ELEKTRONİK DEVRELER-II LABORATUVARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTRONİK DEVRELER-II LABORATUVARI"

Transkript

1 İSTANBUL ÜNİVESİTESİ ELEKTİK ELEKTONİK MÜHENDİSLİĞİ ELEKTONİK DEVELE-II LABOATUVAI DENEY-1 İşlemsel Kuvvetlendirici 1

2 DENEY-1 İŞLEMSEL KUVVETLENDİİCİ ÖN HAZILIK 1. TL081 ve OP07C işlemsel kuvvetlendiricilerin kataloğunu inceleyerek aşağıdaki parametrelerini kıyaslayınız, bacak bağlantılarını gösteren şemayı çizerek deneye getiriniz. Maksimum besleme gerilimi, giriş kutuplama akımı, kayıklık (offset) gerilimi, sukunet (quiscent) akımı, kazanç bant genişliği, giriş empedansı, değişim hızı vs. 2. Bir İK devresinde kazanç bant genişliği çarpımının (GBWP) sabit olması olgusunu açıklayınız. 3. Ortak kip zayıflatma oranı (CM) nedir? Deneye gelmeden önce, verilen katalog bilgilerinden bu büyüklüğün değerini bulunuz. 4. Her iki girişine aynı işaretin uygulandığı fark kuvvetlendiricisinin çıkış işaretinin ne olacağını, CM i göz önüne alarak tartışınız. 5. Değişim hızı (Slew ate) nedir? Deneye gelmeden önce kullanacağınız İK nin değişim hızını bulunuz. 6. Bir kuvvetlendiricinin üst kesim frekansı ile girişine uygulanan ideal darbeye cevabının yükselme zamanı arasındaki ilişki nedir? 7. Bir toplama ve eviren kuvvetlendirici kullanarak iki işaretin farkını alacak bir fark kuvvetlendiricisi tasarlayınız. 8. (15) ifadesini çıkarınız. 9. Girişine aşağıdaki verilen işaret uygulanan entegratörün çıkışındaki işaretin zaman üzerinden değişimini çiziniz. Bu işaret sabit bir A değeri olsaydı çıkış ne olurdu? 10. Kutuplama akımları ve kayıklık (offset) gerilimini bir entegratör devresinde etkisinin ne olacağını tartışınız. 11. Tüm büyüklüklerin tanımın öğrendiğinizden emin olunuz. 12. A(t)=3.sin(200t) işaretinden B(t)=10 5.cos(200t) işaretini elde edilmesini sağlayan devreyi işlemsel kuvvetlendiricilerle tasarlayınız. 2

3 İŞLEMSEL KUVVETLENDİİCİ İşlemsel kuvvetlendirici (İK olarak kısaltılacaktır) alışılagelmiş kuvvetlendiricilerden farklı olarak, iki girişi ve bir çıkışı olan elemanlardır. İK sembolü ve ilgili büyüklükler Şekil-1 de verilmişse de burada, ileride de pek çok kere yapılacağı gibi, besleme gerilimleri gösterilmemiştir. + ile işaretlenmiş olan ve U p giriş geriliminin uygulandığı girişi evirmeyen (faz döndürmeyen) ve U n geriliminin uygulandığı ile işaretlenmiş girişi ise eviren (faz döndüren) giriş olarak isimlendirilir. U o, İK nın çıkışıdır. Bir İK nın içyapısı Şekil-2 de gösterildiği gibidir. n, p girişlerle toprak arasındaki dirençleri; C n, C p ise kapasiteleri göstermektedir. d ve C d ise girişler arasındaki direnç ve kapasitedir. o, kuvvetlendiricinin çıkış direnci, K OL ise frekansa da bağlı olan açık çevrim kazancıdır. (OL: Open Loop) Aşağıdaki özelliklere sahip İK, ideal İK olarak tanımlanır. 1. n, p, d C n, C p, Cd o 2. K ol >>1 Bu varsayımlarla;...(1) eşitliği geçerlidir. Pek çok tümleşik İK, birçok uygulamada ideal varsayımlara yaklaşırlar. Aşağıda İK ları tanımlayan temel parametreler verilmiştir. Açık Çevrim Kazancı (Open Loop Gain) Daha önce tanımlanmış olan K OL, Şekil-3 te gösterildiği gibi frekansa bağlıdır. İK nın alt kesim frekansı 0 Hz dir, dolayısıyla DC işaretleri de kuvvetlendirir. K OL0 ile gösterilen alçak frekans kazancı 10 6 mertebesindedir. f 2 üst kesim frekansı ise, sıradan İK larda sadece birkaç Hz dir. Bode diyagramının f 2 nin üzerinde eğimi 20 db/dek tir ve genellikle f 3 gibi ikinci bir kutbu daha vardır. Bu kutbu göz önüne almadan, İK nin kazancı; 3

4 (2) Küçük İşaret Birim Kazanç Bant Genişliği (Small Signal Unit Gain Bandwidth) Kazancın 0 db e düştüğü frekanstır ve Şekil-3 te f c ile gösterilmiştir. Bode diyagramından görüldüğü gibi f c = K OL0.f 2 (3) Bağıntısı geçerlidir. (Dikkat: K OL0 db cinsinden değil, oran olarak alınmalıdır). Bu büyüklük, kazanç bant genişliği olarak da isimlendirilir. Giriş Dengesizlik (Kayıklık) Gerilimi (Input Offset Voltage) İK nın her iki girişi toprak potansiyeline bağlandığında U id =0 olmasına rağmen çıkış gerilimi 0 olmayabilir. İK nın giriş katında kullanılan transistör veya FET lerin eş olmamasından kaynaklanan bu hata, giriş dengesizlik gerilimi yardımıyla İK nın analizine katılabilir. Şekil-4 te gösterildiği gibi U 0I giriş dengesizlik gerilimini gösteren bir DC gerilim kaynağı İK nın girişlerinden birine bağlanır. U oi nin yönü ve değeri, aynı tipten İK larda bile elemandan elemana farklılık gösterir. Giriş Kutuplama Akımı (Input Bias Current): Maksimum Çıkış Gerilimi (U Omax, U Omin ) Gerçek bir İK da n, p ve d giriş dirençleri sonsuz büyük olmadığından, çok küçük de olsa girişlerinden giriş kutuplama akımı denilen bir akım akar. Şekil-5 te gösterilen bu akımların değeri elemandan elemana ve ayrıca sıcaklıkla değişir. FET girişli İK larda bu akım, transistör girişlilere göre daha azdır. Birçok uygulamada giriş kutuplama akımlarından çok bunların farkı önemlidir ki bu fark giriş dengesizlik akımı (Input Offset Current) olarak da bilinir. Hem pozitif hem negatif gerilim kaynağından beslenen (ki buna simetrik besleme de denir) İK larda çıkış gerilimi hem pozitif hem de negatif değerler alabilir. Çıkış gerilimi her iki yönde de sınırlıdır ve belli değerlerde doymaya girer. Klasik İK larda besleme gerilimi ±15 V olup, çıkış geriliminin en büyük değeri besleme geriliminin bir volt kadar altındadır. Maksimum Güç Gerilimi Girişlerden biri ile toprak arasına, İK tahrip olmaksızın uygulanabilecek en büyük gerilimi tanımlar. Bu nedenle deneyde girişlere izin verilenden daha büyük bir gerilim uygulanmamasına özen göstermelisiniz. 4

5 Maksimum Fark Giriş Gerilimi İK nın girişleri arasına İK tahrip olmaksızın uygulanmasına izin verilen en büyük gerilimdir. Ortak Kip Giriş Gerilimi (Common Mode Input Voltage) Her iki girişe uygulanan gerilimlerin ortalama değeridir. Bu gerilimi U cm ile gösterirsek; Genel olarak U n ve U p zıt fazda olduklarından U cm =0 dır. İdeal bir İK sadece (U p -U n ) farkını kuvvetlendirirse de gerçek İK larda ortak kip giriş gerilimi de istenmeyen bir U ocm çıkış gerilimine neden olur. İK ların ortak kip giriş gerilimi ne derece bastırıldıkları (zayıflatıldıkları) kalitesinin bir ölçütüdür. Bu ölçütü niceliksel olarak ifade edebilmek amacıyla ortak kip zayıflatma (bastırma) oranı (CM: Common Mode ejection atio) diye adlandırılan (4) (5) Parametreleri tanımlanmıştır ki, burada U cm ortak kip giriş gerilimi, ise çıkışta aynı U ocm gerilimini üretecek olan ve girişlerden birine uygulanan fark gerilimidir.(bakınız şekil-6) CM çok büyük bir sayı olduğundan, hemen hemen her zaman bunun yerine Uyarınca tanımlanmış olan db cinsinden ortak kip zayıflatması kullanılır. Değişim Hızı (Slew ate, S) Bir İK nın girişine uygulanan işaret ne kadar hızlı değişirse değişsin, çıkış işaretinin değişim hızı sınırlıdır. Bu olguyu, yüksek frekanslarda kazancın azalmasına bağlamak yanlış yorumdur. Zira kazancın üst kesim frekansı, t r yükselme zamanı olmak üzere; (6) eşitliği uyarınca yükselme zamanını belirlerse de bu sadece küçük genlikli işaretler için geçerlidir. Kuvvetlendiricinin içindeki kapasiteleri dolduran veya boşaltan akımların sınırlı olması, çıkış geriliminin değişim hızını sınırlar. Bu büyüklük Şekil-7 de gösterildiği gibi tanımlanır. (7) 5

6 Durulma Süresi (Settling Time, t s ) Girişine basamak fonksiyonu uygulanan İK nın çıkış geriliminin son değerinin belli bir yüzdesine eş genlikteki bir aralıkta kalıncaya kadar geçen süre olarak tanımlanır. (Bkz. Şekil-8). Dolayısıyla t s, girişine bir basamak fonksiyonu uygulanan İK da çıkışın son değerine, belirlenen hata sınırları içinde, erişinceye kadar beklenilmesi gereken süredir. İŞLEMSEL KUVVETLENDİİCİLİ TEMEL DEVELE Eviren (Faz Döndüren) Kuvvetlendirici Şekline dönüşür ki buradan kazanç (12) (10) (11) Devre yanda verilmiştir. İ.K. nın ideal olduğu varsayılırsa, giriş direnci sonsuz olduğundan i d =0 (İ.K giriş akımı=0) ve dolayısıyla i i =i F olacaktır. Diğer taraftan U g = i.i i U id (8) U id + F.i F + U o = 0 (9) Çevre denklemleri, K OL (Açık çevrim kazancı sonsuz) varsayımı ile U o =K OL.U id ve U id =U o /K OL gerilimi sıfıra gideceğinden 6

7 olarak bulunur. Eviren giriş ile toprak arasında çok büyük bir direnç olmasına rağmen, U id olması nedeniyle, eviren giriş hemen hemen toprak (sıfır) potansiyelindedir. Bu olgu, eviren girişin görünürde toprak potansiyelinde olduğu şeklinde ifade edilir. Kuvvetlendiricinin giriş direncinin i olduğunu da siz gösteriniz. (12) ifadesinden hareketle kazancı istediğimiz kadar büyük yapabileceğimizi düşünüyorsanız yanılıyorsunuz. Bu ifade çıkarılırken K OL alınmış olduğunu hatırlayınız. Bu varsayımdan vazgeçip (2) ifadesi ile verilen kazancı kullanarak devrenin kazancını hesaplarsanız, F / i >>1 koşulu altında (13) Olduğunu görürsünüz. Bunu (2) ifadesi ile karşılaştıracak olursanız K v kazançlı eviren kuvvetlendiricinin üst kesim frekansının, İK nın üst kesim frekansı olan f 2 nin K olo /K v katı olduğunu bulursunuz. Eviren kuvvetlendiricinin K v kazancı azaldığı oranda üst kesim frekansı büyür. f 2 ile göstereceğimiz eviren kuvvetlendiricinin üst kesim frekansı ile kazancın çarpımı (14) olup bir sabittir. f 2 devrenin, f 2 ise İK nın üst kesim frekansıdır. (Ya da bant genişliğidir.). Kazanç bant genişliğinin sabit olgusu tüm İK devreleri için geçerlidir. Büyük gerilim kazançları istendiğinde eviren kuvvetlendiricinin giriş direnci büyük yapılmaz, zira F i 10 MΩ dan büyük yapmak pratik değildir ve kazanç arttıkça i küçülür ki bu da devrenin giriş direncidir. Hem büyük kazançlara hem de büyük giriş dirençlerine olanak tanıyan bir eviren kuvvetlendirici devresi Şekil-10 da verilmiştir. Bu devrenin kazancı K U = U o g = olup, 1 değerinden bağımsız olarak 3 / 4 oranı ile ayarlanabilirken devrenin giriş direnci 1 olmaya devam eder. 3, 2, 4 uygun seçilerek kazanç, 1 i küçük seçmeye gerek kalmamaksızın büyük yapılabilir. Toplama Devresi Şekil-11 de verilen bu devrede U o (16) 7

8 veya 1 = 2 = 3 = için U ( U + U ) F o = U 3 (17) girişlerine uygulanan gerilimlerin toplamının negatif işaretlisidir. Evirmeyen Kuvvetlendirici Yanda verilen devrenin kazancı (18) olup, görüldüğü gibi fazı çevirmez. F =0 olmadığı sürece kazanç her zaman 1 den büyüktür. Devrenin üstünlüğü giriş direncinin çok büyük olmasıdır. DİKKAT!! Eviren ve evirmeyen kuvvetlendirici yapısı için ve diğer İK lı doğrusal kuvvetlendirici yapıları için geribesleme direnci F her zaman İK nın - ucuna bağlanmaktadır. Bu şekilde negatif geribesleme sağlanarak kazanç belirli bir değere getirilmektedir. F direnci + uca bağlandığında pozitif geribesleme olacağından İK doğrusal bir kuvvetlendirici olarak çalışmayacaktır. Eviren kuvvetlendiricinin uçlarının yer değiştirilmesi onu evirmeyen hale getirmez. Dikkat edilirse iki devre için de yapı aynı olup; birinde toprak bağlanan uca işaret uygulanmakta, diğerinde işaret uygulanan uç toprağa bağlanmaktadır. Fark Kuvvetlendiricisi Bu kuvvetlendiricinin çıkış gerilimi Olup 2 = 4, 1 = 3 koşulu sağlandığında; (19) U o = 2 1 ( U U ) 2 1 (20) Olur ki, görüldüğü gibi girişlere uygulanan işaretin farklarını kuvvetlendirmektedir. Entegratör Bu devrenin çıkış gerilimi; (21) 8

9 uyarınca giriş geriliminin zaman üzerinden alınmış integralidir ve 1/C birden büyük olabilen bir katsayıdır. Giriş kutuplama akımları entegratörde bir hata geriliminin doğmasına neden olur. Bunu azaltmak için evirmeyen giriş ile toprak arasına ye eş bir direnç bağlanabilir. Kutuplama akımlarının dolayısıyla neden oldukları hatanın küçültülmesi amacıyla giriş katlarında FET kullanılmış İK ların seçimi akıllıca olur. Benzer şekilde giriş dengesizlik gerilimi de bir hata kaynağıdır, zira bu gerilim de entegre edilmektedir ya da toplanmaktadır. s domeninde entegratörün kazancı (22) olduğundan s=0 da bir kutbu vardır. İK nın ve entegratörün Bode diyagramı Şekil-15 te gösterilmiştir. Görüldüğü gibi İK nın üst kesim frekansı f 2 dir. (23) Frekansında (22) ifadesinden görüleceği gibi entegratörün kazancı 1 (dolayısıyla 0 db)dir. Alçak frekanslara gidildikçe kazanç artarsa da K OL0 a ulaşıldığı frekansın altına inildiğinde kazanç sabit kalır, zira İK nın kazancı bunun üzerine çıkmaya izin vermez. f e nin üzerindeki frekanslarda ise entegratörün kazancı 1 in altına düşer ve f c üzerinde birden küçük bir değerde doymaya girer. Bunun nedeni f c frekansında İK nın kazancı 1 olduğundan entegratör için çıkarılmış olan (22) ifadesinin geçerliliğini yitirmesidir. Aynı şekilde entegratörün faz diyagramı da verilmiştir. Entegratör fazın 90 o olduğu aralıkta doğrulukla çalışmaktaysa da bunun dışında hata büyür. C zaman sabitini büyütmenin Bode diyagramlarını sola doğru kaydırmak demek olduğuna dikkat ediniz. Şekil 15 Türev Alıcı Şekil-11 de verilen devreden kolayca (24) 9

10 Olduğu gösterilebilir ki çıkış gerilimi giriş geriliminin türevi ile orantılıdır. Burada detaylarına girmeden bu devrenin osilasyon yapmaya eğilimli olduğunu ve bu devreyi kullanmanın iyi bir çözüm olmadığını belirtelim. Fazladan iki eleman gerektiren ve bu sayede kararlı olması garanti edilebilen bir türev alıcı Şekil- 17 de verilmiştir. Devrenin kazancı; (25) olup genlik Bode diyagramı Şekil-18 de verilmiştir. ve frekansları arasında devre iyi bir türev alıcı olarak kullanılabilir. Karşılaştırıcı İK nın şu ana kadar kapalı çevrimde çalıştırdık. Mantık devrelerinde karşılaştırıcı olarak kullanılan İK lar doğrusal kuvvetlendirme şart olmadğından açık çevrimde çalıştırılabilir. Yandaki devre için ; V o = K OL.(V i -V EF ) eşitliği geçerlidir. V CC pozitif besleme, V EE negatif besleme kaynağıdır. (V CC =+15V, V EE = -15V gibi.) Çıkıştan girişe herhangi bir geribesleme olmadığından ve K OL açık çevrim kazancı çok yüksek olduğundan ( gibi) V i -V EF değeri +10 µv olduğunda bile çıkış gerilimi ( ).( ) = +2 V olacaktır ki bu durum açık çevrimde çalışan İK ların gürültüye olan duyarlılığını açıklar. Bu farkın +10 mv olduğunu düşünürsek çıkış gerilimi idealde V a çıkmalıdır. Tabi bu pratikte mümkün değildir; zira İK, kendisini besleyen DC kaynak gerilimlerinin üzerinde bir değer veremez, hatta daha önce söylediğimiz gibi çıkış değeri besleme gerilimlerinin bir-iki volt aşağısındadır.devrenin çalışmasına özetlersek; V i > V EF ise; V o = V CC ve V i < V EF ise; V o = V EE olur. Dolayısıyla açık çevrimde çalışan İK nın çıkışı ya pozitif ya da negatif besleme kaynağının değerini alır. Giriş uçlarının yerleri değiştirilirse ( + uç V EF, - giriş V i olursa) V i > V EF ise; V o = V EE ve V i < V EF ise; V o = V CC olacaktır. 10

11 DENEY Deney-1: Yanda verilen devreyi F =10k i =1k ile kurunuz. Girişe U g 100 mv (tepe), f = 1kHz frekanslı sinusoidal bir gerilim uygulayarak giriş ve çıkış gerilimlerini aynı anda görüntüleyerek çiziniz. KANAL-1 VoltDiv... KANAL-2 VoltDiv:... TimeDiv:... Deney-2 Kaynağın frekansını Tablo 1 de verilen değerlere ayarlayarak her adım için U g ve U o gerilimlerinin tepe değerini ölçüp tabloya aktarınız. -3 db noktası hangi frekanstır? Tablo 1 Frekans (khz) 1 Ug (V) Uo (V) K Frekans (khz) Ug (V) Uo (V) K Deney-3 F =100kΩ yaparak frekansı Tablo-2 de verilen değerlere ayarlayarak giriş ve çıkış gerilimlerinin tepe değerini ölçünüz. -3 db noktası hangi frekanstır? 11

12 Tablo 2 Frekans Ug (V) Uo (V) K Frekans (khz) (khz) Ug (V) Uo (V) K Deney-4 U g = 2 V (tepe), f 2 =1 khz ayarlayarak U o, U 1, U 2 gerilimlerinin tepe değeri ölçünüz. U 1 =... V U 2 =... V U O =... V Şekil-20 Deney-5 direncini kısa devre ve U g =10V (tepe) yaptıktan sonra U o geriliminin tepe değerini ölçünüz. U o =... V Deney-6 a) Aşağıdaki entegratör devresini kurduktan sonra girişe tepe değeri 1 V olan 1.6 khz frekanslı sinusoidal bir gerilim uygulayarak osiloskopta U g ve U o gerilimlerinin dalga şekillerini aynı anda görüntüleyerek alt alta çiziniz. Osiloskobu DC kipe alınız. b) Daha sonra 100 nf lık kondansatör uçlarına 100 kω lık bir direnci paralel bağlayarak deneyi tekrarlayınız. 12

13 Deney-6 (a) Deney-6 (b) Deney-7 a) Yandaki türev alıcı devreyi kurunuz. Devrenin girişine 1 khz frekanslı 1V genlikli kare dalga uygulayıp U o çıkış işaretinin ve giriş işaretini alt alta çiziniz. Çıkıştaki darbelerin genişliğini ölçünüz. b) 2 =100 Ω yaparak deneyi tekrarlayınız. Deney-7 (a) Deney-7 (b) 13

14 Deney-8 2 =1kΩ yaparak girişe tepe değeri 1 V olan üçgen dalga gerilim uygulayarak giriş ve çıkış gerilimlerini alt alta çiziniz. SOULA DENEY-1: Ölçüm sonuçlarınızı hesaplayarak bulduğunuz sonuçlarla karşılaştırınız. DENEY-2 ve DENEY-3: Her iki F değeri için aynı kâğıda genlik ve Bode diyagramını çiziniz. Kazanç bant genişliği çarpımının sabit kaldığını gösteriniz. Bulduğunuz kazanç bant genişliğini kullandığınız İK nin katalogunda verilmiş olan birim kazanç bant genişliği ile karşılaştırınız. DENEY-4: Deney sonuçlarınızı hesap sonuçları ile karşılaştırınız. DENEY-5: Deney sonuçlarınızı katalog bilgilerinden yararlanarak beklenen sonuçlarla karşılaştırınız. DENEY-6: C2 ye paralel bağlanmış olan direncin etkisini tartışınız. Çıkış işaretinin genliğini hesapladığınız değerle karşılaştırınız. DENEY-7: Devrenin genlik ve faz Bode diyagramlarını çiziniz. Devre entegratör olarak hangi frekansa kadar çalışabilir. Deneyde ölçtüğünüz darbe genişliği ile köşe frekansı arasında bir ilişki var mı? DENEY-8: Deney sonuçlarını veriniz ve yorumlayınız. 14

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.

Detaylı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik

Detaylı

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ AREL ÜNİVERSİTESİ DEVRE ANALİZİ İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES İŞLEMSEL KUVVETLENDİRİCİ İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

ĐŞLEMSEL YÜKSELTEÇLER

ĐŞLEMSEL YÜKSELTEÇLER K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı ĐŞLEMSEL YÜKSELTEÇLER Đşlemsel yükselteçler ilk olarak analog hesap makinelerinde toplama, çıkarma, türev ve integral

Detaylı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)

Detaylı

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEYİN AMACI: Bu deneyde işlemsel kuvvetlendiricinin doğrusal uygulamaları incelenecek ve işlemsel kuvvetlendirici kullanılarak çeşitli matematiksel

Detaylı

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi:

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi: 1 DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI Malzeme ve Cihaz Listesi: 1. 70 direnç 1 adet. 1 k direnç adet. 10 k direnç adet 4. 15 k direnç 1 adet 5. k direnç 1 adet. 47 k direnç adet 7. 8 k

Detaylı

ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ

ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ ĐSTANBUL ÜNĐVERSĐTESĐ ELEKTRĐK ELEKTRONĐK MÜHENDĐSLĐĞĐ ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ Dr. Sungur AYTAÇ Arş.Gör. Koray GÜRKAN OCAK, 2009 DENEYLER DENEY-1: BĐPOLAR TRANSĐSTÖR (BJT)...3-12

Detaylı

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,

Detaylı

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEY-4 İŞLEMSEL KUETLENDİİCİLEİN DOĞUSL UYGULMLI DENEYİN MCI: Bu deneyde işlemsel kuvvetlendiricinin doğrusal uygulamaları incelenecek, işlemsel kuvvetlendirici kullanılarak hangi matematiksel fonksiyonların

Detaylı

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı

Detaylı

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi DENEY NO:2 BJT Yükselticinin Darbe Cevabı Yükselticini girişine uygulanan işaretin şeklini bozmadan yapılan kuvvetlendirmeye lineer kuvvetlendirme denir. Başka bir deyişle lineer darbe kuvvetlendirmesi,

Detaylı

Deney 2: FARK YÜKSELTEÇ

Deney 2: FARK YÜKSELTEÇ Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM333 Elektronik-2 Laboratuarı Deney Föyü Deney#1 BJT'li Fark Kuvvetlendiricisi Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2017 DENEY 1 BJT'li

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim

Detaylı

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları Deneyin Amacı: Bu deneyin amacı; İşlemsel yükselteçlerle (OP-AMP) yapılabilecek doğrusal uygulamaları laboratuvar ortamında gerçekleştirmek ve

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç: KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALAR HAKAN KUNTMAN 03-04 EĞİTİM-ÖĞRETİM YL İşlemsel kuvvetlendiriciler, endüstriyel elektronik alanında çeşitli ölçü ve kontrol düzenlerinin

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

ÖLÇME VE DEVRE LABORATUVARI DENEY: 9. --İşlemsel Yükselteçler

ÖLÇME VE DEVRE LABORATUVARI DENEY: 9. --İşlemsel Yükselteçler Masa No: No. Ad Soyad: No. Ad Soyad: ÖLÇME VE DEVRE LABORATUVARI DENEY: 9 --İşlemsel Yükselteçler 2013, Mayıs 15 İşlemsel Yükselteçler (OPerantional AMPlifiers : OP-AMPs) 1. Deneyin Amacı: Bu deneyin amacı,

Detaylı

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama

Detaylı

İşlemsel Yükselteçler

İşlemsel Yükselteçler İşlemsel Yükselteçler Bölüm 5. 5.1. Giriş İşlemsel yükselteçler aktif devre elemanlarıdır. Devrede gerilin kontrollü gerilim kaynağı gibi çalışırlar. İşlemsel yükselteçler sinyalleri toplama, çıkarma,

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 TRANSİSTÖRLÜ KUVVETLENDİRİCİLERİN TASARIMI VE TEST EDİLMESİ 2: AÇIKLAMALAR

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler DENEY 8 OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler 1. Amaç Bu deneyin amacı; Op-Amp kullanarak toplayıcı, fark alıcı, türev alıcı ve integral alıcı devrelerin incelenmesidir.

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

SCHMITT TETİKLEME DEVRESİ

SCHMITT TETİKLEME DEVRESİ Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. SCHMITT TETİKLEME DEVRESİ.Ön Bilgiler. Schmitt Tetikleme Devreleri Schmitt tetikleme devresi iki konumlu bir devredir.

Detaylı

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE BÖLÜM 7 YÜKSEK GEÇİREN FİLTRE KONU: Opamp uygulaması olarak; 2. dereceden Yüksek Geçiren Aktif Filtre (High-Pass Filter) devresinin özellikleri ve çalışma karakteristikleri incelenecektir. GEREKLİ DONANIM:

Detaylı

DENEY NO 3. Alçak Frekans Osilatörleri

DENEY NO 3. Alçak Frekans Osilatörleri DENEY NO 3 Alçak Frekans Osilatörleri Osilatörler ürettikleri dalga şekillerine göre sınıflandırılırlar. Bunlardan sinüs biçiminde işaret üretenlerine Sinüs Osilatörleri adı verilir. Pek çok yapıda ve

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

Bölüm 10 İşlemsel Yükselteç Karakteristikleri Bölüm 10 İşlemsel Yükselteç Karakteristikleri DENEY 10-1 Fark Yükselteci DENEYİN AMACI 1. Transistörlü fark yükseltecinin çalışma prensibini anlamak. 2. Fark yükseltecinin giriş ve çıkış dalga şekillerini

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Deneyin Amacı: Alçak frekans güç yükselteçleri ve çıkış katlarının incelenip, çalışma mantıklarının kavranması Kullanılacak Materyaller: BD135 (npn Transistör)

Detaylı

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ DENEY 5 TEMEL İŞLEMSEL YÜKSELTEÇ (OPAMP) DEVRELERİ 5.1. DENEYİN AMAÇLARI İşlemsel yükselteçler hakkında teorik bilgi edinmek Eviren ve evirmeyen yükselteç devrelerinin uygulamasını yapmak 5.2. TEORİK BİLGİ

Detaylı

ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi

ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi I. Amaç Bu deneyin amacı; BJT giriş çıkış karakteristikleri öğrenerek, doğrusal (lineer) transistör modellerinde kullanılan parametreler

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ Amaç: Bu deneyde, uygulamada kullanılan yükselteçlerin %90 ı olan ortak emetörlü yükselteç

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

ÖN BİLGİ: 5.1 Faz Kaymalı RC Osilatör

ÖN BİLGİ: 5.1 Faz Kaymalı RC Osilatör DENEY 7 : OSİLATÖR UYGULAMASI AMAÇ: Faz Kaymalı RC Osilatör ve Schmitt Tetikleyicili Karedalga Osilatörün temel çalışma prensipleri MALZEMELER: Güç Kaynağı: 12VDC, 5VDC Transistör: BC108C veya Muadili

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ * Deneyden sonra bir hafta içerisinde raporunuzu teslim ediniz. Geç teslim edilen raporlar değerlendirmeye alınmaz. ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID)

Detaylı

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Numara : Adı Soyadı : Grup Numarası : DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Amaç: Teorik Bilgi: Ġstenenler: Aşağıda şemaları verilmiş olan 3 farklı devreyi kurarak,

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

KIRPICI DEVRELER VE KENETLEME DEVRELERİ

KIRPICI DEVRELER VE KENETLEME DEVRELERİ A) Kırpıcı Devreler KIRPICI DEVRELER VE KENETLEME DEVRELERİ Bir işaretteki belli bir gerilim ya da frekans seviyesinin üstündeki veya altındaki parçasını geçirmeyen devrelere kırpıcı devreler denir. Kırpıcı

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) 1. DENEYİN AMACI ÜÇ FAZ EVİRİCİ 3 Faz eviricilerin çalışma

Detaylı

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEYİN AMACI :Darbe Genişlik Demodülatörünün çalışma prensibinin anlaşılması. Çarpım detektörü kullanarak bir darbe genişlik demodülatörünün gerçekleştirilmesi.

Detaylı

Şekil 6.1 Faz çeviren toplama devresi

Şekil 6.1 Faz çeviren toplama devresi 23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

FAZ KİLİTLEMELİ ÇEVRİM (PLL)

FAZ KİLİTLEMELİ ÇEVRİM (PLL) FAZ KİLİTLEMELİ ÇEVRİM (PLL) 1-Temel Bilgiler Faz kilitlemeli çevrim (FKÇ) (Phase Lock Loop, PLL) dijital ve analog haberleşme ve kontrol uygulamalarında sıkça kullanılan bir elektronik devredir. FKÇ,

Detaylı

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop Deneyin Amacı: DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: 5 Adet 1kΩ, 5 adet 10kΩ, 5 Adet 2k2Ω, 1 Adet potansiyometre(1kω), 4

Detaylı

Deney 4: 555 Entegresi Uygulamaları

Deney 4: 555 Entegresi Uygulamaları Deneyin Amacı: Deney 4: 555 Entegresi Uygulamaları 555 entegresi kullanım alanlarının öğrenilmesi. Uygulama yapılarak pratik kazanılması. A.ÖNBİLGİ LM 555 entegresi; osilasyon, zaman gecikmesi ve darbe

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

DENEY 7 OP-AMP Parametreleri ve Uygulamaları

DENEY 7 OP-AMP Parametreleri ve Uygulamaları DENEY 7 OP-AMP Parametreleri ve Uygulamaları A. Amaç Bu deneyin amacı, op-amp (operational amplifier : işlemsel kuvvetlendirici) parametrelerini tanımak ve ölçümlerini deneysel olarak yapmaktır. Ayrıca

Detaylı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı 6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı Deneyin Amacı: Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: Osiloskop Alternatif Akım Kaynağı Uyarı:

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi

6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi 86 Elektronik Devre Tasarım 6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi 6. Önbilgi Günümüzde elektroniğin temel yapı taşlarından biri olan işlemsel kuvvetlendiricinin lineer.olmayan

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#7 Ortak Kollektörlü ve Ortak Bazlı BJT Kuvvetlendirici Deneyi Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU

Detaylı

GERİLİM REGÜLATÖRLERİ DENEYİ

GERİLİM REGÜLATÖRLERİ DENEYİ GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine

Detaylı

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ İŞLEMSEL KUVVETLENDİRİCİLER 16 AMAÇ 1. Eviren işlemsel kuvvetlendirici devresini öğrenmek. 2. Evirmeyen

Detaylı

4. 8 adet breadboard kablosu, 6 adet timsah kablo

4. 8 adet breadboard kablosu, 6 adet timsah kablo ALINACAK MALZEMELER 1. 0.25(1/4) Wattlık Direnç: 1k ohm (3 adet), 100 ohm(4 adet), 10 ohm (3 tane), 1 ohm (3 tane), 560 ohm (4 adet) 33k ohm (1 adet) 15kohm (1 adet) 10kohm (2 adet) 4.7 kohm (2 adet) 2.

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SKRY ÜNERSTES TEKNOLOJ FKÜLTES ELEKTRK-ELEKTRONK MÜHENDSLĞ ELM22 ELEKTRONK-II DERS LBORTUR FÖYÜ DENEY YPTIRN: DENEYN DI: DENEY NO: DENEY YPNIN DI ve SOYDI: SINIFI: OKUL NO: DENEY GRUP NO: DENEY TRH

Detaylı

BÖLÜM 1 RF OSİLATÖRLER

BÖLÜM 1 RF OSİLATÖRLER BÖÜM RF OSİATÖRER. AMAÇ. Radyo Frekansı(RF) Osilatörlerinin çalışma prensibi ve karakteristiklerinin anlaşılması.. Osilatörlerin tasarlanması ve gerçeklenmesi.. TEME KAVRAMARIN İNEENMESİ Osilatör, basit

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#9 Alan Etkili Transistörlü Kuvvetlendiriciler Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015

Detaylı

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir. DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese

Detaylı

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs)

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs) BLM224 ELEKTERONİK DEVRELER Hafta 12 İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs) Opamp Sembolü ve Terminalleri Standart bir opamp; iki adet giriş terminali, bir adet çıkış terminaline

Detaylı

İŞLEMSEL YÜKSELTEÇLER DERS NOTLARI

İŞLEMSEL YÜKSELTEÇLER DERS NOTLARI İŞLEMSEL YÜKSELTEÇLER DERS NOTLARI Hazırlayan: Öğr. Gör. Bora Döken 1 İÇİNDEKİLER Sayfa İÇİNDEKİLER... 2 1. OPAMP IN TANITILMASI... 2 1.1 Opamp Sembolü ve Terminalleri... 3 1.2 Opamp'ların Özellikleri...

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ 1. Amaç: KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ Bu deneyde, diyotların sıkça kullanıldıkları diyotlu gerilim kaydırıcı, gerilim katlayıcı

Detaylı

Enerji Sistemleri Mühendisliği Bölümü

Enerji Sistemleri Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#5 İşlemsel Kuvvetlendirici (OP-AMP) Uygulamaları - 1 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı

DENEY 2 Op Amp: AC Uygulamaları

DENEY 2 Op Amp: AC Uygulamaları A. DNYİN AMACI : Opampın kuvvetlendirici özelliğinin ac devrelerde ve ac işaretlerle daha iyi bir şekilde anlaşılması amacıyla uygulamalı devre çalışmaları yapmak. B. KULLANILACAK AAÇ V MALZML : 1. Sinyal

Detaylı

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır.

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır. Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. 2 OSİLATÖRLER 1. Ön Bilgiler 1.1 Osilatör Osilatörler DC güç kaynağındaki elektrik enerjisini AC elektrik enerjisine

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.C. LDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATVARI II DENEY 5: KOMPARATÖRLER DENEY GRB :... DENEYİ YAPANLAR :......... RAPOR HAZIRLAYAN

Detaylı

Şekil 1.1: Temel osilatör blok diyagramı

Şekil 1.1: Temel osilatör blok diyagramı 1. OSİLATÖRLER 1.1. Osilatör Nedir? Elektronik iletişim sistemlerinde ve otomasyon sistemlerinde kare dalga, sinüs dalga, üçgen dalga veya testere dişi dalga biçimlerinin kullanıldığı çok sayıda uygulama

Detaylı

R 1 R 2 R L R 3 R 4. Şekil 1

R 1 R 2 R L R 3 R 4. Şekil 1 DENEY #4 THEVENİN TEOREMİNİN İNCELENMESİ ve MAKSİMUM GÜÇ TRANSFERİ Deneyin Amacı : Thevenin teoreminin geçerliliğinin deneysel olarak gözlemlenmesi Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Avometre

Detaylı

Op-Amp Uygulama Devreleri

Op-Amp Uygulama Devreleri Op-Amp Uygulama Devreleri Tipik Op-amp devre yapıları şunları içerir: Birim Kazanç Arabelleği (Gerilim İzleyici) Evirici Yükselteç Evirmeyen Yükselteç Toplayan Yükselteç İntegral Alıcı Türev Alıcı Karşılaştırıcı

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ Amaç: Bu deneyde, diyotların sıkça kullanıldıkları diyotlu gerilim kaydırıcı, gerilim katlayıcı

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM22 Elektronik- Laboratuvarı Deney Föyü Deney#0 BJT ve MOSFET li Kuvvetlendiricilerin Frekans Cevabı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı