetlernn her t yılının 30 hazran tarhndek pyasa değerler (PD), medyan değerlerne göre sıralanmış ve t-1 yılının mal yıl sonu olan 31 aralık tarhnde gerçekleşen defter değer / pyasa değer (DD/PD) verler t yılının temmuz ayından t+1 yılının hazran ayı sonuna kadar %10 luk dlmlere ayrılarak oluşturulan altı portföy kullanılmıştır. Frma büyüklüğü temslcs olan KEB portföyünde ortalama değer le kayıp gerçekleşrken, YED portföyünde değer le kazanç gerçekleşmştr. Analzde KEB ve YED değşkenlern oluşturmak amacıyla kurulan altı portföye lşkn statstkler Tablo de sunulmuştur.

11 189 Portföyler Ortalama getr Tablo : Oluşturulan Portföyler Standart sapma Maksmum Mnmum K/Y K/O K/D B/Y B/O B/D K/Y portföyü, pyasa değer küçük ve defter değer/pyasa değer oranı yüksek olan portföydür ve bu portföyün getrs değer le beklendğ gb dğer portföylerden daha yüksektr. Yne K/D portföyü, pyasa değer küçük ve defter değer/pyasa değer düşük olan portföy olup, getrs le en düşük olan portföy olarak karşımıza çıkmaktadır. Tüm portföyler en yüksek getr değerlern tarhnde, en düşük getr değerlern se tarhnde almıştır. Oluşturulan bu portföyler yardımıyla; FVFM ve F-F üç faktör model le analze dahl edlen 100 hsse sened çn tek tek getrler tahmn edlerek modellern performansları kıyaslanmıştır. Hsse sened getrler, her hssenn kend pyasa değer portföydek tüm hsselern bleşk pyasa değerne bölünerek değer ağırlıklı (valueweghted) olarak kullanıldığı gb, her hsse, analzlere eşt ağırlıklı (equal-weghted) olarak da alınablmektedr (Fama, French, Booth, Snquefeld, 1993 :38). Bu çalışmada hsse sened getrler eşt ağırlıklı varsayılmıştır. Hsse senetlerne lşkn getrler, ham getrler ve aşırı getrler şeklnde ayrı ayrı kullanılarak, önce FVFM çn (-a) ve (-b) zaman sers regresyonları tahmn edlmştr. Ardından da kıyaslama yapmak amacıyla (4-a) ve (4-b) F-F üç faktör modeller tahmn edlmştr. Modeller kıyaslayablmek çn belrllk katsayısından yararlanılmıştır ve tüm modellern kıyaslamalarında düzeltlmş R değerler kullanılmıştır. Söz konusu dört zaman sers regresyonu temmuz 1999-ağustos 004 arasında 100 hsse senedne ayrı ayrı uygulanarak, parametre tahmnlerne at ortalama değerler Tablo 3 de sunulmuştur. 1 1 (-a), (-b), (4-a), (4-b) denklemler le tahmn edlen regresyon modellerne lşkn tüm bulgular, burada rapor edlmemekle brlkte stendğnde yazar tarafından temn edlecektr.

12 190 Tablo 3: Zaman Sers Regresyon Bulguları Ham Getrler Aşırı Getrler FVFM F-F FVFM F-F (-a) (4-a) (-b) (4-b) ˆ ortalama st. sapma maksmum mnmum ˆ ortalama st. sapma maksmum mnmum ˆ ortalama st. sapma maksmum mnmum ˆ 3 ortalama st. sapma maksmum mnmum R ortalama st. sapma maksmum mnmum ˆ regresyon sabt (-a) modelnde 100 hsseden yalnızca 6 hsse sened çn sıfırdan farklı çıkmıştır. (-b) modelnde 5 hsse, (4-a) modelnde 4 hsse ve (4-b) de se hsse sıfırdan farklı sabt terme sahptr. Bu sonuçlar FVFM ve F-F üç faktör modelnn varsayımlarına uygundur. Gerek FVFM, gerekse F-F modellernde sstematk rsk katsayısı hsseler çn poztf ve statstksel olarak sıfırdan anlamlı derecede farklı tahmn edlmştr ve hsse senetlernn pyasa rskne karşı duyarlılığının ortalamada bre çok yakın olduğu saptanmıştır. Beta br fnansal varlığın pyasa güçlerne karşı yanıtını ortaya koyan, pyasanın br hsse senednn beklenen getrs üzerndek etksn gösteren br ölçü olduğuna göre; betanın 1 cvarında değer alması, senedn pyasa le aynı oranda hareket etmes veya aynı oranda rskl olması anlamına gelmektedr. Brn üstünde betaya sahp hsse senetler pyasanın bütününe göre daha değşken kabul edlrken, aksne betası brden küçük olan senedn fyat dalgalanmaları pyasaya göre daha küçük olmaktadır (Gürbüz, Ergncan, 004:80-8). 1 ˆ tüm

13 191 Modellermzde ncelenen 100 hsse senednn pyasa rskne karşı duyarlılığının tüm modellerde hem brbrlerne, hem de ortalamada 1 en çok yakın olduğu saptanmıştır. Bu durumda hsse senetlernn pyasa le aynı oranda hareket ettğ söyleneblr. Modellerden tahmn edlen betalar arasındak korelasyona bakıldığında; Tablo 4: Tahmn Edlen Sstematk Rskler Arasındak Korelasyon Matrs (-a) 1 ˆ (-b) 1 ˆ (4-a) 1 ˆ (4-b) 1 ˆ (-a) 1 ˆ (-b) 1 ˆ (4-a) 1 ˆ (4-b) 1 ˆ FVFM le ham getrlerden tahmn edlen betalarla aşırı getrlerden tahmn edlen betalar arasındak korelasyon %99.96 olduğuna göre FVFM nde ham getrlern veya aşırı getrlern kullanımının tahmnler çok değştrmedğ söyleneblr. Buna karşılık F- F üç faktör modelnde ham getrlerle yapılan tahmnlern aşırı getrlerle yapılan tahmnlerle lşks ancak %96.99 oranındadır. Bu durumda kullanılan ver tpnn F-F modelnn tahmnlernn başarısını etkleyeceğ söyleneblr. Betaların en yüksek değerne bakıldığında; pyasaya göre en az duyarlı senedn, 0.56 beta değer le pyasanın ancak yarısı oranında getr artışı veya azalışı göstereceğ ve bu tahmnn aşırı getrlern kullanıldığı (-b) FVFM le yapıldığı görülmektedr. Buna karşılık en yüksek beta değern veren model yne aşırı getrlern kullanıldığı F-F model olup, bu modele göre; lk beta değerne sahp hsse senednn getrs, pyasa getrsne oranla kat daha hızlı artış veya azalış getrecektr. Frma büyüklüğü le lgl rskler temsl eden KEB değşkennn getrler üzerndek etksn gösteren parametres (4-a) ve (4-b) modellernde brbrne çok yakın değerlerde tahmn edlmştr. Bu katsayı ham getrlern kullanıldığı (4-a) modelnde ortalama ken, bu değer aşırı getrlern kullanıldığı (4-b) modelnde se ortalama olarak bulunmuştur. Defter değer /pyasa değer le lgl rskler temsl eden YED değşkennn de getrler üzerndek etks (4-a) ve (4-b) modellernde hemen hemen aynı değerde tahmn edlmştr. Bu durumda F-F üç faktör modelnde ham getrlern veya aşırı getrlern kullanımının tahmnn başarısını etklemedğ söyleneblr. Getrlern tahmnnde açıklayıcı değşken olarak yer alan üç rsk prmnden yalnızca pyasa rsk, tüm modellerde statstksel olarak anlamlı eğm parametres vermştr. Böylece zaman sers analzlernde hsse sened getrlern açıklamakta pyasa

14 19 rsknn dğer tüm değşkenlerden daha başarılı olduğu ve İMKB çn frma büyüklüğü ve defter değer /pyasa değerne at rsk temslclernn bu amaçla kullanmanın tahmnlere katkı yapmadığı söyleneblr. Aynı bağımlı değşkene ve aynı örnek büyüklüğüne sahp modeller belrllk katsayısı (R ) le kıyaslamak mümkün olduğundan, modeller karşılaştırmak çn R değer kullanılmıştır. Ancak k değşkenl bast regresyon model olan FVFM le çok değşkenl br model olan F-F modeln kıyaslayablmek çn tüm modellerde R yerne serbestlk dereces düzeltmes yapılmış olan düzeltlmş belrllk katsayısından ( R ) yararlanılmıştır. Bu krtere göre daha yüksek R değerne sahp modeln daha açıklayıcı olduğu söyleneblr. Uygulanan modellern açıklayıcılık gücü ortalama olarak %60-65 cvarındadır. Örneğn ham getrlerle kurulan (-a) FVFM nde hsse sened getrlernn ancak %61 pyasa rsk prmndek değşmelerden kaynaklanmaktadır. Kalan %39 se model tarafından açıklanamamaktadır. Blndğ gb modellern açıklayıcılığı artıkça açıklanamayan kısım, dğer br fade le regresyonun hatası ( ) küçülecektr. FVFM çn t portföy çeştlendrmes le azaltılablen sstematk olmayan rskler göstermektedr. Modellern açıklayıcılığı artıkça getrlern tahmnnde sstematk rsklern önem de büyümektedr. Yapılan tüm tahmnler karşılaştırıldığında; ham getrlerle kurulan modellern aşırı getrlerle kurulan modellerden daha açıklayıcı olduğu, ancak bu açıklayıcılığın yaklaşık %0.5 kadar fazla olduğu görülmüştür. İk değşkenl FVFM den çoklu F-F modelne geçldğnde de açıklayıcılık gücünün çok fazla artmadığı görülmektedr. FVFM le F-F üç faktör model arasında İstanbul menkul kıymetler borsasında şlem gören hsse senetler üzernde 7/ /1997 dönemnde yapılan karşılaştırmalı çalışmada hem frma büyüklüğünün hem de defter değer/pyasa değer değşkennn anlamlı olduğu ve hsse senetlernn getrlern tahmnde frma büyüklüğünün daha açıklayıcı olduğu sonucuna varılmıştır. Çalışmada yalnızca zaman sers modeller kullanılmıştır (Aksu, Önder, 000, 1-4). t

15 193 Tablo 5: Çapraz Kest Sers Regresyon Bulguları PANEL A ˆ R ˆ regresyon ˆ R R F reg (3-a) FVFM ( ) ( ) reg (5-a) F-F (4.5184) ( ) ( ) ( ) PANEL B R R f 0 ˆ 1 ˆ ˆ R R F reg (3-b) FVFM ( ) ( ) reg (5-b) F-F ( ) (4.0855) ( ) ( ) Hsse sened getrlern açıklamak üzere kurulan zaman sers regresyonlarından tahmn edlen eğm parametrelerne çalışmanın bu aşamasında çapraz kest regresyonlarının bağımsız değşkenler olarak yer verlmştr. Zaman sers regresyonlarında olduğu gb tüm alternatf modeller çapraz kest regresyonlarında da tekrarlanarak, bulgular Tablo 5 de sunulmuştur. FVFM ve/veya F-F üç faktör modelnn geçerl olması halnde regresyon sabtnn zaman sers modellernde olduğu gb çapraz kest modellernde de tüm hsse senetler çn sıfır olması beklenr. Aşırı getrlern kullanıldığı modellerde regresyon sabt, modellern öngördüğü hsse senetlernn beklenen getr oranının altında veya üstünde oluşan beklenen ek getrsdr. Dğer br fade le hsse senetler denge fyatlarında se, regresyon sabt sıfır olmalıdır(gürbüz, Ergncan, 004: 65). Aksne regresyon sabtnn sıfırdan farklı olması beklenen rsksz faz haddnn gerçek hayattak rsksz faz haddnden farklı olduğu anlamına gelmektedr. Ancak regresyon sabtnn statstksel olarak sıfır olması tek başına modellern geçerl olduğunu göstermez (Erol, 1999:159). Parantez çndek değerler t statstklerdr.

16 194 Ham getrler kullanılarak tahmn edlen (3-a) ve (5-a) modeller ncelendğnde regresyon sabtlernn sıfırdan statstksel olarak farklı oldukları görülmüştür. Buna göre (3-a) da FVFM le tahmn edlen rsksz faz beklents %. ve (5-a) da üç faktör model le tahmn edlen rsksz faz beklents se %.49 olmuştur. F-F üç faktör model pyasadak rsksz faz oranını FVFM ne göre daha yüksek tahmn etmekle brlkte, bu fark yalnızca %0.9 puandır. Aynı modeller aşırı getrler kullanılarak ynelendğnde, yukarıda söz edldğ gb, regresyon sabtlernn (3-b) ve (5-b) modellernde statstksel olarak sıfırdan farklı olmadıkları görülmüştür. Ancak bu durum FVFM ve/veya F-F üç faktör modellernn geçerl olduğunu söylemeye yeterl değldr. Ham getrler kullanılarak tahmn edlen pyasa portföyüne at rsk prm FVFM de %.7 olup, statstksel olarak anlamlı ken, F-F üç faktör modelnde %. le FVFM den daha düşük ve yne statstksel olarak anlamlı tahmn edlmştr. Aşırı getrlern kullanıldığı (3-b) ve (5-b) modellernde se dkkat çeken lk nokta, ham getrler kullanılarak yapılan tahmnlere çok yakın değerler elde edlmş olmasıdır. Öyle k (3-a) da %.7 olarak bulunan pyasa rsk prm (3-b) de %.68; (5-a) da %. olarak bulunan değer se, (5-b) de %. olarak tahmn edlmştr. F-F üç faktör modelnn frma büyüklüğüne lşkn rsk prmn temsl eden parametresnn gerek (5-a) ham getrler modelnde, gerekse (5-b) aşırı getrler modelnde statstksel olarak anlamsız olduğu saptanmıştır. Bu durumda 7/1999-8/004 tarhler arasında frma büyüklüğünün, hsse senetlernn beklenen getrlernn tahmnne anlamlı br katkısının olmadığı söyleneblr. Dğer br fade le, İstanbul menkul kıymetler borsasından seçlen 100 hsse sened çn, küçük hsselern ortalama getrlernn büyük hsselern ortalama getrlernden daha yüksek olduğu dda edlemez. Defter değer/pyasa değer oranı le lgl rsk prmnn temslcs olan 3 parametres se, hem (5-a), hem de (5-b) modelnde statstksel olarak anlamlı bulunmuştur. Bu parametre her k modelde de sırasıyla %0.348 ve %0.36 olarak tahmn edlmştr. Bu durumda araştırmanın yapıldığı dönemde, seçlen 100 hsse senednn getrlernn tahmnnde; defter değer/pyasa değer oranının, pyasa rsk prm oranı le brlkte açıklayıcı olduğu söyleneblr. Böylece İMKB de seçlen 100 hsse senedne lşkn olarak, yüksek DD/PD ye sahp hsselern ortalama getrlernn düşük DD/PD ye sahp hsselern ortalama getrlerne oranla daha yüksek olması bekleneblr. Kurulan tüm çapraz kest modeller R düzeltlmş belrllk katsayısı yardımı le kıyaslandığında; (3-a) modelnn açıklayıcılığı 0.18 ken, lave edlen değşkenlerle oluşturulan F-F modelnn hsse senetlernn ortalama getrlern açıklama gücünün 0.45 olduğu görülmüştür. Aynı şeklde (3-b) modelnn açıklayıcılığı ken, (5-b) modelnn açıklayıcılığı 0.69 dur. Bu durumda gerek ham getrler, gerekse aşırı getrlerle kurulan modellerde F-F modelnn FVFM ne oranla daha yüksek açıklayıcılığa sahp olduğu söyleneblr.

17 195 ABD de yapılan çalışmalarda FVFM le dğer çok faktör modeller kıyaslandığında, hsse senetlernn çapraz kest regresyonlarının ortalama açıklayıcılığının aylık ver kullanıldığında 0.40 cvarında olduğu ve modellern 0.60 lık kısmının açıklanamadığı, günlük ver kullanıldığı durumlarda se bu oranın daha da düştüğü saptanmıştır (Roll, 1988:54). Bu durumda nceleme dönemnde İstanbul menkul kıymetler borsasında şlem gören hsse senetlernn getrlern tahmn etmek amacıyla kurulan çapraz kest regresyonlarının açıklayıcılıklarının da düşük olduğu söyleneblr. FVFM le hsse sened getrlernn yalnızca pyasa rskne bağlı olarak tahmn yeterl görülmemş ve bu modele lave rsk faktörler eklenerek, getr tahmnler yleştrlmeye çalışılmıştır. Ancak eklenen her değşken gerek ver yükünü, gerekse şlem yükünü artırıcı ntelktedr. Bu durumda eklenen değşkenlern tahmnler ne derecede yleştrdğ önemldr. Uygulamada F-F üç faktör modelnn hsse sened getrlern tahmnde R krterne göre, FVFM den daha açıklayıcı olduğu görülse de; bu yleşme en fazla % 9 cvarındadır ve bu halde ble getrlern %73.1 lk kısmı açıklanamamaktadır. Bu nedenle FVFM ne lave edlen değşkenlern katkıları sınanmalıdır. Böyle br sınama bast br F test yardımı le yapılablr. Buna göre (Gujarat, 1995: 50-53) H 0 : 0 hpotez, 3 F=[ (R F-F R FVFM)/(yen değşken sayısı)]/[(1-r F-F)/ (n- F-F dek parametre sayısı)] le test edlr. Bu test önce ham getrlern kullanıldığı (3-a) ve (5-a) modellerne uygulanarak F=5.158 değer, ardından da aşırı getrlern kullanıldığı (3-b) ve (5-b) modellerne uygulanarak F=6.978 değer bulunmuştur. Bu değer F tab =F 0.01;,96 değer le kıyaslandığında; eklenen parametrelerden en az brnn sıfırdan farklı olduğu kabul edlr. Dğer br fade le F-F modelne lave edlen değşkenlern katkı yaptığı ve gerek ham getrlern, gerekse aşırı getrlern kullanıldığı durumlarda statstk olarak FVFM den daha başarılı br model olduğu söyleneblr. Ancak bu noktada frma büyüklüğü le lgl rsk prm temslcsnn statstksel olarak anlamsız olduğu da unutulmamalıdır. F-F üç faktör model her k getr tp çn de statstk açıdan FVFM ne göre daha başarılı tahmnler verse de; tüm modellerde tahmn edlen parametre değerlernn brbrne çok yakın olduğu görülmüştür. Öyle k aşırı getrler kullanılarak (3-b), FVFM le rsk prm olarak tahmn edlrken; (5-b), F-F modelnde rsk prmler = le tek endeks modelne son derece yakın br değerde bulunmuştur. Bu durumda araştırmacı FVFM e F-F terch ederse, F-F üç faktör model çn katlanacağı ver yükünü bu sonuçları dkkate alarak değerlendrmeldr.

18 196 SONUÇ Br tek endeks model olan FVFM hsse senetlernn getrlern yalnızca pyasa rsk prmne bağlı olarak açıklamaktadır. Ancak getrlern tek br rsk faktörü le açıklanması yeterl görülmedğnden, çok endeks modeller gelştrlmştr. Bu modellerden Fama-French tarafından gelştrlen üç faktör model, getrlern tahmnnde pyasa rsk prm kadar, frma büyüklüğünün ve defter değer/ pyasa değer oranının da öneml olduğunu söylemektedr. Bu çalışmada FVFM ve F-F model İMKB den seçlen 100 hsse senednn getrler üzernde ayrı ayrı beş yıllık dönemde aylık ver kullanılarak, hem zaman sers, hem de çapraz kest vers boyutları le karşılaştırılmıştır. Bu karşılaştırma ayrıca ham getrler ve aşırı getrler yardımıyla da yapılmıştır. Elde edlen bulgular özetlenecek olursa; aşırı getrlerle kurulan gerek zaman sers, gerekse çapraz kest modellernde regresyon sabt, beklentlere uygun olarak, statstk açıdan sıfırdan farklı değldr. Ham getrlerle oluşturulan FVFM ve F-F modellernde se rsksz faz oranı brbrne çok yakın (sırasıyla %. ve %.46) tahmn edlmştr. Hem zaman sers hem de çapraz kest regresyonlarında sstematk rsk prm dama statstksel olarak anlamlı tahmn edlmştr. Ancak dğer değşkenlern modellerde hsse sened getrlern açıklamakta bu derece başarılı olduğu söylenemez. Çapraz kest regresyonlarından elde edlen en öneml bulgu, her k getr tp çn de frma büyüklüğü le lgl rsk prmnn statstksel olarak anlamsız çıkmasıdır. Defter değer/pyasa değer oranı le lgl rsk prm se anlamlı olmakla brlkte, hsse sened getrlernn tahmnne değer olarak oldukça küçük br katkı yapmaktadır. Modellerde kullanılan her k ver tp karşılaştırıldığında; FVFM ham getrlerle tahmn edldğnde sstematk rsk parametres le aşırı getrlerle elde edlen sstematk rsk parametres arasındak korelasyon gb çok yüksek br orandadır. Bu durumda FVFM çn ham getrlern veya aşırı getrlern kullanımının sonuçları etklemedğ düşünülse ble, F-F model çn aynı durum söz konusu değldr. Modellern kıyaslanmasında kullanılan R değerler özellkle çapraz kest regresyonlarında oldukça düşük olmasına rağmen, her k getr tpnde de F-F modeller FVFM e göre daha yüksek açıklayıcılığa sahptr. F-F modelnde FVFM e lave edlen değşkenlern katkı yapıp yapmadığını tespt etmek amacıyla F test uygulanmıştır. Bu teste göre, değşkenlern brlkte katkısı statstksel olarak anlamlı bulunduğu halde, frma büyüklüğü le lgl rsk prmnn anlamsız olması ve alternatf olarak önerlen modellerde parametrelern değer olarak brbrne çok yakın çıkması, yen değşkenlern yarattığı ver ve şlem yükünü göze almak konusunda araştırmacıları düşündürmeldr.

19 KAYNAKÇA 197 Aksu M.H, T. Önder, (000), The Sze and Book-to-Market Effects and Ther Role As Rsk Proxes n the İstanbul Stock Exchange, European Fnancal Management Assocaton Conference, Athens, ss.1-4. Bartholdy J, P. Peare, (003), Estmaton of excepted Return: CAPM vs Fama and French, Erşm tarh Hazran, 004. Campbell J.Y, A.W Lo, A.C MacKnley, (1997), The Econometrcs of Fnancal Markets, Prnceton Unversty Press, USA. Cuthbertson K,(1996), Quanttatve Fnancal Economcs: Stocks,Bonds and Foregn Exchange, John Wley & Sons, England. DPT Temel Ekonomk Göstergeler, çeştl sayılar, Erol Ü, (1999), Vadel İşlem Pyasaları: Teor ve Pratk, İstanbul Menkul Kıymetler Borsası, İstanbul. Fama E.F, K.R. French, (199), The Cross Secton of Expected Stock Returns, The Journal of Fnance, Vol. XLVII, No., ss Fama E.F, K.R. French, D.G. Booth, R.Snquefeld, (1993), Dfferences n the Rsks and Returns of NYSE and NASD Stocks, Fnancal Analysts Journal, January-February, ss Fama E.F, K.R. French, (1995), Sze and Book-to-Market Factors n Earnngs and Returns, The Journal of Fnance, Vol L, No:1, March, ss Fama E.F, K.R. French, (1996), Multfactor Explanatons of Asset Prcng Anomales, The Journal of Fnance, Vol LI, No:1, March, ss Fama E.F, K.R. French, (004), Captal Asset Prcng Model: Theory and Evdence,CRSP Workng Paper, No:550, Tuck Busness Workng Paper, No:03-6,ss French K.R.homepage: mba.tuck.dartmounth. edu/pages/faculty/ken. french/data_lbrary.html Gujarat, N.D, (1995), Basc Econometrcs, Lteratür Yayınları, İstanbul. Gürbüz A.O, Y. Ergncan, (004), Şrket Değerlemes: Klask ve Modern Yaklaşımlar, Lteratür Yayınları, Yayın No: 119, İstanbul. İstanbul Menkul Kıymetler Borsası Aylık Bülten, çeştl sayılar, Levy H., (1978), Equlbrum n an Imperfect Market: A Constrant on the Number of Securtes n the Portfolo, The Amercan Economc Revew, September, Vol. 68, No. 4, ss Roll R., (1988), R, The Journal of Fnance, Vol XLIII, No:, July, ss

20 198 EK 1: Aylar R m R f R m -R f KEB YED 1999: : : : : : : : : : : : : : : : : : : : : : : : : : e : : : : : : : : : : : : : : : : : :

21 Aylar R m R f R m -R f KEB YED 003: : : : : : : : : : : : : : : : : : Ortalama St.sapma t negatf

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225 Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 25, Sayı:, 20 225 FİNANSAL ANALİZDE KULLANILAN ORANLAR VE HİSSE SENEDİ GETİRİLERİ ARASINDAKİ İLİŞKİ: EKONOMİK KRİZ DÖNEMLERİ İÇİN İMKB İMALAT SANAYİ

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALİYET RAPORU Bu rapor AEGON Emekllk ve Hayat A.Ş Dengel Emekllk Yatırım Fonu nun 01.07.2011 30.09.2011 dönemne

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU

AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALİYET RAPORU Bu rapor AEGON Emekllk ve Hayat A.Ş. Dengel Emekllk Yatırım Fonu nun 01.07.2012-30.09.2012 dönemne

Detaylı

ANE-AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF

ANE-AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF AEGON EMEKLĐLĐK VE HAYAT A.Ş. DENGELĐ EMEKLĐLĐK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALĐYET RAPORU Bu rapor Aegon Emekllk ve Hayat A.Ş Dengel Emekllk Yatırım Fonu nun 01.07.2009 30.09.2009 dönemne

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

ĠMKB 100 ENDEKSĠ ĠÇĠN OPTĠMAL PORTFÖY SEÇĠMĠ MODEL ÖNERĠSĠ

ĠMKB 100 ENDEKSĠ ĠÇĠN OPTĠMAL PORTFÖY SEÇĠMĠ MODEL ÖNERĠSĠ ĠMKB 100 ENDEKSĠ ĠÇĠN OPTĠMAL PORTFÖY SEÇĠMĠ MODEL ÖNERĠSĠ ÖZET Sbel ATAN * Snan METE ** ġenol ALTAN *** Murat ATAN **** Menkul kıymetlern dğer yatırım araçlarına göre daha yüksek getrler sağlaması bunlar

Detaylı

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ Central Bank Revew Vol. 11 (January 2011), pp.1-9 ISSN 1303-0701 prnt / 1305-8800 onlne 2011 Central Bank of the Republc of Turkey http://www.tcmb.gov.tr/research/revew/ KALĐTE ARTIŞLARI VE ENFLASYON:

Detaylı

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz *

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz * Busness and Economcs Research Journal Volume. umber. 0 pp. 65-84 ISS: 309-448 www.berjournal.com Hsse Sened Fyatları ve Fyat/Kazanç Oranı Đlşks: Panel Verlerle Sektörel Br Analz * Mehmet argelecekenler

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama Anadolu Ünverses Sosyal Blmler Dergs Anadolu Unversy Journal of Socal Scences Kar Payı Polkası ve Yaşam Döngüsü Teors: İMKB İmalat Sektöründe Amprk Br Uygulama Dvdend Payout Polcy and Lfe Cycle Theory:

Detaylı

TEK ENDEKS MODELI VE MODELIN ISTANBUL MENKUL KIYMETLER BORSASINDA UYGULANMASI

TEK ENDEKS MODELI VE MODELIN ISTANBUL MENKUL KIYMETLER BORSASINDA UYGULANMASI TEK ENDEKS MODELI VE MODELIN ISTANBUL MENKUL KIYMETLER BORSASINDA UYGULANMASI Yrd. Doç. Dr. Murat KIYILAR IÜ Isletme Fakültes Fnans Anablm Dal muratky@stanbul.edu.tr Dr. Ergün EROGLU IÜ Isletme Fakültes

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Black Litterman ve Markowitz Ortalama Varyans Modelinin Beta Faktörü, Artık Dalgalanma Dereceleri ve Toplam Riskleri Yönünden Karşılaştırılması

Black Litterman ve Markowitz Ortalama Varyans Modelinin Beta Faktörü, Artık Dalgalanma Dereceleri ve Toplam Riskleri Yönünden Karşılaştırılması Volume 3 Number 4 01 pp. 43-55 ISSN: 1309-448 www.berjournal.com Black Ltterman ve Markowtz Ortalama Varyans Modelnn Beta Faktörü, Artık Dalgalanma Dereceler ve Toplam Rskler Yönünden Karşılaştırılması

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ Yrd. Doç. Dr. Murat ATAN - Araş. Gör. Gaye KARPAT ÇATALBAŞ 2 ÖZET Bu çalışma, Türk bankacılık sstem çnde faalyet gösteren tcar bankaların

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği Türkye Cumhuryet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI Kalte Artışları ve Enflasyon: Türkye Örneğ Yavuz Arslan Evren Certoğlu Abstract: In ths study, average qualty growth and upward

Detaylı

NAKĐT TEMETTÜ BĐLGĐSĐNĐN HĐSSE SENEDĐ GETĐRĐSĐ ÜZERĐNDE ÖNEMLĐ BĐR ETKĐSĐ OLUP OLMADIĞININ ĐMKB DE TEST EDĐLMESĐ *

NAKĐT TEMETTÜ BĐLGĐSĐNĐN HĐSSE SENEDĐ GETĐRĐSĐ ÜZERĐNDE ÖNEMLĐ BĐR ETKĐSĐ OLUP OLMADIĞININ ĐMKB DE TEST EDĐLMESĐ * H.Ü. Đktsad ve Đdar Blmler Fakültes Dergs, Clt 28, Sayı 2, 2010, s. 47-69 NAKĐT TEMETTÜ BĐLGĐSĐNĐN HĐSSE SENEDĐ GETĐRĐSĐ ÜZERĐNDE ÖNEMLĐ BĐR ETKĐSĐ OLUP OLMADIĞININ ĐMKB DE TEST EDĐLMESĐ * Öz Burak GÜNALP

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİMDALI

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİMDALI T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİMDALI İMKB DE YÜKSELEN PİYASA VE DÜŞEN PİYASA DÖNEMLERİNDE DURUMSAL İLİŞKİ ANALİZİ YÜKSEK LİSANS TEZİ KAHRAMANMARAŞ TEMMUZ

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195 C.Ü. İktsad ve İdar Blmler Dergs, Clt 13, Sayı 1, 2012 195 TÜRKİYE DE TİCARİ BANKACILIK SEKTÖRÜNDE REKABET DÜZEYİNİN BELİRLENMESİ (2002-2009) Abdulvahap ÖZCAN * Özet Türkye nn yaşadığı 2000 ve 2001 krzler

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES Konut Sahplğnn Belrleycler: Hanehalkı Resler Üzerne Br Uygulama Halm TATLI 1 Özet İnsanların barınma htyacını sağlayan konut, temel htyaçlar arasında yer almaktadır. Konut sahb olmayan ve krada oturan

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Dip - Zirve Relatif Performans Piyasa Çarpanları Değerlemeler TTKOM IPEKE SAHOL BIMAS TTRAK DOHOL. Düşüşü Sürenler ASELS

Dip - Zirve Relatif Performans Piyasa Çarpanları Değerlemeler TTKOM IPEKE SAHOL BIMAS TTRAK DOHOL. Düşüşü Sürenler ASELS BİST 30 Son Fyat Bu Hafta Geçen Hafta AKBNK 8,92-10,35% -2,93% ARCLK 13,55-4,24% 4,04% ASELS 10,30-7,52% -4,24% ASYAB 2,01-5,19% -0,93% BIMAS 87,75-3,31% -1,39% DOHOL 1,07-4,46% -2,61% EKGYO 3,09-4,92%

Detaylı

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna Anadolu Ünverstes Sosyal Blmler Dergs Anadolu Unversty Journal of Socal Scences Sermaye Yapısını Etkleyen Faktörler ve Fnansal Oranlar le Hsse Getrs Arasındak İlşknn ANFIS Yöntem le İncelenmes: İMKB de

Detaylı

Devalüasyon, Para, Reel Gelir Değişkenlerinin Dış Ticaret Üzerine Etkisinin Panel Data Yöntemiyle Türkiye İçin İncelenmesi

Devalüasyon, Para, Reel Gelir Değişkenlerinin Dış Ticaret Üzerine Etkisinin Panel Data Yöntemiyle Türkiye İçin İncelenmesi Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Clt 6, Sayı:4, 2004 Devalüasyon, Para, Reel Gelr Değşkenlernn Dış Tcaret Üzerne Etksnn Panel Data Yöntemyle Türkye İçn İncelenmes Yrd.Doç.Dr.Ercan BALDEMİR*

Detaylı

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131.

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131. Süleyman Demrel Ünverstes İktsad ve İdar Blmler Fakültes Y.008, C.3, S. s.-3. BİREYSEL EMEKLİLİK FONLARINDA FON YAPILARININ KARMA DENEMELER YÖNTEMİ İLE İNCELENMESİ EXAMINING THE STRUCTURE OF FUNDS BY MIXTURE

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI YATIRIM PROJELER ANALzNDE BLACK-SCHOLES OPSYON FYATLAMA MODELNN KULLANIMI Yrd. Doç. Dr. Erkan Uysal Ankara Ünverstes Syasal Blgler Fakültes Özet Bu çalışmada, fnansal opsyon fyatlama modellernn yatınm

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI FİRMA ÇEŞİTLENDİRMESİNİN FİRMA DEĞERİ, RİSKİ VE PERFORMANSINA ETKİLERİ: TÜRKİYE UYGULAMASI Emel YÜCEL DOKTORA TEZİ

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi Fnansal Rskten Korunma Muhasebesnde Etknlğn Ölçülmes Dr. Fahreddn OKUDAN * Fath Ünverstes, İİBF. Özet Bu makalenn amacı, etknlk test yöntemlernn ncelenmesdr. TMS 39, rskten korunma muhasebes uygulanablmes

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*)

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*) Gazosmanpaşa Ünverstes Zraat Fakültes Dergs Journal of Agrcultural Faculty of Gazosmanpasa Unversty http://zraatderg.gop.edu.tr/ Araştırma Makales/Research Artcle JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848

Detaylı

ĐLK HALKA ARZLARDA UZUN DÖNEM GETĐRĐLERĐNĐN TAHMĐNĐ: YAPAY SĐNĐR AĞLARI ĐLE ĐMKB ĐÇĐN AMPĐRĐK BĐR ÇALIŞMA

ĐLK HALKA ARZLARDA UZUN DÖNEM GETĐRĐLERĐNĐN TAHMĐNĐ: YAPAY SĐNĐR AĞLARI ĐLE ĐMKB ĐÇĐN AMPĐRĐK BĐR ÇALIŞMA Ekonometr ve Đstatstk Sayı:10 2009 29-47 ĐSTANBUL ÜNĐVERSĐTESĐ ĐKTĐSAT FAKÜLTESĐ EKONOMETRĐ VE ĐSTATĐSTĐK DERGĐSĐ ĐLK HALKA ARZLARDA UZUN DÖNEM GETĐRĐLERĐNĐN TAHMĐNĐ: YAPAY SĐNĐR AĞLARI ĐLE ĐMKB ĐÇĐN AMPĐRĐK

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

SESSION 1B: Büyüme ve Gelişme 279

SESSION 1B: Büyüme ve Gelişme 279 SESSION 1B: Büyüme ve Gelşme 279 Türkye de Hanehalkı Tüketm Harcamaları: Pseudo Panel Ver le Talep Sstemnn Tahmn The Consumpton Expendture of Households n Turkey: Demand System Estmaton wth Pseudo Panel

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Fatih ECER*, Fatih GÜNAY**

Fatih ECER*, Fatih GÜNAY** Anatola: Turzm Araştırmaları Dergs, Clt 25, Sayı 1, Bahar: 35-48, 2014. Copyrght 2014 anatola Bütün hakları saklıdır ISSN: 1300-4220 (1990-2014) Borsa İstanbul da İşlem Gören Turzm Şrketlernn Fnansal Performanslarının

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 4 Sayı: Ocak 04 ss. 9-9 BIST da Demr, Çelk Metal Ana Sanay Sektöründe Faalyet Gösteren İşletmelern Fnansal Performans Analz: VZA Süper Etknlk ve TOPSIS Uygulaması

Detaylı

GELİŞMEKTE OLAN ÜLKELERDE ULUSLARARASI DOĞRUDAN YATIRIMLAR VE EKONOMİK BÜYÜME ETKİLEŞİMİ: PANEL EŞBÜTÜNLEŞME VE NEDENSELLİK ANALİZİ

GELİŞMEKTE OLAN ÜLKELERDE ULUSLARARASI DOĞRUDAN YATIRIMLAR VE EKONOMİK BÜYÜME ETKİLEŞİMİ: PANEL EŞBÜTÜNLEŞME VE NEDENSELLİK ANALİZİ GELİŞMEKTE OLAN ÜLKELERDE ULUSLARARASI DOĞRUDAN YATIRIMLAR VE EKONOMİK BÜYÜME ETKİLEŞİMİ: PANEL EŞBÜTÜNLEŞME VE NEDENSELLİK ANALİZİ Doç. Dr. M. Başaran ÖZTÜRK * Yrd. Doç. Dr. Kartal DEMİRGÜNEŞ ** Yrd.

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON Gökalp Kadr YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 011 Her hakkı saklıdır ÖZET Yüksek Lsans Tez BULANIK HEDONİK

Detaylı

HisSE SENEDi FiYATlARıNDAKi SÜRPRiz HABERLERiN BULAŞICIlIK ETKiSi VESÜREKliliK

HisSE SENEDi FiYATlARıNDAKi SÜRPRiz HABERLERiN BULAŞICIlIK ETKiSi VESÜREKliliK HsSE SENED FYATlARıNDAK SÜRPRz HABERLERN BULAŞICIlIK ETKS VESÜREKllK Evrmlmer Türkye Cumhuryet Merkez Bankası Özet Bu çalışmada hsse sened pyasalarındak sürprz haberlern ülkeler arasında yayılması olgusu

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması Busness and Economcs Research Journal Volume 2. Number 1. 2011 pp. 143-151 ISSN: 1309-2448 www.berjournal.com Türkye de Bölgeler Arası Gelr Yakınsaması: Rassal Katsayılı Panel Ver Analz Uygulaması Fatma

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

Bölüm 10. Piyasa Riskinin Ölçülmesi. Piyasa Riskinin Ölçülmesi. Risk, Getiri ve Sermaye Bütçelemesi. Piyasa Riskinin Ölçülmesi.

Bölüm 10. Piyasa Riskinin Ölçülmesi. Piyasa Riskinin Ölçülmesi. Risk, Getiri ve Sermaye Bütçelemesi. Piyasa Riskinin Ölçülmesi. Bölüm 1 Risk, Getiri ve Sermaye Bütçelemesi Beta Risk ve Getiri Finansal Varlık Değerleme Modeli (FVDM) Sermaye Bütçelemesi ve Piyasa Riski Piyasa Portföyü Ekonomideki tüm varlıkları içeren portföy. Uygulamada

Detaylı

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI Mehmet Aktan Atatürk Ünverstes, Endüstr Mühendslğ Bölümü, 25240, Erzurum. Özet: Dövz kurlarındak değşmler,

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER *

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER * AİBÜ Sosyal Blmler Ensttüsü Dergs, Güz 2013, Clt:13, Yıl:13, Sayı:2, 13:171-189 TÜKİYE DEKİ ÖZEL BANKALAIN FİNANSAL PEFOMANSLAININ KAŞILAŞTIILMASI: 2008-2011 DÖNEMİ Fath ECE COMPAISON OF PIVATE BANKS FINANCIAL

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için)

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için) Ders Kodu Teork Uygulama Lab. Uluslararası Muhasebe ve Fnansal Raporlama Standartları Ulusal Kred Öğretm planındak AKTS 344000000000510 3 0 0 3 6 Ön Koşullar : Bu dersn ön koşulu ya da yan koşulu bulunmamaktadır.

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

Sansürlenmiş ve Kesikli Regresyon Modelleri

Sansürlenmiş ve Kesikli Regresyon Modelleri TOBİT MODEL 1 Sansürlenmş ve Keskl Regresyon Modeller Sınırlı bağımlı değşkenler: sansürlenmş (censored) ve keskl (truncated) regresyon modeller şeklnde k gruba ayrılır. 2 Sansürlenmş ve Keskl Regresyon

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Bitkisel Ürün Sigortası Yaptırma İsteğinin Belirlenmesi: Tokat İli Örneği

Bitkisel Ürün Sigortası Yaptırma İsteğinin Belirlenmesi: Tokat İli Örneği Atatürk Ünv. Zraat Fak. Derg., 42 (2): 153-157, 2011 J. of Agrcultural Faculty of Atatürk Unv., 42 (2): 153-157, 2011 ISSN : 1300-9036 Araştırma Makales/Research Artcle Btksel Ürün Sgortası Yaptırma İsteğnn

Detaylı

Yolsuzluğun Belirleyicileri ve Büyüme ile İlişkileri

Yolsuzluğun Belirleyicileri ve Büyüme ile İlişkileri SESSION 1B: Büyüme ve Gelşme I 131 Yolsuzluğun Belrleycler ve Büyüme le İlşkler Assoc. Prof. Dr. Mne Gern (Marmara Unversty, Turkey) Prof. Dr. Ömer Selçuk Emsen (Atatürk Unversty, Turkey) Ph.D. Canddate

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ 2011-2012-2013 MALİ yılına İLİşKİN YÖNETİM KURULU FAALİYET RAPORU ("Şrket") 01012011-31 ı22013

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Anadolu Tarım Blm. Derg., 2009,24(2):98-102 Anadolu J. Agrc. Sc., 2009,24(2):98-102 Araştırma Research FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Soner ÇA KAYA* Aydın

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN PORTFÖY OPTİMİZASYOU Doç.Dr.Aydın ULUCA KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız olarak stratejk

Detaylı

Prof. Dr. Kemal Yıldırım - Yrd. Doç. Dr. S. Fatih Kostakoğlu

Prof. Dr. Kemal Yıldırım - Yrd. Doç. Dr. S. Fatih Kostakoğlu Anadolu Ünverstes Sosyal Blmler Dergs Anadolu Unversty Journal of Socal Scences Ülkelern Ekonomk Performansı Üzernde Regülasyonun Etkler: Br Dnamk Panel Ver Analz The Impact of Regulaton on Economc Performance

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

YÜKSEK LİsANS VE DOKTORA PROGRAMLARI

YÜKSEK LİsANS VE DOKTORA PROGRAMLARI , EK-A YÜKSEK LİsANS VE DOKTORA PROGRAMLARI Değerl Arkadaşlar, --e------ Bldğnz üzere, ş dünyası sthdam edeceğ adaylarda, ünverste mezunyet sonrası kendlerne ne ölçüde katma değer ekledklern de cddyetle

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri

Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri 5-1 Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri Portföy Teorisi Sermaye Varlıklarını Fiyatlandırma Modeli (CAPM) Etkin set Sermaye Piyasası Doğrusu (CML) Hisse Senedi Piyasası Doğrusu

Detaylı

FİNANSAL MODELLEME. Doç.Dr.Aydın ULUCAN Hacettepe Üniversitesi

FİNANSAL MODELLEME. Doç.Dr.Aydın ULUCAN Hacettepe Üniversitesi FİNANSAL MODELLEME Doç.Dr.Aydın ULUCAN Hacettepe Ünverstes KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız

Detaylı

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME Ġstanbul Ünverstes Ġktsat Fakültes Malye AraĢtırma Merkez Konferansları 46. Ser / Yıl 2004 Prof. Dr. Salh Turhan'a Armağan TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

15.433 YATIRIM. Ders 8&9: Menkul Kıymetler Borsası. Hisse Senedi Getirilerindeki Çapraz Kesit Farklılıklar

15.433 YATIRIM. Ders 8&9: Menkul Kıymetler Borsası. Hisse Senedi Getirilerindeki Çapraz Kesit Farklılıklar 15.433 YATIRIM Ders 8&9: Menkul Kıymetler Borsası Hisse Senedi Getirilerindeki Çapraz Kesit Farklılıklar Bahar 2003 Giriş Hisse senedine dayalı menkul kıymetler, bir şirketin hisselerinin sahipliğini temsil

Detaylı

Akıllı Telefon Seçiminin Belirleyicileri: Üniversite Öğrencileri Üzerine Bir Uygulama

Akıllı Telefon Seçiminin Belirleyicileri: Üniversite Öğrencileri Üzerine Bir Uygulama The PDF verson of an unedted manuscrpt has been peer revewed and accepted for publcaton. Based upon the publcaton rules of the journal, the manuscrpt has been formatted, but not fnalzed yet. Before fnal

Detaylı

Türkiye den Yurt Dışına Beyin Göçü: Ampirik Bir Uygulama

Türkiye den Yurt Dışına Beyin Göçü: Ampirik Bir Uygulama ERC Workng Paper n Economc 04/02 January 2004 Türkye den Yurt Dışına Beyn Göçü: Amprk Br Uygulama Aysıt Tansel İktsat Bölümü Orta Doğu Teknk Ünverstes atansel@metu.edu.tr Nl Demet Güngör İktsat Bölümü

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı