Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1"

Transkript

1 Algoritmalara Giriş 6.06J/8.0J Ders 8 En Kısa Yollar II Bellman-Ford algoritması Doğrusal Programlama ve fark kısıtları VLSI yerleşimi küçültülmesi Prof. Erik Demaine November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

2 Negatif-ağırlık çevrimleri Hatırlatma: Eğer grafik G = (V, E) negatif ağırlık çevrimi içeriyorsa, en kısa yollardan bazıları bulunmayabilir. Örnek: < 0 u u vv November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

3 Negatif-ağırlık çevrimleri Hatırlatma:Eğer grafik G = (V, E) negatif ağırlık çevrimi içeriyorsa, en kısa yollardan bazıları bulunmayabilir. Örnek: < 0 uu vv Bellman-Ford algoritması:bir s V kaynağından tüm v V' lere bütün kısa yol uzunluklarını bulur ya da bir negatif ağırlık çevrimi olduğunu saptar. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

4 Bellman-Ford algoritması d[s] 0 for each(her bir) v V {s}(için) do(yap) d[v] ilklendirme for(için) i to V '(e) do for each edge(her kenar için yap) (u, v) E do(yap) if(eğer) d[v] > d[u] + w(u, v) then(sonra) d[v] d[u] + w(u, v) Gevşetme adımı for each edge (u, v) E do if d[v] > d[u] + w(u, v) sonra bunu negatif ağırlık çevrimi var diyerek raporla Sonunda, d[v] = δ(s, v), negatif ağırlık çevrimi yoksa. Süre = O(VE). November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

5 Bellman-Ford örneği BB AA 3 CC D 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

6 Bellman-Ford örneği BB 0 AA 3 EE CC D İlklendirme. 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.6

7 Bellman-Ford örneği BB AA 3 EE CC D 3 Köşe gevşetme düzeni 6 8 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.7

8 Bellman-Ford örneği BB AA 3 EE CC 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.8

9 Bellman-Ford örneği BB AA 3 EE CC 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.9

10 Bellman-Ford örneği BB AA 3 EE CC 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.0

11 Bellman-Ford örneği BB AA 3 EE CC 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

12 Bellman-Ford örneği CC BB AA 3 EE 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

13 Bellman-Ford örneği CC BB AA 3 EE 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

14 Bellman-Ford örneği CC BB AA 3 EE 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

15 Bellman-Ford örneği CC BB AA 3 EE 6 D 8 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

16 Bellman-Ford örneği CC BB AA 3 EE D. geçişin sonunda November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.6

17 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.7

18 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.8

19 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.9

20 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.0

21 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

22 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

23 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

24 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

25 Bellman-Ford örneği 0 AA 3 CC 7 BB 6 3 D 8 3 EE. geçişin sonu (ve 3 ve ). November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

26 Doğruluk Teorem.Eğer G = (V, E) hiç negatif ağırlık çevrimi içermiyorsa, sonrasında Bellman-Ford algoritması, bütün v V' ler için d[v] = δ(s, v)' yi çalıştırır. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.6

27 Doğruluk Teorem.Eğer G = (V, E) hiç negatif ağırlık çevrimi içermiyorsa, sonrasında Bellman-Ford algoritması bütün v V ler için Vd[v] = δ(s, v)' yi çalıştırır. Kanıt. v V herhangi bir köşe olsun ve s' den v' ye, üzerinde en az sayıda köşe olan en kısa yolun p olduğunu farzedin. p: s v 0 v v 3 v v v k p en kısa yol ise, δ(s, v i ) = δ(s, v i ) + w(v i, v i ). November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.7

28 p: s v 0 Doğruluk (Devamı) v v 3 v v v k İlk olarak, d[v 0 ] = 0 = δ(s, v 0 ) ve d[v 0 ]sonraki gevşetmeler tarafından değiştirilmemiş. (Ders ' teki d[v] δ(s, v) kuramı sebebiyle). E' den geçiş sonra, d[v ] = δ(s, v ). E' den geçiş sonra, d[v ] = δ(s, v ). M E' den k geçiş sonra, d[v k ] = δ(s, v k ). Eğer G negatif ağırlık çevrimi içermiyorsa, p basittir. En uzun basit yolun V kadar kenarı vardır. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.8

29 Negatif ağırlık çevrimlerini bulma Doğal Sonuç. V geçiş sonra d[v] değeri birleşmede başarısız olursa, G' de s' den erişilebilir bir negatif ağırlık çevrimi vardır. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.9

30 Doğrusal programlama A, m n bir matris olsun, b, m-vektörü ve c n-vektörü olsun. c T x öznesini Ax b ' ye maksimize eden n-vektör x' i bulun ya da böyle bir çözümün bulunmadığını belirleyin. n m. maksimize ediliyor. A x b ct x November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.30

31 Doğrusal programlama algoritmaları Genel problem için algoritmalar Tek yönlü (Simplex) yöntemler Pratik, ama en kötü koşma süresi, üstel zamanlı. Dahili-nokta yöntemi polinomsal zamanlı ve tek yönlü (simplex) yöntemle yarışır. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

32 Doğrusal programlama algoritmaları Genel problem için algoritmalar Tek yönlü (Simplex) yöntemler Pratik, ama en kötü koşma süresi, üstel zamanlı. Dahili-nokta yöntemi polinomsal zamanlı ve tek yönlü (simplex) yöntemle yarışır. Fizibilite problemi: Optimizasyon kriteri yok. Ax b için bir x bulun. Genellikle, alışılmış LP (doğrusal programlama) kadar zordur. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

33 Fark kısıtlarının sisteminin çözümlemesi Her satırı sadece bir tane, bir tane - içeren ve kalanı 0 olan A için doğrusal programlama. Örnek: x x 3 x x 3 x x 3 x j x i w ij November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.33

34 Fark kısıtları sisteminin çözümlemesi Her satırı sadece bir tane, bir tane - içeren ve kalanı 0 olan A için doğrusal programlama. Örnek: x x 3 x x 3 x x 3 x j x i w ij Çözüm: x = 3 x = 0 x 3 = November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

35 Fark kısıtları sisteminin çözümlemesi Her satırı sadece bir tane, bir tane - içeren ve kalanı 0 olan A için doğrusal programlama. Örnek: x x 3 x x 3 x x 3 x j x i w ij Çözüm: x = 3 x = 0 x 3 = Kısıt grafiği: x j x i w ij v ii w ij v jj ( A matrisinin boyutları: E V.) November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

36 Karşılanamaz kısıtlar Teorem. Eğer kısıt grafiği bir negatif ağırlık çevrimi içeriyorsa, farklar sistemi karşılanamaz. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.36

37 Karşılanamaz kısıtlar Teorem. Eğer kısıt grafiği bir negatif ağırlık çevrimi içeriyorsa, farklar sistemi karşılanamaz. Kanıt. Negatif ağırlık çevrimi şöyle olsun: v v L v k v. sonrasında x x w x 3 x w 3 M x k x k w k, k x x k w k November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.37

38 Kısıtların karşılanması Teorem.Eğer kısıt grafiği bir negatif ağırlık çevrimi içeriyorsa, farklar sistemi karşılanamaz. Kanıt. Negatif ağırlık çevrimi şöyle olsun: v v L v k v. sonrasında x x w x 3 x w 3 M x k x k w k, k x x k w k bu nedenle x i için kısıtları karşılayabilecek 0 çevrimin ağırlığı bir değer yoktur. < 0 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.38

39 Kısıtların karşılanması Teorem. Kısıt grafiğinde negatif ağırlık çevrimi bulunmadığını farzedin. O zaman kısıtlar karşılanabilir. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.39

40 Kısıtların karşılanması Teorem.Kısıt grafiğinde negatif ağırlık çevrimi bulunmadığını farzedin.o zaman kısıtlar karşılanabilir. Kanıt. V' ye yeni bir s köşesi ekleyin ve bu v i V 'deki her köşeye 0- kenar ağırlığı ile gelsin. v v v 7 v 9 v 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.0

41 Kısıtların karşılanması Teorem.Kısıt grafiğinde negatif ağırlık çevrimi bulunmadığını farzedin.o zaman kısıtlar karşılanabilir. Kanıt. V' ye yeni bir s köşesi ekleyin ve bu v i V 'deki her köşeye 0- kenar ağırlığı ile gelsin. s v 0 v Not:Negatif ağırlık 9 çevrimi yok, v yani en kısa yollar var. v 7 v 3 November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

42 Kanıt (Devamı) İddia: x i = δ(s, v i ) ataması kısıtları karşılar. Bir x j x i w ij kısıtı olduğunu ve s den v j ve v i ye en kısa yollar olduğunu düşünün. ss δ(s, v i ) v ii δ(s, v j ) w ij Üçgen eşitsizliği bize δ(s,v j ) δ(s, v i ) + w ij ' yi verir. x i = δ(s, v i ) ve x j = δ(s, v j ) olduğunda, kısıt x j x i w ij karşılanır. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8. v jj

43 Bellman-Ford ve Doğrusal programlama Doğal Sonuç. Bellman-Ford algoritması m fark kısıtının olduğu bir sistemi n değişkenli olarak O(mn) süresinde çözebilir. Tek kaynaklı en kısa yollar basit bir LP problemidir. Aslında, Bellman-Ford x + x + L + x n öğesini, x j x i w ij ve x i 0 kısıt koşullarında maksimize eder (egzersiz). Bellman-Ford aynı zamanda max i {x i } min i {x i }' yi minimize eder (egzersiz). November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.3

44 VLSI yerleşimi küçültme uygulaması Entegre devre özellikleri: minimum ayrılma λ Problem:VLSI yerleşiminde, tüm nitelikleri çok yakınlaştırmadan, nitelikler arasındaki mesafeyi tek boyutta sıkıştırın. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

45 VLSI Yerleşimi küçültmesi d Kısıt: x x x x d + λ Bellman-Ford max i {x i } min i {x i }, x-boyutunda yerleşimi en aza indirir. November 6, 00 Copyright 00- by Erik D. Demaine and Charles E. Leiserson L8.

Algoritmalar. Ders 14 En Kısa Yollar II Bellman-Ford algoritması Floyd-Warshall algoritması

Algoritmalar. Ders 14 En Kısa Yollar II Bellman-Ford algoritması Floyd-Warshall algoritması Algoritmalar ers En Kısa Yollar II Bellman-Ford algoritması Floyd-Warshall algoritması November, 00 opyright 00- by Erik. emaine and harles E. Leiserson Negatif-ağırlıklı çevrimler Hatırlatma: Eğer graf

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J Ders 17 En kısa yollar I En kısa yolların özellikleri Dijkstra algoritması Doğruluk Çözümleme Enine arama Prof. Erik Demaine November 14, 005 Copyright 001-5 by Erik

Detaylı

Algoritmalara Giriş J/18.401J Ders 15. Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması

Algoritmalara Giriş J/18.401J Ders 15. Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması Algoritmalara Giriş 6.046J/18.401J Ders 15 Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması Prof. Charles E. Leiserson November 7, 2005 Copyright 2001-5 by Erik D. Demaine

Detaylı

11.Hafta En kısa yollar I-II-III Devam. Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme

11.Hafta En kısa yollar I-II-III Devam. Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme 11.Hafta En kısa yollar I-II-III Devam Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme 1 En Kısa Yollar II Bellman-Ford algoritması 2 3 Negatif Maliyetli Çember Eğer graf negatif maliyetli çember içeriyorsa,

Detaylı

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) 1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm

Detaylı

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması September 14, 2005 Copyright 2001-5 Erik D. Demaine and Charles

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

köşe (vertex) kenar (edg d e)

köşe (vertex) kenar (edg d e) BÖLÜM 7 köşe (vertex) kenar (edge) Esk den Ank ya bir yol (path) Tanım 7.1.1: Bir G çizgesi (ya da yönsüz çizgesi) köşelerden oluşan bir V kümesinden ve kenarlardan oluşan bir E kümesinden oluşur. Herbir

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme Algoritmalar DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme October 19, 2005 Copyright 2001-5 by Erik D. Demaine and

Detaylı

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 GÜZ Çizgeler Yollar ve Çevrimler Çizge Olarak Modelleme Çizge Olarak Modelleme Yönlü Çizge Kenar - Köşe 2 / 90 Çizgeler Yollar ve Çevrimler Çizge Olarak

Detaylı

Ğ Ğ ç ü ü üü ç ü ü ü Ğ ü ü üü ü Ğ ç ç ü ü Ş Ş ç Ç Ş ç ü ü ç ç Ş ü ç ü ü ü ü ç ç ü Ç ç ü ü ü ü üü ü ü üü ü üü ç ü ü ü ü ü ü ü ç ü ç Ş ü ü ü ü üü Ş ç ü ç ü ü ü «ç ü Ç ü ü ç ü ü ü ü ü ü ç ç ü ç ü ü üü Ş ü

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15.

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15. Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15 Problem Seti 4 Okumalar: Bölüm 12 13 ve 18 Hem egzersizler

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Algoritmalara Giriş 6.046J/18.401J DERS 2

Algoritmalara Giriş 6.046J/18.401J DERS 2 Algoritmalara Giriş 6.046J/18.401J DERS 2 Asimptotik Simgelem O-, Ω-, ve Θ-simgelemi Yinelemeler Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) Prof. Erik Demaine September

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

Ara Sınav 1. Algoritmalara Giriş 14 Ekim 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Kitapçık 14

Ara Sınav 1. Algoritmalara Giriş 14 Ekim 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Kitapçık 14 Algoritmalara Giriş 14 Ekim 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Kitapçık 14 Ara Sınav 1 Dağıtılan sınav kitapçığını, size söylenene

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 12 Atlama Listeleri Veri Yapısı Rastgele Araya Yerleştirme Yüksek olasılıkla" sınırı Analiz (Çözümleme) Yazı Tura Atma Prof. Erik D. Demaine Atlama Listeleri Basit

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1) KONU 8: SİMPLEKS ABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx AX b X (8.) biçiminde tanımlı d.p.p. nin en ii çözüm değerinin elde edilmesinde,

Detaylı

Algoritmalara Giriş Eylül 21, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Çalışma notu 6

Algoritmalara Giriş Eylül 21, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Çalışma notu 6 Algoritmalara Giriş Eylül 21, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Çalışma notu 6 Problem Seti 2 Okumalar: 5.1-5.3 kısımları ve

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Problem Seti 8 Çözümleri

Problem Seti 8 Çözümleri Algoritmalara Giriş Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Kasım 22, 2005 6.046J/18.410J Dağıtım 27 Problem Seti 8 Çözümleri Problem 8-1. Sola Dönüş yok

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Algoritmalara Giriş. Prof. Erik Demaine. September 26, 2005 Copyright Erik D. Demaine and Charles E. Leiserson L5.1

Algoritmalara Giriş. Prof. Erik Demaine. September 26, 2005 Copyright Erik D. Demaine and Charles E. Leiserson L5.1 Algoritmalara Giriş 6.046J/18.401J DERS 5 Alt Sınırları Sıralama Karar ağaçları Doğrusal-Zaman Sıralaması Sayma sıralaması Taban sıralaması Son ek: Delikli kartlar Prof. Erik Demaine September 26, 2005

Detaylı

ç ö ö ş ç ş ş ç Ş ç ç Ö Ü ç

ç ö ö ş ç ş ş ç Ş ç ç Ö Ü ç Ş ç ö ö ş ç ş ş Ş ç ö ö ş ç ş ş ç Ş ç ç Ö Ü ç ç Ü Ü ÜÖÜ ç ş ş ş ç ö ç ç ç ş Ü ç ş ş ş ç Ş Ü Ç ç Ş Ü ş Ç Ü Ü ÜÜ ö ş ö ö ş ö ş ş ş ö ö ç ş ş ç ş ş ş ş ç ş Ö Ç Ç ç ş ş ç ş ş ş çç Ç ö Ş Ü Ü Ü ş ş ö ş Ş Ç Ç

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Pratik Final Sınavı Çözümleri 2

Pratik Final Sınavı Çözümleri 2 Pratik Final Sınavı Çözümleri 1 Algoritmalara Giriş 18 Mayıs 2003 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Pratik Final Sınavı Dağıtılan

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

3. BÖLÜM MATRİSLER 1

3. BÖLÜM MATRİSLER 1 3. BÖLÜM MATRİSLER 1 2 11 21 1 m1 a a a v 12 22 2 m2 a a a v 1 2 n n n mn a a a v gibi n tane vektörün oluşturduğu, şeklindeki sıralanışına matris denir. 1 2 n A v v v Matris A a a a a a a a a a 11 12

Detaylı

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli)

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS 2 NOTLAR Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) X, karar değişkenlerinin bir vektörü olsun. z, g 1, g 2,...,g m fonksiyonlardır.

Detaylı

Robot İzleme (Robot Tracing)

Robot İzleme (Robot Tracing) SORU : 1 DEĞERİ : 100 PUAN HAZIRLAYAN : Öğr.Gör. Ömer ÇAKIR Robot İzleme (Robot Tracing) Önüne çıkan engelleri aşağıda anlatılan algoritmaya göre aşıp çıkış noktasına ulaşan bir robotun başlangıç noktasından

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

Matris İşlemleri Uygulaması

Matris İşlemleri Uygulaması Matris İşlemleri Uygulaması Uygulama Konusu Uygulama 3x3 boyutlu matrislerle toplama, çıkarma ve çarpma işlemleri üzerinedir. Toplama İşlemi AA = aa iiii mmmmmm ve BB = bb iiii mmmmmm aynı tipte iki matris

Detaylı

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C. C.1) x1 x 1 4 4( x1) x 6 4x 4 x 6 x 46 x Maliye Bölümü EKON 10 Matematik I / Mart 018 Proje CEVAPLAR C.) i) S LW WH LW WH S LW WH S W W W S L H W ii) S LW WH WH LW S WH LW S W W W S H L W C.) ( x1) 5(

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar 11. SINIF No Konular Kazanım Sayısı GEOMETRİ Ders Saati Ağırlık (%) 11.1. TRİGONOMETRİ 7 56 26 11.1.1. Yönlü Açılar 2 10 5 11.1.2. Trigonometrik Fonksiyonlar 5 46 21 11.2. ANALİTİK GEOMETRİ 4 24 11 11.2.1.

Detaylı

ç ç ç ğ ğ ğ ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ç ç ç ğ ç ğ Ğ ç ğ ç ç Ğ Ğ ğ ğ ğ Ç Ü Ü ç Ç Ü Ğ Ü ğ ğ ç Ç ğ ç ğ ğ ç ç ç ç ğ ğ ç ç ğ ç ç ç ğ ğ ç ç ğ ç ğ ç Ö ç ğ ğ ğ ç ç Ö ç ğ ğ ğ ğ ğ ğ ğ ğ ç ğ ç ç ç ç ğ ç ğ Ğ çç ç

Detaylı

ş ş ğ ş ş ğ ğ ğ ş çç ş ç ğ ğ ş ş ğ ğ ş ç Ü ğ ğ ç ğ ş ç ğ ş ş ş ğ ğ ç ğ ç ş ç ş ğ ğ ş ç ç ç ç ç ğ ğ ş Ö ğ ğ ç ğ ğ ş ş ş ğ ç ş ğ ş ş ğ Ğ Ö ğ ç Ç ç Ö ğ Ş ş ğ Ğ Ç Ç Ş Ş Ğ Ü ğ Ş Ç ç ç ç ğ ğ ç Ğ ğ ç ğ ş ğ Ö

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

Pratik Ara Sınav 1 Çözümleri

Pratik Ara Sınav 1 Çözümleri Kitapçık 11: Pratik Ara Sınav 1 Algoritmalara Giriş Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson 6 Ekim 2005 6.046J/18.410J Kitapçık 11 Pratik Ara Sınav 1 Çözümleri

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Doğrusal Denklemler Sis./Sys. of Linear Equations

Doğrusal Denklemler Sis./Sys. of Linear Equations Doğrusal Denklemler Sis./Sys. of Linear Equations Uygulama alanı: Lineer olan her sistem Notation: Ax 1 = b Augmented [A l b] Uniqueness A = 0, A nxa Bu şekilde yazılan sistemler Overdetermined (denklem

Detaylı

Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19.

Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19. Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19 Problem Seti 6 Okumalar: Bölüm 17 ve karşılaştırmalı

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Doğrusal Programlamada Grafik Çözüm

Doğrusal Programlamada Grafik Çözüm Doğrusal Programlamada Grafik Çözüm doğrusal programlama PROBLEMİN ÇÖZÜLMESİ (OPTİMUM ÇÖZÜM) Farklı yöntemlerle çözülebilir Grafik çözüm (değişken sayısı 2 veya 3 olabilir) Simpleks çözüm Bilgisayar yazılımlarıyla

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur.

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Bölüm 2 Determinantlar Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Söz konusu fonksiyonun değerine o matrisin determinantı denilir. A bir kare matris ise, determinantı

Detaylı

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır. ÇOK ÖLÇÜTLÜ KARAR VERME TOPSIS (Technique For Order Preference By Similarity To Ideal Solution) PROF. DR. İBRAHİM ÇİL 1 Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22.

Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22. Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22 Problem Seti 7 Okumalar: Bölüm 15, 16.1 16.3, 22.1 ve

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı