YÜKSEK GEÇİŞ SICAKLIKLI SÜPERİLETKENLERDE KRİTİK DURUM MODELLERİNİN İNCELENMESİ * Investigation Of Critical State Models On High-T c Superconductors

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜKSEK GEÇİŞ SICAKLIKLI SÜPERİLETKENLERDE KRİTİK DURUM MODELLERİNİN İNCELENMESİ * Investigation Of Critical State Models On High-T c Superconductors"

Transkript

1 YÜKSEK GEÇİŞ SICAKLIKLI SÜPERİLETKENLERDE KRİTİK DURUM MODELLERİNİN İNCELENMESİ * Investigation Of Critical State Models On High-T c Superconductors Selda KILIÇ Yüksel UFUKTEPE Ahmet EKİCİBİL Fizik Anabilim Dalı Fizik Anabilim Dalı Fizik Anabilim Dalı ÖZET Bu çalışmanın amacı, Bi-tabanlı yüksek sıcaklık süperiletkenlerinde kritik akım yoğunluğunun oluşumunu incelemektir. Çalışmada süperiletken malzemelerin fiziksel ve magnetik özellikleri incelendi. Yüksek sıcaklık süperiletkenlerinde kritik akım yoğunluğunun hesaplanmasında kullanılan modeller detaylı bir şekilde çalışıldı. Bu modellerden Bean Kritik Durum Modeli deneysel sonuçlarla kıyaslanmıştır. Anahtar Kelimeler: BSCCO süperiletkenler, Kritik Sıcaklık, Kritik akım yoğunluğu. ABSTRACT The purpose of this work is the investigation of Critical Current Density in High Temperature superconductors. For this, first, the physicial and magnetic properties of High Temperature superconductors are investigated. Some models for calculating of Critical Current Density of High Temperature superconductors are studied in detail. Finally, Bean Critical Model have been compared with the existing experimental results. Key Words: BSCCO Superconductors, Critical Temperature, Critical Current Density. Giriş Direncin bir anlamı, iletken üzerinden bir akım geçirmek için iletkene bir gerilim uygulama gerekliliği, bunun doğrudan sonucu olan diğer bir anlamı da geçen akımın iletkeni ısıtmasıdır. Direnç ne kadar büyükse, uygulanması gereken gerilim ve kaybolan enerji de o kadar büyük olur. Fakat bazı iletkenlerde malzeme, kritik sıcaklık denilen bir sıcaklığın altına kadar soğutulduğunda, akımı taşıyan elektronlar enerjilerini ısıya çevirme yeteneklerini kaybederler ve direnç sıfıra düşer. Bu durumda herhangi bir gerilim uygulamadan ve enerji kaybetmeden bir akım yaratmak mümkün hale gelir. İdeal metalik bir yapıda madde kritik sıcaklığın altına soğutulduğunda, fonon etkisi ortadan kalkar ve elektronlar yapı içerisinde örgü ile hiçbir etkileşmeye girmeden rahatlıkla hareket ederler. Bu durumda yapının direnci kritik sıcaklığın altında aniden sıfıra düşer. Kritik sıcaklığın altında bu malzemeye süperiletken madde denir. Süperiletkenlik ile ilgili yapılan ilk çalışmalar 1908 yılında H. Kamerling Onnes in Leiden de helyumu sıvılaştırması ile başlamıştır. Onnes yaptığı çalışmalar * Yüksek Lisans Tezi - MSc.Thesis 29

2 sonucunda 1911 yılında 4.15 K de cıvanın özdirencinin sıfıra düştüğünü buldu (Onnes, 1911). Uygulanan yüksek magnetik alanla süperiletken haldeki numunelerin, normal hale döndüğü görüldü. Böylece süperiletken metallerin magnetik davranış gösterdikleri keşfedildi. Bu keşiften sonra süperiletkenlik üzerine yoğun çalışmalar başladı. Bu çalışmalar sonucunda 1913 yılında kurşunun (Pb) 7.2 K de (Onnes, 1911) ve 1930 yılında da niyobyumun (Nb) 9.2 K de (Chapnik, 1930) süperiletken davranış gösterdikleri keşfedildi. Süperiletkenliğin keşfinden 25 yıl sonra Walter Meissner ve Robert Ochsenfeld (Meissner, 1933) süperiletkenlerin magnetik alanı sevmediklerini ortaya çıkardılar. Kritik sıcaklığın altındaki süperiletken bir malzemeye yüksek olmayan bir alan uygulandığında malzemenin bu magnetik alanı dışarladığını gözlediler (Şekil 1).Böylece süperiletkenlerin, zengin magnetik uygulamalar için yolu açılmış oldu. Bunlardan en önemlisi enerji harcamayan güçlü mıknatıslardır. Şekil 1.Bir süperiletkendeki Meissner olayı. Süperiletkenler uygulanan alana karşı göstermiş oldukları magnetik davranışlarından dolayı I. ve II. tip süperiletkenler olmak üzere iki grup altında incelenmektedir (Şekil 2).I.tip süperiletkenler genellikle saf, basit metallerdirler. Süperiletkenliğe geçiş sıcaklık eğrileri oldukça keskindir. Bu malzemeler kritik bir değere kadar uygulanan alanı dışlarlar. Eğer uygulanan alan değeri, kritik alan değerini aşarsa malzeme süperiletkenlik özelliklerini kaybederek normal duruma dönecek ve artık alan çizgileri malzeme içerisinden geçmeye başlayacaktır. Bu tür malzemelerin kritik geçiş sıcaklıkları oldukça düşüktür. II. tip süperiletkenlerin magnetik davranışları ise tamamen farklıdır. Bu tür malzemeler daha komplike ve genellikle geçiş elementleri ve diğer metallerden oluşmaktadır. II. tip süperiletkenlerde, I. tip süperiletkenlerden farklı olarak, ilk kritik alan değerinden daha yüksek ikinci bir kritik alan değeri daha vardır. Malzemenin magnetik davranışı birinci kritik alan değerine kadar I. tip süperiletkenlerle benzer davranış göstermektedir. Fakat uygulanan dış alan birinci kritik alan değerini aştığında malzemenin süperiletkenlik durumu devam etmektedir. İki kritik alan değeri arasında malzeme içerisinde hem süperiletken hem de normal bölgeler karışık olarak bir arada bulunmaktadır. Bu durum girdap (vorteks) mekanizması olarak da bilinmektedir. Eğer uygulanan alan değeri ikinci kritik alan değerini aşarsa, malzemenin süperiletkenlik özellikleri yok olacak ve normal davranış göstermeye başlayacaktır. 30

3 Şekil 2. I. ve II. tip süperiletkenlerin şematik gösterimi. Süperiletkenlik üzerine ilk gerçek yaklaşımlar, 1957 yılında üç Amerikalı bilim adamı, John Bardeen, Leon Cooper ve John Schrieffer tarafından öne sürülen ve BCS teorisi olarak da anılan çalışmada ileri sürülmüştür. BCS teorisi mutlak sıfır civarındaki süperiletkenliği açıklamaya yöneliktir. Cooper, atomik örgü titreşimlerinin doğrudan bütün elektronları birleştirmekten sorumlu olduğunu fark etmiştir. Bu titreşimler, elektronların takım halinde çiftlenmesine neden olur ve kristal örgü içerisindeki engellerle herhangi bir temasa girmeden aralarından geçmelerini sağlar. Bu elektronların oluşturduğu takımlara Cooper çiftleri adı verilmektedir yılına kadar yapılan süperiletkenlik çalışmalarında kritik sıcaklığın 30 K civarında olduğu bulunmuştur. Ancak 1986 yılında Zürich IBM Araştırma Laboratuvarında J. George Bednorz ve Karl Alex Müller adlı iki bilim adamı, süperiletkenlik alanında devrim yaratan bir keşifte bulundular ve lantan, baryum ve bakırın karışık fazda bulunan bir seramiğinin yaklaşık 35 K de süperiletken olduğunu bulmuşlardır. Sonrasında ardı ardına bulunan Y-Ba-Cu-O, Bi-Sr-Ca-Cu- O, Tl-Ba-Ca-Cu-O ve Hg-Ba-Ca-Cu-O sistemleri ile bilinen en yüksek kritik sıcaklık, günümüzde Hg-tabanlı süperiletken sistem için 166 K e kadar yükseltilmiştir. Materyal ve Metot Materyal Bu kısım iki ana başlık altında incelenebilir. Materyal olarak literatürde rastlanan ve yoğun bir şekilde araştırma konusu olan HT c süperiletken malzemelerin genel özelliklerini; metod olarak ise malzeme hazırlama teknikleri ele alınacaktır. Süperiletkenlik ilk olarak metallerde gözlenmiştir te Cohen yarıiletken tipi malzemelerin de süperiletken olabileceğini önermiştir (Cohen, 1964). Bu tahmin p-tipi yarıiletken olan GeTe da süperiletkenliğin gözlenmesiyle doğrulanmıştır (Mozelsky, 1964). NbO ve TiO malzemeleri ilk süperiletken oksitler olarak bilinmektedirler. Bu malzemelerin içerisinde oksijen girmesine rağmen metalik özellikleri devam edebilmektedir. SrTiO 3 bileşiği ilk perovskit süperiletken malzeme olarak bilinmektedir. Perovskit kristal yapısı ABO 3 formundaki bileşiklerin 31

4 kübik yapıdaki şekillenimidir. A iyonları kübün köşelerindeki yerini alırken, O iyonları yüzey merkezlerinde ve bir B iyonu da merkeze yerleşmektedir. Bu yapı Şekil 3 te görülmektedir. Şekil 3. Perovskit kristal yapısı. Tüm yüksek sıcaklık süperiletken malzemeler, yapılarında iki boyutlu bakır - oksit tabakalar içermektedirler. Elektriksel iletkenlik genellikle bakır-oksit tabakalarında oluşmaktadır. Yüksek sıcaklık süperiletkenliğin bu bölgelerde oluştuğu da bilinen bir gerçektir. Yüksek sıcaklık süperiletkenliği, malzeme yapısındaki kusurlara oldukça duyarlıdır. Yapı içerisindeki oksijen eksikliği, kristal yapı içerisindeki düzensizlikler, süperiletken malzemenin kritik sıcaklığını etkilemektedir. Bi 2 Sr 2 Ca n-1 Cu n O 2n+4+y Sisteminin Kristal Yapısı Bi-Sr-Ca-Cu-O (BSCCO) sistemlerinde süperiletkenlik Maeda ve arkadaşları tarafından 1988 yılında keşfedilmiştir (Maeda ve Tanaka, 1987). Bu süperiletken grubun özelliklerinin başlangıç kompozisyonlarına, hazırlama yöntemlerine ve seçilmiş olan yöntemin değişken parametrelerine (sinterleme sıcaklığı ve sinterleme süresi vb.) oldukça hassas olduğu görülmüştür (Tarascon, 1988). BSCCO sistemlerinde, Bi 2 Sr 2 Ca n-1 Cu n O 2n+4+y genel formülü ile elde edilebilen üç faz mevcuttur. Genel denklemde n, bir birim hücrede bulunan Cu-O tabakalarının sayısını vermektedir. n=1 için 30 K sıcaklığa sahip Bi 2 Sr 2 CuO 6+y (2201), n=2 için yaklaşık 85 K sıcaklığa sahip Bi 2 Sr 2 CaCu 2 O 8+y (2212), n=3 için 110 K kritik sıcaklığa sahip Bi 2 Sr 2 Ca 2 Cu 3 O 10+y (2223) fazları elde edilmektedir (Tarascon, 1988). Şekil 4 te gösterilen bu fazların birim hücreleri iki çift Bi-O tabakaları arasına yerleşmiş Sr-O, Cu-O ve Ca-O tabakalarından ibarettir. 32

5 a) b) c) Şekil 4. BSCCO sisteminin kristal yapıları a) n=1 fazını b) n=2 fazını c) n=3 fazını göstermektedir Bu sistemlerde süperiletkenlik geçiş sıcaklığının, Cu-O tabakalarının artması ile arttığı görülmektedir. BSCCO sistemlerinin genel yapısal karakteristiklerinden birisi de bunların tek faz olarak elde edilmesinin zorluğudur. Bir başka özellikleri de sonuç stokiyometrilerinin başlangıç stokiyometrilerinden oldukça farklı olabilmeleridir. Metot Süperiletken Malzeme Hazırlama Teknikleri Yüksek geçiş sıcaklığına sahip olan bakır-oksit tabanlı süperiletken ailelerini ( YBCO, BSCCO, TBCOO, HgBaCO ) hazırlamak çok zor değildir. Ancak kimyasal malzemelerle çalışıldığı için, bu malzemeler ile yapılacak olan çalışmaların her aşamasında sağlık açısından oldukça dikkatli olunmalıdır. Bu malzemelerin göstereceği süperiletkenlik özellikler, hazırlama yöntemine, ısısal işlem süresi ve sıcaklığına, çalışılan malzemenin cinsine doğrudan bağlantılıdır. Kaliteli bir malzeme hazırlamak için, sıcaklık ve zamanın kontrol edilmesi, malzemenin ısısal işleme tabi tutulduğu ortamdaki kısmi oksijen basıncının bilinmesi, tanecik boyutları, malzeme içerisine katkı yapılan diğer elementlerin 33

6 özelliklerinin iyi bilinmesi ve malzemenin konulduğu potanın cinsi oldukça önemlidir. Seramik süperiletken hazırlamanın birkaç değişik yöntemi vardır. Bunlardan genel olarak kullanılan, katıhal tepkime yöntemi, kimyasal olarak elde etme yöntemleri, başlangıç tozlarını eriterek döküm yapma veya ani soğutma ile malzeme elde edilmesi, ince ve kalın film hazırlama yöntemleridir. Araştırma Bulguları ve Tartışma Kritik Durum Modelleri II.tip süperiletkenlerde uygulanan alanın bir fonksiyonu olarak mıknatıslanmanın ilk tanımlanması C.Bean tarafından 1960 larda verildi (Bean,1964). Mıknatıslanma magnetik alanın nüfuz ettiği yerlerde oluşan sabit kritik akım yoğunluğu kullanılarak hesaplandığı için bu model, kritik durum modeli olarak adlandırılmıştır. Bean Kritik Durum Modeli Bean kritik durum modeli II. tip süperiletkenlerin magnetik karakteristiklerinin hesaplanmasında başarılı bir şekilde kullanılmaktadır. Bununla birlikte, yüksek magnetik alanlarda model sonuçlarının deneysel sonuçlardan sapma gösterdiği tespit edilmiştir. Geleneksel süperiletkenler için bu sapmanın nedeni kritik akım yoğunluğunun magnetik alana bağımlılığından kaynaklandığı şeklinde açıklanmıştır. Bu bağımlılığın yüksek sıcaklık süperiletkenleri için düşük magnetik alanların varlığında da etkili olduğu bilinmektedir. Kritik akım yoğunluğunun magnetik alan bağımlılığı dikkate alınarak Kim ve ark. tarafından Bean modeli geliştirilmiştir. Alan bağımlılığının hesaplara dahil edilmesi modelden elde edilen akım yoğunluğu değerleri ile taşıma akım değerleri arasında iyi bir uyum olmasına katkıda bulunmuştur. Yüksek sıcaklık süperiletkenlerin tanecikli yapıya sahip olmalarından dolayı, Bean modelinin bu tip süperiletkenlere uygulanması kuşku ile karşılanmıştır. Ancak yeterince düşük magnetik alanlarda, tanecikler arası kritik akım yoğunluğu magnetik alandan bağımsız olarak kabul edilebildiği durumlarda Bean modeli iyi bir yaklaşım olarak kullanılabilmektedir. Alan bağımlılığını dahil eden diğer kritik durum modelleri ise, daha çok yüksek magnetik alanlarda deney ile teori arasında iyi bir uyuşum için kullanılması öngörülmektedir. Zayıf Bağlı Çevrim Modeli Bu model zayıf bağlarla bağlanmış olan süperiletken çevrimidir.bu çevrimin alçak frekanslı ve genliği küçük olan bir magnetik alan içerisine konması halinde, çevrimdeki akım alanla birlikte yön değiştirir. Bunun sonucunda da, çevrimin magnetizasyonu M(t), zayıf bağların akım-gerilimi (I-V) karakteristiğine büyük ölçüde bağımlı olacaktır (Lynton, 1974). 34

7 Clem Modeli Bu model yüksek sıcaklık süperiletkenlere uygulanan başarılı modellerden birisidir. Bu modelde tanecikler, bir kenarı a o olan kübük yapılar olarak düşünülmüştür. Tanecikler birbirlerine maksimum Josephson akımı I o olan Josephson tipi bağlarla bağlanmıştır. Model, Ginzburg-Landau nun önerdiği serbest enerjinin, tanecik içi yoğunlaşma enerjisi ve tanecikler arası etkileşim enerjisi ile ifade edilebilme özelliğini kullanmaktadır. Lawrence-Doniach Modeli Süperiletken bir maddenin katlı yapısının sonuçlarının analizi için uygun bir model Lawrence ve Doniach tarafından ortaya atılmıştır (Lawrence ve Doniach, 1971). Bu model birçok süperiletken malzeme üzerine uygulanmıştır. Bu modelin uygulanması sırasında, süperiletken malzemenin anizotropik olan yapısı fazlaca kullanılmıştır. Matematiksel işlemlerde ve bunların sonuçlarında bu kendini göstermektedir. Bu modelde malzemeye ait olan serbest enerjiden yola çıkılmıştır. Girme derinliği ve kritik magnetik alan değerleri anizotropik yaklaşımlarla oldukça net sonuçlarla elde edilmiştir. Akı hareketleri ve girdapların çivilenmesi olayı bu model ile yorumlanmış ve oldukça tatmin edici sonuçlara ulaşılmıştır. J c de Pik Etkisi Magnetik akı karışık durumdaki bir süperiletkene, birim akı kuantaları taşıyan vorteksler şeklinde girer. Bu vorteksler bir diğerini iter ve üçgen bir örgü biçiminde serbest enerjilerini minimize ederler. Karışık durumda süperiletken içine akım geçirildiğinde herhangi bir yerdeki vorteksle olan itme etkileşmesi daha fazla dengelenmeyecektir. Böylece her vorteks, B ve J nin her ikisine orantılı olan net bir kuvvete maruz kalır. Bir Lorentz kuvvetine denk olan her bir vorteks üzerindeki bu kuvvet vortekslerin hareketine neden olacaktır. Bu vorteks hareketi J ye dik bir elektrik alan doğurur, böylece bir dirence neden olur ve bu akı-akış özdirenci olarak adlandırılır. Akım dağılım olmaksızın geçirilirse bu vorteks hareketini önlemek gerekir. Bu vortekslerin kusur bölgelerinde çivilenmesiyle elde edilir. Bu kirlilik bölgeleri nokta kusurları ya da çizgi kusurları olabilir ve boyutları süperiletkendeki Cooper çiftlerinin eşuyum uzunluğuna yakın olduğunda en uygun çivileme sağlanır. Çivileme kuvveti, kirlilik bölgeleri ve vortekslerin birbirleri arasındaki etkileşmelerinin bir sonucudur. Çivileme kuvvetinin bireysel çivilemenin (ya da kirlilik bölgelerinin) sayısıyla birlikte arttığı açıktır, fakat çivileme kuvveti çeşitli vortekslerin rastgele çivileme bölgelerinin içine geçmesini engelleyen vorteks örgüsünün setliğinden dolayı azalır.vorteks örgüsünün sertliği H c2 (T) ye yakın alanlarda azalır ve sonra makroskobik çivileme kuvveti aniden yükselir. Çivileme kuvvetindeki bu ani yükseliş, J c de pik etkisi ile sonuçlanır (Matsushita ve ark.,1994). Pek çok süperiletkenin kritik akım yoğunluğunda pik etkisi görülmektedir ve nedeni devam eden bir araştırma konusudur. Bu pik etkileri uygulamalar için 35

8 faydalı olup daha pratik YBCO süperiletken malzemelerin yapımı için çalışılmaktadır. Bu önemi itibariyle pik etkisi üzerine yapılan son çalışmalar incelenmiştir. Vorteks çivilemesinin temel ölçüsü birim hacim başına çivileme kuvveti F p dir ve bu J c yi gerektirir. Eğer F p kabaca alandan bağımsız olsaydı, J c alan artışıyla azalacaktı. Azalma hızlıca ve hemen hemen üstel bir şekilde olabilir (Chaddah ve ark.,1989). Böylece pik etkisi beklenilmezdi. Araştırmacılar pik etkisi bölgesindeki F p (ya da J c ) ölçümlerinde geçmiş etkisi üzerine yoğunlaşmışlardır ve bu ölçümlerinde J c nin örneğin işlem sıcaklığına nasıl soğutulacağına bağlılığını göz önünde bulundurmuşlardır. Steingart ve arkadaşları (1973) ilk olarak niyobyumun tekil bir kristalinde J c yi ölçtüklerinde, çivileme kuvvetindeki geçmiş etkilerini rapor ettiler. Onlar pik bölgesi yakınında verilen bir (H,T) noktasında J c yi (a) sabit T de alanı sıfırdan yukarı arttırarak (J c (ZFC) olarak gösterilir) (b) alanı H c2 den H ye azaltarak (J c (H-) şeklinde gösterilir) ve (c) sıcaklığı T c üzerinden düşürerek ya da sabit H de alan-soğutma olarak (J c (FC) şeklinde gösterilir) ölçtüler. J c (FC) > J c (H) > J c (ZFC) eşitsizliğini buldular. Steingart ve arkadaşları (1973) F p deki eşitsizliğe ilişkin aşağıdaki makul açıklamayı verdiler. H c2 yakınındaki vorteks örgüsünün küçük kesme modülünden dolayı, FC durumundaki vorteks örgüsü çivileme bölgelerinin kapsamını maksimize eden tanecikli bir yapıda biçimlendiğini söylediler. Bu kapsam H ye kadar soğuyarak devam eder, halbuki ZFC durumunda vorteks, sıfır alanda pek çok çivileme bölgelerini ihmal ederek mükemmele yakın bir örgü biçimini alır. Bu mükemmele yakın örgü H, ZFC durumunda olana kadar devam eder ve çivileme FC durumundakinden daha az verimlidir. Şekil 5, alan artışıyla ZFC durumunda gözlenen J c (H) deki pikin bir şematiğini gösterir. J c, FC durumunda daha yüksektir. Kullanılan ölçme akımı şekilde gösterildiği gibi J 0 ise orta seviyede alanlarda ZFC durumunda sonlu bir direnç görülür. Oysa FC durumunda hiç direnç gözlenmez. Şekil 5. H ye karşı J c şemasında geçmiş-etkisi (Chaudhary ve ark.,2001). 36

9 Sonuçlar Yüksek sıcaklık süperiletkenlerde kritik durum modelleri ve kritik akım yoğunluğu, süperiletkenliğin oluşum teorileri, mekanizması, magnetik özellikleri ve kritik akım yoğunluğu incelenmiş, bu konularda yapılmış olan çalışmalar ışığında yapılacak yeni çalışmalar hakkında bilgi sahibi olunmuştur. Yüksek sıcaklık süperiletkenlerinde kritik akım yoğunluğu büyük önem taşımaktadır. Özellikle yüksek kritik akım yoğunluğu değerlerinin teknolojik alanda kullanımı bakımından ayrı bir önemi vardır. Dünyanın dört bir köşesinde süperiletken çalışan bilim insanları hazırladıkları süperiletken malzemelerin yüksek T c ve yüksek J c leri üzerine yoğunlaşmışlardır. Adeta teknolojik bir devrim olarak görülen bu hedefte onlarca teorik model yapılan deneysel sonuçlarlarla kıyaslanmaktadır. Bu modeller içerisinde en başarılı olanı Bean modelidir. J c değerini ölçmek için yarı teorik ve pratik metodlar geliştirilmiştir. Pratik olarak, örneğe uygulanan voltajdan dolayı oluşan akımı ölçerek J c bulunabilir. Yarı teorik akım yoğunluğunun ölçülmesi için üç yol vardır. J m 30( M ) Acm 2 d J J m m 20( M ) Acm 2 a a(1 ) 3b 1 B 1 B a o 13 Acm 2 Bu formüllerden ilk ikisi Bean formulü (Bean, 1964), üçüncüsü Müller formülüdür. Birinci ve ikinci formüllerdeki M M M dir. Burada M, pozitif magnetizasyonu ve M, negatif magnetizasyonu gösterir. Birinci formüldeki d, tanecik büyüklüğünü, ikinci formüldeki a ve b, dikdörtgen olarak alınan numunenin boyutlarını, üçüncü formüldeki B uygulanan manyetik alanı, B ise ilk manyetik alanı göstermektedir. Geçmiş yıllarda ve son dönemlerde yapılan süperiletken malzemelere ait magnetik özellikleri araştıran deneysel çalışmalarda histeresiz eğrilerinden yola çıkılarak kritik akım yoğunluğu hesaplamaları yapılmakta ve değişik konsantrasyondaki malzemeler için bu modelin hala kullanılabileceği öngörülmekte a o 37

10 olup gelecekte de yine deneysel ve teorik sonuçların kıyaslanması için iyi bir model olduğu düşünülmektedir. Kaynaklar BEAN,C.P.,1964.Rev. Mod. Phys.,36:31. BEDNORZ, J. G., and MULLER, K.A., Possible High Tc Superconductivity In The Ba-La-Cu-O System. Zeitschrift Für Physik.64:189. CHADDAH,P.,BHAGWAT,K.V.,and RAVIKUMAR,G.,1989.Physica C,159:570. CHAPNIK,I.M.,1962.Sov.Phys.Dokl.,6,988p. CHAUDHARY,S.,2001.Physica C,353:29. COHEN,M.L.,1964.Superconductivity in Many-valey Semiconductors and Semimetals.Physical Rewiew A,134: LAWRENCE,W.E., and DONIACH,S.,1971.Proceedings of LT12. Kyoto,Japan,361p. LYNTON,E.A.,1962.Superconductivity.Methuen and Company,Ltd.,London. MAEDA, H., and TANAKA, Y., Jpn. J. Appl. Phys. Lett.,4(L209). MATSUSHITA,T., and EKIN,J.W.,1994,In Composite Superconductors, Marcel-Dekker. MEISSNER,W., and OCHSENFELD,R.,1933.Naturwissenschaften:21,787p. MOZELSKY, R., MILLER,R.C., HEIN, R.A., GIBSON, J. W.,and HULM, J.K., Superconductivity in Germanium Telluride. Phys.Rev.Letters. ONNES,H.K.,1908.The Liquefaction of Helium.Leiden University,Leiden:108,18p. STEINGART,M., and KRAMER,E.J.,1973.J.Appl.Phys.,44:5580. TARASCON,M. J., and LE PAGE,Y.,1988. Phys. Rev., B

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ. Selda KILIÇ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ. Selda KILIÇ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Selda KILIÇ YÜKSEK GEÇİŞ SICAKLIKLI SÜPERİLETKENLERDE KRİTİK DURUM MODELLERİNİN İNCELENMESİ FİZİK ANABİLİM DALI ADANA, 2008 ÖZ YÜKSEK LİSANS

Detaylı

VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ * Effects Of Vortex Mechanism On Superconductivity

VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ * Effects Of Vortex Mechanism On Superconductivity VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ * Effects Of Vortex Mechanism On Superconductivity Sultan DEMİRDİŞ Kerim KIYMAÇ Ahmet EKİCİBİL Fizik Anabilim Dalı Fizik Anabilim Dalı Fizik Anabilim Dalı

Detaylı

engelsiz İki elektronun işbirliği!

engelsiz İki elektronun işbirliği! süperiletkenlik Süperiletkenlik Bir metali sert yaylar ile bağlanmış ve hareket edebilen pozitif iyonlardan oluşan bir kafes olarak düşünebiliriz. Kafeste hareket eden elektronlar elektrik akımı oluştururlar.

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ Hakan GÜNDOĞMUŞ LAZER TEKNİĞİ İLE ÜRETİLEN KATKILI BSSCO SÜPERİLETKENLERİN FİZİKSEL ÖZELLİKLERİNİN ARAŞTIRILMASI FİZİK ANABİLİM DALI ADANA, 2013

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

ENERJİ VERİMLİLİĞİ VE SÜPERİLETKEN MALZEMELER. Rıfkı Terzioğlu, Türker Fedai Çavuş Sakarya Üniversitesi Elektrik Elektronik Mühendisliği Bölümü

ENERJİ VERİMLİLİĞİ VE SÜPERİLETKEN MALZEMELER. Rıfkı Terzioğlu, Türker Fedai Çavuş Sakarya Üniversitesi Elektrik Elektronik Mühendisliği Bölümü ENERJİ VERİMLİLİĞİ VE SÜPERİLETKEN MALZEMELER Rıfkı Terzioğlu, Türker Fedai Çavuş Sakarya Üniversitesi Elektrik Elektronik Mühendisliği Bölümü İçerik Giriş İçerik Giriş Süperiletkenler ve temel özellikleri,

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ Duygu YAZICI TEK FAZLI BSCCO SÜPERİLETKEN MALZEME ÜRETİMİ VE MALZEMENİN FİZİKSEL ÖZELLİKLERİNİN ARAŞTIRILMASI FİZİK ANABİLİM DALI ADANA, 2010

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ. Sultan DEMİRDİŞ VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ FİZİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ. Sultan DEMİRDİŞ VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ FİZİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Sultan DEMİRDİŞ VORTEKS MEKANİZMASININ SÜPERİLETKENLİĞE ETKİLERİ FİZİK ANABİLİM DALI ADANA, 2008 ÖZ YÜKSEK LİSANS TEZİ VORTEKS MEKANİZMASININ

Detaylı

Bi 1,6 Pb 0,4 Sr 2 Ca 2-x Sm x Cu 3 O y (x= 0,0 ve 1,0) SÜPERİLETKENLERİN ELEKTRİKSEL KARAKTERİZASYONU. Havva BOĞAZ

Bi 1,6 Pb 0,4 Sr 2 Ca 2-x Sm x Cu 3 O y (x= 0,0 ve 1,0) SÜPERİLETKENLERİN ELEKTRİKSEL KARAKTERİZASYONU. Havva BOĞAZ Bi 1,6 Pb,4 Sr 2 Ca 2-x Sm x Cu 3 O y (x=, ve 1,) SÜPERİLETKENLERİN ELEKTRİKSEL KARAKTERİZASYONU Havva BOĞAZ YÜKSEK LİSANS TEZİ İLERİ TEKNOLOJİLER GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 26 ANKARA

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Pb, Ag ve Sb KATKI ATOMLARIYLA HAZIRLANMIŞ YBaCuO SÜPERİLETKEN SİSTEMLERİN ELEKTRİKSEL PARAMETRELERİNİN SAPTANMASI

Pb, Ag ve Sb KATKI ATOMLARIYLA HAZIRLANMIŞ YBaCuO SÜPERİLETKEN SİSTEMLERİN ELEKTRİKSEL PARAMETRELERİNİN SAPTANMASI DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Pb, Ag ve Sb KATKI ATOMLARIYLA HAZIRLANMIŞ YBaCuO SÜPERİLETKEN SİSTEMLERİN ELEKTRİKSEL PARAMETRELERİNİN SAPTANMASI A. Gönül ÖZTÜRK Ekim, 2010 İZMİR Pb,

Detaylı

T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Nd KATKILI YBaCuO SÜPERİLETKEN ÜRETİMİ VE KARAKTERİZASYONU. Melike ŞENER

T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Nd KATKILI YBaCuO SÜPERİLETKEN ÜRETİMİ VE KARAKTERİZASYONU. Melike ŞENER T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Nd KATKILI YBaCuO SÜPERİLETKEN ÜRETİMİ VE KARAKTERİZASYONU Melike ŞENER YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI MALATYA Temmuz 2013 Tezin Başlığı : Nd Katkılı

Detaylı

MMM291 MALZEME BİLİMİ

MMM291 MALZEME BİLİMİ MMM291 MALZEME BİLİMİ Ofis Saatleri: Perşembe 14:00 16:00 ayse.kalemtas@btu.edu.tr, akalemtas@gmail.com Bursa Teknik Üniversitesi, Doğa Bilimleri, Mimarlık ve Mühendislik Fakültesi, Metalurji ve Malzeme

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

Bölüm 3 - Kristal Yapılar

Bölüm 3 - Kristal Yapılar Bölüm 3 - Kristal Yapılar Katı malzemeler, atomların veya iyonların oluşturdukları düzene göre sınıflandırılır. Kristal malzemede uzun-aralıkta atomsal ölçekte tekrarlayan bir düzen mevcuttur. Katılaşma

Detaylı

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük 4 ELEKTRİK AKIMLARI Elektik Akımı ve Akım Yoğunluğu Elektrik yüklerinin akışına elektrik akımı denir. Yük topluluğu bir A alanı boyunca yüzeye dik olarak hareket etsin. Bu yüzeyden t zaman aralığında Q

Detaylı

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER Günümüzde bara sistemlerinde iletken olarak iki metalden biri tercih edilmektedir. Bunlar bakır ya da alüminyumdur. Ağırlık haricindeki diğer tüm özellikler bakırın

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI YÜKSEK LİSANS TEZİ

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI YÜKSEK LİSANS TEZİ T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI BSCCO SÜPERİLETKENİNİN MEKANİKSEL ÖZELLİKLERİNİN DİNAMİK MİKROSERTLİK YÖNTEMİ İLE İNCELENMESİ YÜKSEK LİSANS TEZİ Danışman :Yrd.

Detaylı

Katlı oranlar kanunu. 2H 2 + O 2 H 2 O Sabit Oran ( 4 g 32 g 36 g. 2 g 16 g 18 g. 1 g 8 g 9 g. 8 g 64 g 72 g. N 2 + 3H 2 2NH 3 Sabit Oran (

Katlı oranlar kanunu. 2H 2 + O 2 H 2 O Sabit Oran ( 4 g 32 g 36 g. 2 g 16 g 18 g. 1 g 8 g 9 g. 8 g 64 g 72 g. N 2 + 3H 2 2NH 3 Sabit Oran ( Sabit oranlar kanunu Bir bileşiği oluşturan elementlerin kütleleri arasında sabit bir oran vardır. Bu sabit oranın varlığı ilk defa 799 tarihinde Praust tarafından bulunmuş ve sabit oranlar kanunu şeklinde

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ Bölüm İçeriği Bağ Enerjisi ve Kuvveti Atomlar arası mesafe, Kuvvet ve Enerji İlişkisi Atomlar arası Mesafeyi Etkileyen Faktörler. Sıcaklık, Iyonsallik derecesi,

Detaylı

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Diyot sembol ve görünüşleri DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ Diyotlar; bir yarısı N-tipi, diğer yarısı P-tipi yarıiletkenden oluşan kristal elemanlardır ve tek yönlü akım geçiren yarıiletken devre elemanlarıdır. N

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ OFM FİZİK ÖĞRETMENLİĞİ ALAN EĞİTİMİNDE ARAŞTIRMA PROJESİ SÜPERİLETKENLİK

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ OFM FİZİK ÖĞRETMENLİĞİ ALAN EĞİTİMİNDE ARAŞTIRMA PROJESİ SÜPERİLETKENLİK T.C. YILDIZ TEKNİK ÜNİVERSİTESİ OFM FİZİK ÖĞRETMENLİĞİ ALAN EĞİTİMİNDE ARAŞTIRMA PROJESİ SÜPERİLETKENLİK Öğrencinin Adı-Soyadı :MELİKE BALAKAN Öğrencinin Numarası :07539006 Öğretim Elemanı Adı-Soyadı :

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

1. HAFTA Giriş ve Temel Kavramlar

1. HAFTA Giriş ve Temel Kavramlar 1. HAFTA Giriş ve Temel Kavramlar TERMODİNAMİK VE ISI TRANSFERİ Isı: Sıcaklık farkının bir sonucu olarak bir sistemden diğerine transfer edilebilen bir enerji türüdür. Termodinamik: Bir sistem bir denge

Detaylı

DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ)

DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ) DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ) DERS SORUMLUSU : PROF. DR. Đnci MORGĐL HAZIRLAYAN Mustafa HORUŞ 20040023 ANKARA/2008

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

KRİSTAL KUSURLARI BÖLÜM 3. Bağlar + Kristal yapısı + Kusurlar. Özellikler. Kusurlar malzeme özelliğini önemli ölçüde etkiler.

KRİSTAL KUSURLARI BÖLÜM 3. Bağlar + Kristal yapısı + Kusurlar. Özellikler. Kusurlar malzeme özelliğini önemli ölçüde etkiler. KRİSTAL KUSURLARI Bağlar + Kristal yapısı + Kusurlar Özellikler Kusurlar malzeme özelliğini önemli ölçüde etkiler. 2 1 Yarıiletken alttaş üretiminde kullanılan silikon kristalleri neden belli ölçüde fosfor

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

FİZ4001 KATIHAL FİZİĞİ-I

FİZ4001 KATIHAL FİZİĞİ-I FİZ4001 KATIHAL FİZİĞİ-I Bölüm 3. Örgü Titreşimleri: Termal, Akustik ve Optik Özellikler Dr. Aytaç Gürhan GÖKÇE Katıhal Fiziği - I Dr. Aytaç Gürhan GÖKÇE 1 Bir Boyutlu İki Atomlu Örgü Titreşimleri M 2

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ SÜPERİLETKEN "RACETRACT" BOBİNLERDE VE BOBİN "STACK" YAPILARINDA ALTERNATİF AKIM KAYIPLARIN SONLU ELEMANLAR YÖNTEMİ İLE ARAŞTIRILMASI Meryem

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

MANYETİK ALINGANLIK ÖLÇÜMLERİ İLE BİZMUT TABANLI SERAMİK SÜPERİLETKENLERİN KARAKTERİZASYONU

MANYETİK ALINGANLIK ÖLÇÜMLERİ İLE BİZMUT TABANLI SERAMİK SÜPERİLETKENLERİN KARAKTERİZASYONU DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MANYETİK ALINGANLIK ÖLÇÜMLERİ İLE BİZMUT TABANLI SERAMİK SÜPERİLETKENLERİN KARAKTERİZASYONU Özlem BİLGİLİ Eylül, 2013 İZMİR MANYETİK ALINGANLIK ÖLÇÜMLERİ

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜKSEK SICAKLIK SÜPERİLETKENLERDE FİZİKSEL ÖZELLİKLER. Erhan AKSU FİZİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜKSEK SICAKLIK SÜPERİLETKENLERDE FİZİKSEL ÖZELLİKLER. Erhan AKSU FİZİK ANABİLİM DALI TR0500015 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜKSEK SICAKLIK SÜPERİLETKENLERDE FİZİKSEL ÖZELLİKLER Erhan AKSU FİZİK ANABİLİM DALI ANKARA 2003 Her hakkı saklıdır Doç. Dr. Ali GENCER

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

Fiz 1012 Ders 6 Manyetik Alanlar.

Fiz 1012 Ders 6 Manyetik Alanlar. Fiz 1012 Ders 6 Manyetik Alanlar Manyetik Alan Manyetik Alan Çizgileri Manyetik Alan İçinde Hareket Eden Elektrik Yükü Akım Taşıyan Bir İletken Üzerine Etki Manyetik Kuvvet http://kisi.deu.edu.tr/mehmet.tarakci/

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. AROMATİK HİDROKARBON KATKILI MgB 2 SÜPERİLETKENLERİN ELEKTROMANYETİK KARAKTERİZASYONU

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. AROMATİK HİDROKARBON KATKILI MgB 2 SÜPERİLETKENLERİN ELEKTROMANYETİK KARAKTERİZASYONU ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ AROMATİK HİDROKARBON KATKILI MgB 2 SÜPERİLETKENLERİN ELEKTROMANYETİK KARAKTERİZASYONU Meral GÜNGÖR BABAOĞLU FİZİK ANABİLİM DALI ANKARA 2012 Her

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin dış ortamdan ısı absorblama kabiliyetinin bir göstergesi

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur.

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Kristal ka8ların bazı özellikleri, malzemelerin kristal yapılarına, yani atomların, iyonların ya da moleküllerin üç boyutlu olarak meydana ge@rdikleri

Detaylı

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 30.09.2011 Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton sayısından

Detaylı

Moleküllerarası Etkileşimler, Sıvılar ve Katılar - 11

Moleküllerarası Etkileşimler, Sıvılar ve Katılar - 11 Moleküllerarası Etkileşimler, Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Sıvılar ve Katılar - 11 Maddenin Halleri Maddenin halleri arasındaki

Detaylı

DOĞAL KURŞUN METALİK KURŞUN PLAKALAR

DOĞAL KURŞUN METALİK KURŞUN PLAKALAR KURŞUN ve ALAŞIMLARI DOĞAL KURŞUN METALİK KURŞUN PLAKALAR 1 KURŞUN ve ALAŞIMLARI Romalılar kurşun boruları banyolarda kullanmıştır. 2 KURŞUN ve ALAŞIMLARI Kurşuna oda sıcaklığında bile çok düşük bir gerilim

Detaylı

SÜRÜKLEME DENEYİ TEORİ

SÜRÜKLEME DENEYİ TEORİ SÜRÜKLEME DENEYİ TEORİ Sürükleme kuvveti akışa maruz kalan cismin akışkan ile etkileşimi ve teması sonucu oluşan akış yönündeki kuvvettir.sürükleme kuvveti yüzey sürtünmesi,basınç ve taşıma kuvvetinden

Detaylı

1. Amaç Kristallerin üç boyutlu yapısı incelenecektir. Ön bilgi için İnorganik Kimya, Miessler ve Tarr, Bölüm 7 okunmalıdır.

1. Amaç Kristallerin üç boyutlu yapısı incelenecektir. Ön bilgi için İnorganik Kimya, Miessler ve Tarr, Bölüm 7 okunmalıdır. 14 DENEY KATI HAL 1. Amaç Kristallerin üç boyutlu yapısı incelenecektir. Ön bilgi için İnorganik Kimya, Miessler ve Tarr, Bölüm 7 okunmalıdır. 2. Giriş Atomlar arası (veya moleküller arası) çekim kuvvetleri

Detaylı

YBa 2 Cu 3 O 7-d SÜPERİLETKENLERİNDE TABLET BASINCININ SÜPERİLETKENLİK ÖZELLİKLERİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI. Mevlüt BAYAM

YBa 2 Cu 3 O 7-d SÜPERİLETKENLERİNDE TABLET BASINCININ SÜPERİLETKENLİK ÖZELLİKLERİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI. Mevlüt BAYAM YBa 2 Cu 3 O 7-d SÜPERİLETKENLERİNDE TABLET BASINCININ SÜPERİLETKENLİK ÖZELLİKLERİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI Mevlüt BAYAM YÜKSEK LİSANS TEZİ ORTAÖĞRETİM FEN VE MATEMATİK ALANLAR EĞİTİMİ FİZİK ÖĞRETMENLİĞİ

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı Bölüm-6 Özeti Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı Bölüm-6 Özeti Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-6 Özeti 21.04.2015 Ankara Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

Katılar. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006

Katılar. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006 Katılar Tüm maddeler, yeteri kadar soğutulduğunda katıları oluştururlar. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Oluşan katıların doğası atom, iyon veya molekülleri birarada tutan kuvvetlere

Detaylı

Danışman: Yard. Doç. Dr. Metin Özgül

Danışman: Yard. Doç. Dr. Metin Özgül Hazırlayan:Nida EMANET Danışman: Yard. Doç. Dr. Metin Özgül 1 ELEKTROSERAMİK NEDİR? Elektroseramik terimi genel olarak elektronik, manyetik ve optik özellikleri olan seramik malzemeleri ifade etmektedir.

Detaylı

Doğru Akım Devreleri

Doğru Akım Devreleri Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor

Detaylı

DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK ÖLÇÜMÜ DENEYİ FÖYÜ

DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK ÖLÇÜMÜ DENEYİ FÖYÜ T.C ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MALZEME BİLİMİ VE MÜHENDİSLİĞİ BÖLÜMÜ MALZEME ÜRETİM ve KARAKTERİZASYON LABORATUVARI DERSİ LABORATUVAR UYGULAMALARI DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK

Detaylı

KİM 433 METALLER KİMYASI PROF. DR. SELEN BİLGE KOÇAK

KİM 433 METALLER KİMYASI PROF. DR. SELEN BİLGE KOÇAK 13 MTALLRD BAĞLANMA İL İLGİLİ TORİLR Metallerdeki bağların izahı diğer bağlarınkine benzemez. Çünkü metal atomları aynı türden 8 (iç merkezli kübik sistem) veya 12 (yüzey merkezli kübik sistem veya hekzagonal)

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bilgileri edinme, dirençlerin renk kodlarını öğrenme, devre kurma aracı olarak

Detaylı

7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ

7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ 7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ Arş. Gör. Ahmet POLATOĞLU Fizik II-Elektrik Laboratuvarı 9 Mart 2018 DENEY RAPORU DENEYİN ADI: Akım Geçen Tele Etkiyen Manyetik Kuvvetlerin

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

DİYOT KARAKTERİSTİKLERİ

DİYOT KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı 1. Deneyin Amacı DİYOT KARAKTERİSTİKLERİ Diyot çeşitlerinin

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

Magnetic Materials. 10. Ders: Ferimanyetizma. Numan Akdoğan.

Magnetic Materials. 10. Ders: Ferimanyetizma. Numan Akdoğan. Magnetic Materials 10. Ders: Ferimanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Ferimanyetizma Ferimanyetik

Detaylı

Maddelerin ortak özellikleri

Maddelerin ortak özellikleri On5yirmi5.com Maddelerin ortak özellikleri Maddelerin ortak özellikleri, ayırt edici özelliklerinin incelenip hallerine göre sınıflandırılmasının yapılması... Yayın Tarihi : 30 Ekim 2012 Salı (oluşturma

Detaylı

Ag-Katkılı BiPbSrCaCuO Seramiklerinin SEM ve XRD Analizleri. XRD and SEM analysis of Ag-Doped BiPbSrCaCuO Seramics

Ag-Katkılı BiPbSrCaCuO Seramiklerinin SEM ve XRD Analizleri. XRD and SEM analysis of Ag-Doped BiPbSrCaCuO Seramics SDU Journal of Science (E-Journal), 2014, 9 (2): 152-159 Ag-Katkılı BiPbSrCaCuO Seramiklerinin SEM ve XRD Analizleri Ali Uzunoğlu 1*, Gönül Bilgeç Akyüz 1 1 Adnan Menderes Üniversitesi, Fen-Edebiyat Fakültesi,

Detaylı

Yarım Dalga Doğrultma

Yarım Dalga Doğrultma Elektronik Devreler 1. Diyot Uygulamaları 1.1 Doğrultma Devreleri 1.1.1 Yarım dalga Doğrultma 1.1.2 Tam Dalga Doğrultma İki Diyotlu Tam Dalga Doğrultma Dört Diyotlu Tam Dalga Doğrultma Konunun Özeti *

Detaylı

Bölüm 24 Gauss Yasası

Bölüm 24 Gauss Yasası Bölüm 24 Gauss Yasası Elektrik Akısı Gauss Yasası Gauss Yasasının Yüklü Yalıtkanlara Uygulanması Elektrostatik Dengedeki İletkenler Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

Malzeme Bilgisi. Madde ve Özellikleri

Malzeme Bilgisi. Madde ve Özellikleri Malzeme Bilgisi Madde: Boşlukta yer kaplayan, kütlesi ve hacmi olan katı, sıvı veya gaz şeklinde bulunan her şeye madde denir. Ayırt edici özellikler: Bir maddenin diğer maddelerden farklılık gösterenyanları,

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

EEME 210 ELEKTRONİK LABORATUARI

EEME 210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME 210 ELEKTRONİK LABORATUARI DENEY 01: DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ 2014-2015 BAHAR Grup Kodu: Deney

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

Isı Kütle Transferi. Zorlanmış Dış Taşınım

Isı Kütle Transferi. Zorlanmış Dış Taşınım Isı Kütle Transferi Zorlanmış Dış Taşınım 1 İç ve dış akışı ayır etmek, AMAÇLAR Sürtünme direncini, basınç direncini, ortalama direnc değerlendirmesini ve dış akışta taşınım katsayısını, hesaplayabilmek

Detaylı

Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme

Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme Tajik (Tajikistan) Q2-1 Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme Lütfen bu probleme başlamadan önce ayrı zarftaki genel talimatları okuyunuz Giriş Faz geçişleri günlük hayatta iyi

Detaylı