Gizli Duvarlar Ali Nesin
|
|
- Su Ceren Acar
- 2 yıl önce
- İzleme sayısı:
Transkript
1 Gizli Duvarlar Ali Nesin En az enerji harcama yasası doğanın en çok bilinen yasalarından biridir. Örneğin, A noktasından yayılan ışık B noktasına gitmek için sonsuz tane yol arasından en çabuk gidebileceği yolu seçer. Eğer A ve B noktaları havadaysa, ışık AB doğrusunu izler, çünkü AB doğrusu ışığın hedefine en çabuk varacağı, en az enerji harcayacağı yoldur. Eğer A noktası havada, B noktası sudaysa, ışık A dan B ye gitmek için kırılır, çünkü ışık havada daha hızlı gider, suda yavaşlar, dolayısıyla olabildiğince havada kalmak ister. Doğanın bu yasasına fizikte sık sık raslanır. Estetik bilincimiz doğadan ve doğa yasalarından kaynaklanır. Doğanın en az enerji harcama yasası estetikte de geçerlidir. Güzelliği çoğu zaman yalında buluruz. Yazında olsun, resimde olsun, mimaride olsun, matematikte olsun, nerde olursa olsun, gereksiz karmaşadan hoşlanmam, hep yalından yanayımdır. Yazında örneğin, eğer bir tümce bir düşünceyi, bir duyguyu, bir olayı, bir durumu anlatmaya yetiyorsa, ikincisine gerek yoksa, o gereksiz ikinci tümceyi okumamalıyım. Gereksiz uzun tümcelerden de hoşlanmam. Bir tek sözcük, yerinde kullanılmışsa ve iyi seçilmişse, koca bir sayfanın işlevini görebilir. İşte bir yazın yapıtında o sözcüğü bulmak isterim. Resimde de öyle. Gereksiz çizgiden, gereksiz renkten rahatsız olurum. Sanatçıdan düşüncesini, görüşünü, duygusunu en az enerjiyle anlatmasını beklerim. Örneğin Giacometti nin çok çizgili eskiz resimlerine bayılırım, çünkü çizgileri ne kadar gerekiyorsa onca çoktur, bana göre bir tek fazla çizgi yoktur Giacometti de. Yalına ve güzelliğe ulaşmak hiç de kolay değildir. Kolay olsaydı, herkes sanatçı olabilirdi. Picasso nun bir dizi boğa taşbaskısı vardır. Ardarda, bir iki gün içinde yapılmıştır. İlk taşbaskıda bütün ayrıntılarıyla oldukça gerçekçi bir boğa görürüz. İkinci taşbaskıda daha az ayrıntı vardır. Son taşbaskıda üç beş çizgi kalmıştır salt. Bu son taşbaskı öylesine yalındır ki, Evren Paşa gibi, bunu ben de yaparım, dedirtir insana. Aslında ben Evren Paşa yı çok iyi anlıyorum, hatta hak veriyorum ve çocuksu bir saflıkla söylediği bu sözlerde başka hiçbir söylevinde göremediğim bir gerçek görüyorum. Tek kusuru, bu sözleri 60 küsur yaşlarında söylemesidir. Beğendiğimiz modern sanat müzelerinden, bunları ben de yapabilirim duygusuyla çıkmaz mıyız? Bilimsel bir kitabı iyi anlamışsak, yazarın düşüncesini iyi kavramışsak ve yazara hakveriyorsak, o buluşları isteseydik, zamanımız olsaydı ve doğru çağda yaşasaydık biz de bulabilirmişiz gibi bir duyguya kapılmaz mıyız? Matematikçi bir arkadaşım, bir kahvede sohbet ederken, bütün ciddiyetiyle, Geçen yüzyıl yaşasaydım, amma teorem kanıtlardım ha! demişti bir gün. Freud un, Darwin in, Marx ın buluşları bugünün insanına yalın gelir, bunları ben de bulabilirdim dedirtir. Doğrudur. Gerçek yalındır. Ama o yalın gerçeğe ilk ulaşmak öylesine zordur ki... Picasso yılların deneyimiyle ve kuşku götürmez dehasıyla bir iki gün içinde yalına ulaşabilir. Biz ölümlülerse, yalına ulaşmak için çok çalışmalıyız. En az enerjiye ulaşmak için çok enerji harcamalıyız. Aşağıda buna güzel bir örnek bulacaksınız.
2 A D Aşağıdaki şekle bir gözatın. Bu ABCÇD beşgenini bir oda olarak düşünün. Beş kenarlı B tuhaf bir oda... Bu odanın bir başka tuhaflığı daha var. Odanın N içindeki N noktasından bakıldığı zaman, CÇ ve ÇD duvarları C görünmüyor, ayrıca AD duvarının bir bölümü saklı, yalnızca bir bölümü görünüyor. Öte yandan AB ve BC duvarları tümüyle görünüyor. Ç Birinci Soru. Öyle bir köşegen oda çizin ki ve bu odanın öyle bir noktası olsun ki, bu noktadan bakıldığında, odanın hiçbir duvarı tamamıyla görünmesin. (Kimi duvarlar hiç görünmeyebilir.) İkinci Soru. Eğer yukarda bulduğunuz köşegen odanın altıdan fazla duvarı varsa, size bir sorum daha var. Öyle bir altıgen oda çizin ki ve bu altıgen odanın içinde öyle bir nokta olsun ki, bu noktadan bakıldığında altı duvarın hiçbiri tamamıyla görünmesin. Birinci Sorunun Yanıtı: Herkesin ayrı bir yanıtı olabilir. Ben bulduğum ilk köşegeni göstereyim. Önce, her kenarı 6 birim uzunluğunda bir kare çizelim: Oradan bakıldığında, hiçbir duvarın tam olarak görülemeyeceği nokta bu karenin merkezi olacak. Odanın duvarları daha belli değil. Yukardaki kareyi yontmamız gerekecek. Aşağıdaki çizgileri çizelim: Şimdi, bu son çizdiğimiz çizgilerden kareyi keselim. Aşağıdaki şekli elde ederiz:
3 İşte odamız. Oniki duvarlı. İşe başladığımız karenin merkezinden bakıldığında hiçbir duvar tam olarak görünmez. Yukardaki odanın duvar sayısını azaltabilir miyiz? Evet. Dikkat ederseniz, yatay ve dikey duvarlar pek gerekli değil. Yukardaki odanın sekiz duvarını yıkıp yerine dört yeni duvar öreceğiz, böylece duvar sayımız azalacak. Önce aşağıdaki çizgileri çekelim: Şimdi bu çizdiğimiz çizgilerden odamızı keselim: İşte yeni odamız. Merkezden bakarsak yine hiçbir duvarı tam olarak göremeyiz. Bu kez odamızın sekiz duvarı var. Sıra ikinci soruya geldi. İkinci Sorunun Yanıtı: Yukarda kareyle yaptığımızı bir üçgenle yapacağız ve sekiz duvarlı bir oda yerine altı duvarlı bir oda elde edeceğiz. İlk önce, açıortaylarıyla birlikte bir eşkenar üçgen çizelim ve bu üçgenin üstünde aşağıdaki gibi 9 nokta belirleyelim.
4 Odamızın merkezi üçgenin merkezi olacak. Odanın duvarlarını daha belirlemedik. Bu üçgeni biraz yontacağız. İkinci iş olarak, bu noktalardan birkaçını aşağıdaki gibi doğrularla birleştirelim. Bu son çizdiğimiz doğrulardan üçgenimizi keselim. Bu odanın merkezinden bakıldığı zaman hiçbir duvar tam olarak görülmez. Ama odanın dokuz duvarı var. Duvar sayısını azaltabilir miyiz? Evet. Altı duvarı silip yerine üç duvar çıkabiliriz. Önce odaya aşağıdaki çizgileri çekelim: Şimdi de gereksiz üç üçgeni atalım.
5 İşte odamız. Altı duvarlı ve merkezden bakıldığında hiçbir duvar tam olarak görünmüyor.
En az enerji harcama yasas do an n en bilinen yasalar ndan
Gizli Duvarlar En az enerji harcama yasas do an n en bilinen yasalar ndan biridir. Örne in, A noktas ndan yay lan fl k B noktas na gitmek için sonsuz tane yol aras ndan en az enerji harcayarak gidece i
Sevdiğim Birkaç Soru
Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir
a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.
ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen
Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler
Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller
6. ABCD dikdörtgeninde
Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye
Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi
KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak
Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler
Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller
DUVAR KAĞIDI GRUPLARI
DUVAR KAĞIDI GRUPLARI Fulya Taştan Bir düzlemi (odanın zeminini, voleybol sahasını) bir çeşit karoyla kaplayabilmek için birbirinden bağımsız en azından iki yönde karoları ötelemek gerekir elbette. Bunu
Beyin Cimnastikleri (I) Ali Nesin
Beyin Cimnastikleri (I) Ali Nesin S eks, yemek ve oyun doğal zevklerdendir. Her memeli hayvan hoşlanır bunlardan. İlk ikisi konumuz dışında. Üçüncüsünü konu edeceğiz. 1. İlk oyunumuz şöyle: Aşağıdaki dört
Üçgenin Alanı. Bu üçgenin alanı kaç birim kare? Daha pratik yollar bulmam gerekiyor.. Ortaokulmatematik.com. Alan Birim kare: Alan birim kare:
Üçgenin Alanı Alanı karelerle ölçeriz, dolayısıyla üçgenin alanını da karelerle ölçeriz. Herhangi bir üçgenin alanının ölçüsü demek, üçgen içerisine kaç tane birim kare sığdırabileceğimdir. Alan Birim
Gerçekten Asal Var mı? Ali Nesin
Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal
Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ
TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,
Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır.
Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Altın oran pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı 1.618033988749894..(Noktadan
Bahçe Sorusu Ali Nesin
Bahçe Sorusu Ali Nesin 1. Giriş. Daire biçiminde bir bahçeye, merkezden başlayarak, birer metre aralıklarla yatay ve dikey sıralanmış fidan dikmeyi düşünüyoruz. İşte bahçemizi ve fidanları dikeceğimiz
Daha iyi, daha sorunsuz, daha kolay, daha cazip, daha ekonomik olana ulaşabilmek içinse;
Soruna yol açan temel nedenleri belirlemek için bir yöntem: Hata Ağacı Sorun hayatta olmanın, sorunu çözmeye çalışmak daha iyiye ulaşma çabalarının göstergesi. Sorunu sıkıntı veren, olumsuz olay ya da
EKOK dir.
1.bisikletin bir tekerleğinin çevresi..r.3.40 40 cm.bisikletin bir tekerleğinin çevresi..r.3.30 180 cm 40 cm ile 180 cm 'in en küçük ortak katı neyse, bu bisikletler en az o kadar mesafe gitmişlerdir.
OLİMPİYAT DENEMESİ 2
OLİMPİYAT DENEMESİ 2 1.)Dış bükey ABCD dörtgeninde = =, m(a)=,m(c)= ise nin yarısı kaçtır? A) 2 B) C) D) E) 2.) Bir mağazada Ocak ayında satılan ayakkabı sayısı bir tamkaredir.şubat ayında satılan ayakkabı
çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1
. merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin
TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1
TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Geometrik Çizimler-1 2/32 Geometrik Çizimler - 1 Geometrik Çizimler-1 T-cetveli ve Gönye kullanımı Bir doğrunun orta noktasını bulma
TASARI GEOMETRİ SINAV SORULARI
TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla
B)10!.15! C)10!.P(15,2).13! D)25! E) Hiçbiri
1.) Dış bükey ABCD dörtgeninde DA = AB =2 3, m(a)=96 o,m(c)=132 o ise AC nin yarısı kaçtır? A) 2 B) 2 6 C) 6 D) 2 3 E) 3 2.) Bir mağazada Ocak ayında satılan ayakkabı sayısı bir tamkaredir.şubat ayında
LYS 2016 GEOMETRİ ÇÖZÜMLERİ
LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;
9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI
9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler
TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140
TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50
a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri
TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 7. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 00 Birinci Bölüm Soru kitapçığı türü A 1. Bir ikizkenar
TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?
üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine
ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)
ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) 1) Bir ABC dik üçgeninde B açısı diktir. AB kenarı üzerinde alınan bir D noktası için m( BCD) m( DCA) dır. BC kenarı üzerinde alınan bir E noktası için
Olimpiyat Eğitimi TUĞBA DENEME SINAVI
TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan
Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV
Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm
OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ
OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende
NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4
NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P
A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n
İLMO 008. Aşama Sınavı Soru Kitapçığı - A. 009 009 009 + +... + n toplamı hiçbir n doğal sayısı için aşağıdakilerden hangisiyle bölünemez? A) B) n C) n+ D) n+ E). ( x!)( y!) = z! eşitliğini sağlayan (x,
SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.
Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak
Go taşı ve tahtası. - Oyunun başında tahta boştur. - Oyuna önce siyah başlar. - Oyuncular sırayla taşlarını tahtaya
Go Şimdi Go oyununun kurallarını öğrenmeye başlıyoruz. Kurallar dediğimize bakmayın, aslında pek kuralı da yok. Pekçok kaynak Go'nun aslında bir tek temel kuraldan oluştuğunu söyler. Go oyunu 19 yatay,
T.Pappas'ın "Yaşayan Matematik" isimli kitabının önsözünde şunlar yazılıdır: "Matematikten duyulan zevk bir şeyi ilk kez keşfetme deneyimine benzer.
Matematik ve Müzik T.Pappas'ın "Yaşayan Matematik" isimli kitabının önsözünde şunlar yazılıdır: "Matematikten duyulan zevk bir şeyi ilk kez keşfetme deneyimine benzer. Çocuksu bir hayranlık ve şaşkınlık
Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri
İkosahedron Küpoktahedron Hazırlayan: Banu Binbaşaran Tüysüzoğlu Çizim: Bilgin Ersözlü İkosidodekahedron Çember Eşkenar üçgen İkizkenar üçgen Dik üçgen Kare Küpoktahedron Üçgen şeklinde sekiz, kare şeklinde
10. Sınıf. Soru Kitabı. Optik. Ünite. 2. Konu Işığın Yansıması ve Düzlem Aynalar. Test Çözümleri. Lazer Işınının Elde Edilmesi
10. Sınıf Soru itabı 4. Ünite ptik 2. onu şığın ansıması ve Düzlem ynalar Test Çözümleri azer şınının Elde Edilmesi 2 4. Ünite ptik Test 1 in Çözümleri 3. 1. 1 60 i 1 30 30 60 30 30 i 2 2 ışını 1 ve 2
TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.
11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?
ÇEMBER KARMA / TEST-1
ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen
Öklid alıştırmaları. Mat 113, MSGSÜ. İçindekiler. 36. önermeden sonra önermeden sonra 8. Çarpma 11
Öklid alıştırmaları Mat 113, MSSÜ 30 kim 2013 İçindekiler 1. önermeden sonra 2 5. önermeden sonra 2 6. önermeden sonra 2 7. önermeden sonra 3 8. önermeden sonra 3 9. önermeden sonra 3 10. önermeden sonra
2019 LGS MATEMATİK ÇÖZÜMLERİ
019 LGS MATEMATİK ÇÖZÜMLERİ.kattaki oda sayısı 90 10x ile hesaplanır. 90 10. 90 0 70 oda vardır. 5.kattaki oda sayısı 50 5x ile hesaplanır. 50 5.5 50 5 5 oda vardır. Aradaki fark 70 5 45 tir. Cevap: B
VI. OLİMPİYAT SINAVI SORULAR
SORULAR 1. N sayısı 1998 basamaklı ve tüm basamakları 1 olan bir doğal sayıdır. Buna göre N sayısının virgülden sonraki 1000. basamağı kaçtır? A)0 B)1 C)3 D)6 E) Hiçbiri. n Z olmak üzere, n sayısı n sayısına
LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN
LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik
ŞİFRELİ MATEMATİK. Sıfırdan Geometri Youtube Şifreli Matematik. Matematik-Geometri Ders Videoları 5 KL?
Yasal Uyarı: Soruların çözüm videolarına, süper kitaplarıma, güncel konu anlatımları ve daha fazlasına en güncel haliyle adresinden ulaşabilirsiniz de kanalına bekliyorum Başarılar dilerim Soru-1 Soru-4
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 8. SINIFLAR TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. Kartezyen koordinat sisteminde, K(3, ) noktasının y 3=0 doğrusuna göre simetriği olan nokta aşağıdakilerden hangisidir?. A ve B tamsayı olmak üzere, A
Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik,
Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılamaz,
KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.
TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda
MAT239 AYRIK MATEMATİK
MAT239 AYRIK MATEMATİK 12. Bölüm Emrah Akyar Eskişehir Teknik Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2018 2019 Öğretim Yılı 11. Bölümde Düzlemde bazı özel çizgeler çizildiğinde bu çizgeler
T.C. Ölçme, Seçme ve Yerleştirme Merkezi
T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının
ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER
ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan
MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI
Soru 1: Bir üçgenin iç açılarının ölçüleri aritmetik dizi oluşturmaktadır. Bu üçgenin en kısa kenar uzunluğu 6 cm ve en uzun kenarı 14 cm ise, ortanca kenar uzunluğu kaç cm dir? A) 2 37 B) 39 C) 13 D)
8. SINIF MATEMATiK ÜÇGEN
05 8. SINIF MTMTiK ÜÇGN Kenarortay: ir kenarın orta noktası ile karşısındaki köşe arasına çekilen doğru parçasına kenarortay denir. çıortay: ir köşeden, karşısındaki kenara kadar giden ve bu köşedeki açıyı
YGS GEOMETRİ DENEME 1
YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası
( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.
Kombinasyon Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. n elemanın tüm r li kombinasyonlarının sayısı; (, ) C n r ( ) r n P n, r n!
( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.
Kombinasyon Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. n elemanın tüm r li kombinasyonlarının sayısı; (, ) C n r ( ) r n P n, r n!
GEOMETRİK KAVRAMLAR DOĞRU. Örnek: NOKTA. Alıştırmalar: Örnek: Alıştırmalar: Aşağıdaki doğruları isimlendiriniz. a)
GEOMETRİK KAVRAMLAR NOKTA Geometrinin en temel birimidir. Boyutu olmayan, kalem ucuyla kağıtta bırakılan iz kadar şeklinde somutlaştırmaya çalışılan bir kavramdır. İnsan vücudundaki bir hücrenin uzaydan
Önemli Anlarda Tüketiciler: Bunun Otomobil Markaları için Anlamı Ne?
Önemli Anlarda Tüketiciler: Bunun Otomobil Markaları için Anlamı Ne? Yayınlanma tarihi: Aralık 2016 Konular Otomotiv, mobil, Mobil cihazlar, otomobil satın alma yolculuğunu değiştirdi. Öğle yemeği molasında
TRİGONMETRİK FONKSİYONLAR: DİK ÜÇGEN YAKLAŞIMI
TRİGONMETRİK FONKSİYONLAR: DİK ÜÇGEN YAKLAŞIMI Diyelim ki yeryüzünden güneşe olan mesafeyi bulmak istiyoruz. Şerit metre kullanmak açıkçası pratik değildir. Bu nedenle bu sorunun üstesinden gelmek için
HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA
HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA 1 2 + 3 4 + 5 6 + 7 8 + 9... 1000 toplamının sonucunu bulmak zor gelir mi size bilemeyiz? Dikkatli bakarsanız kalemsiz de çözmeniz mümkün. 1
TEST. Eşlik ve Benzerlik. 1. I. Eşit açıların karşısındaki kenarların oranı birbirine 4. A 5. A. 2. Benzer çokgenlerin açıları...i...
şlik ve enzerlik 8. Sınıf atematik Soru ankası S 7 1. I. şit açıların karşısındaki kenarların oranı birbirine eşittir. II. arşılıklı açılarının ölçüleri arasındaki oran benzerlik oranına eşittir. III.
4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º
ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =
İç bükey Dış bükey çokgen
Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden
Matematik Öğretiminde Açık-uçlu Problemler. Yrd. Doç. Dr. Nuray Çalışkan Dedeoğlu İlköğretim Matematik Eğitimi
Matematik Öğretiminde Açık-uçlu Problemler İlköğretim Matematik Eğitimi ndedeoglu@sakarya.edu.tr Kapalı uçlu soru Kısa ve öz cevaplar üretir Patronundan memnun musun? Bu seçimde kime oy vereceksin Açık
FRAKTAL GEOMETRİVE UYGULAMALARI
FRAKTAL GEOMETRİVE UYGULAMALARI 4.1 Vonkoch Eğrisi Şekil 4.1. Von Koch Eğrisi Burada bir doğru parçası ile başlanır. Doğru parçası üç eşit parçaya ayrılır, ortadaki parça alınır ve bir eşkenar üçgen şeklinde
Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012
Limit Oyunları Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 1 Giriş Limit ve sonsuzluk kavramlarının anlaşılması birçok insan için zor olabilir. Hatta bazı garip örnekler bu anlaşılması zor kavramlar
Singapur Matematik Olimpiyatı Soruları
Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı
Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu
Ramsey Teoremi Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu odada bulunan herhangi iki kifli birbirlerini ya tan rlar ya da tan mazlar. Buras belli. Yan t belli olmayan soru flu: Bu odadan,
4. Şekil 1'deki ABCD karesi şeklindeki karton E ve F orta
airede lan - 1. sım çevre uzunluğu 0 birim olan kare biçimindeki kağıdın üzerine, merkezleri bu kağıdın köşelerinde yer alan ve birbirine teğet olan dört çeyrek daireyi şekildeki gibi belirliyor. Sonra
IX. Ulusal İlköğretim Matematik Olimpiyatı
IX. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir su tankerinin tam doluyken toplam ağırlığı x ton; yarı yarıya doluyken toplam ağırlığı y ton ise, boş tankerin ağırlığı kaç tondur? a) 2x 2y b) 2y x
IX. Ulusal İlköğretim Matematik Olimpiyatı
IX. Ulusal İlköğretim Matematik Olimpiyatı A 1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5 2. Her x 0 gerçel sayısı için, eşittir?
İSTANBUL ATATÜRK FEN LİSESİ MATEMATİK YARIŞMASI /03/ :00 12:00
İSTANBUL ATATÜRK FEN LİSESİ MATEMATİK YARIŞMASI 2018 25/03/2018-10:00 12:00 Öğrencinin Adı Soyadı: Okulu / Sınıfı : Lütfen tüm bilgileri doğru bir şekilde yazınız. Sınav sonunda kitapçık salon görevlisine
Fotoğrafta kompozisyon fotoğraf çerçevesinin içine yerleştireceğimiz nesneleri düzenleme anlamına gelir.
KOMPOZİSYON Kelime anlamı: Ayrı ayrı parçaları bir araya getirerek bir bütün oluşturma biçimi ve işi. Öğrencilere duygu ve düşüncelerini etkili ve düzgün bir biçimde anlatmaları için yaptırılan yazılı
Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35
Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,
Geometrik Örüntüler X X X
1. sınıf 2. sınıf 3. sınıf 4. sınıf Geometrik Cisimler ve X X X X 2 GEOMETRİ Uzamsal İlişkiler X X X X Geometrik Örüntüler X X X Geometride Temel Kavramlar X X 1. sınıf 2. sınıf 3. sınıf 4. sınıf M.1.2.1.
GİRİŞ SINAVI Süre: 1 saat ve 30 dakika
GİRİŞ SINAVI 2017 MATEMATİK BİRİNCİ SINIF Süre: 1 saat ve 30 dakika Tüm soruları cevaplayınız. Tüm işlemlerinizi gösteriniz ve cevaplarınızı soru kâğıdında bırakılan uygun yerlere yazınız. Her sorunun
O + T + U + Z = 30 (30) 2K + I + R = 40 (40) E + 2L + = 50 (50) A + L + T + M + I + fi = 60 (60) Y + E + T + M + + fi = 70 (70) 2S + 2E + K + N = 80
Yaz yla Saymak H er harfe öyle bir tamsay vermek istiyoruz ki, örne in, B R in harfleri olan B ye, ye ve R ye verdi imiz say lar n toplam 1 olsun. K için de, ÜÇ için de ayn fley do ru olsun... 199 a kadar
GEOMETRİ SORU BANKASI KİTABI
LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,
8. SINIF ESLiK ve BENZERLiK
0 8. SINI SLiK ve NZRLiK şlik: Karşılıklı açılar ve kenar uzunlukları eşit olmalı. Sembolleri enzerlik: Karşılıklı açılar eşit, karşılıklı kenarlar orantılı olmalı. Sembolleri ~ veya olduğuna göre verilmeyen
Geometrik şekillerin çizimi
Geometrik şekillerin çizimi ir doğruya dışındaki P noktasından P geçen paralel doğru çizmek 1. P noktası merkez kabul edilir. yayı kadar açılan pergelle doğrusu kesiştirilerek noktası elde edilir. 3. Pergel
Doğru Cevap: D şıkkı AB8 _ AB 49B
017 YGS MATEMATİK LERİ 3 3 3 3 3 16. 3 3 3 3 8 3 16.. 3 3 3 3 16 8.. 3 3 3. 3 buluruz. 3 4 9 8 17 3 (3) () 6 6 6 3 8 9 17 3 4 1 1 1 (4) (3) 17 6 1 17 buluruz. Doğru Cevap : B şıkkı Doğru Cevap: D şıkkı
Olas l k Hesaplar (II)
Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele
6 6 36, Aradığımız değer 36 ile 49 arasında bir değerdir. Şimdi şıklara bakalım. A) Değil B)
Arabanın arka ucu 8 ile 9 cm arasında gözüküyor. Başlangıç noktası ise cm üzerinde gözüküyor. Arabanın boyu; 6 cm ile 7 cm arasında olmalıdır. Çünkü 8 6 ve 9 7 Şıklar köklü ifade olarak verilmiş. Biz de
Hiç K salmadan K salan Yol
Hiç K salmadan K salan Yol ki metrelik bir yol, hiç uzay p k salmadan, bir metrelik bir yola dönüflebilir mi? u yaz da yan t n evet oldu unu görece- iz. ki metrelik bir yol, hepimizin gözleri önünde, bir
DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI
DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,
noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden
ALAN PROBLEMLERĐ Viktor Prasolov un büyük eseri Plane Geometry kitabının alan bölümünün özgün bir tercümesini matematik severlerin hizmetine sunuyoruz. Geomania organizasyonu olarak çalışmalarınızda kolaylıklar
CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C
1. BÖLÜM: AÇISAL KAVRAMLAR VE DOĞRUDA AÇILAR 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-E 2-A 3-E 4-C 5-C 6-C 7-D 8-D 9-D 10-E 11-B 12-C 2. BÖLÜM: ÜÇGENDE AÇILAR 1-A 2-D 3-C 4-D 5-D 6-B
ÖZEL EGE LİSESİ OKULLAR ARASI 14.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI
8 SINIFLAR FİNAL SORULARI 1 3+ 1 denkleminin çözüm kümesini bulunuz ( R ) Aritmetik bir dizinin ilk 0 teriminin toplamı 400 ve dördüncü terimi olduğuna göre, birinci terimini bulunuz 3 4 öğrencinin katıldığı
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi
HADİ BAKALIM KOLAY GELSİN TELEVİZYON
HADİ BAKALIM KOLAY GELSİN TELEVİZYON Bir köyde bulunan tüm evlerin 1 ünde televizyon bulunmamaktadır. Kalan evlerin yarısında iki televizyon, diğer yarısında da bir televizyon vardır. Köyde kullanılan
2. 11 modunda aşağıdakilerden hangisine denktir? a) 1 b) 3 c) 4 d) 5 e) Hiçbiri
1. Bir ABC üçgeninde [AB], [BC] ve [CA] nın orta noktaları sırasıyla C, A ve B ; A dan BC ye inilen dikmenin ayağı H dir. A C = 6 olduğuna göre, B H nedir? a) 5 b) 6 c) 5 2 d) 6 2 e) 7 2. 11 modunda 3
1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Yukar daki rakamlardan kaç tanesinde dikey do ru modeli vard r?
Ad : Soyad : S n f : Nu. : Okulu : 1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Do ru Düzlem Nokta 5. MATEMAT K TEST 19 Ifl n Do ru Do ru parças 2. Afla daki hangi do runun çizgi modeli
1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2
8 ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 8 7. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı 8 cm Buna göre CEB üçgeninin
Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri
Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).
ŞEHİRDE GEZİNTİ. İlk kez 2001 yılı ÖSYS de sorulan bir soru tipini her yönü ile incelemeğe çalışalım.
ŞEHİRDE GEZİNTİ İlk kez 2001 yılı ÖSYS de sorulan bir soru tipini her yönü ile incelemeğe çalışalım. Şekildeki çizgiler bir kentin birbirini dik kesen sokaklarını göstermektedir. A dan hareket edip B noktasına
dir. Bu avcı en çok 3 atışta bu hedefi vurabilme
1. 3 mavi, 3 kırmızı, 3 siyah kalemin bulunduğu bir torbada rasgele alınan iki kalemin farklı renkte olma olasılığı kaçtır? A) 1 3 B) 2 3 C) 3 4 D) 3 5 E) 4 5 2. 43 kişilik bir sınıfta Almanca İngilizce
FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot
FRAKTAL VE TARİHÇESİ Matematiksel gerçeklerin niteliğinde var olan kesinliğin özetinde aksiyomatik yapılar vardır. Öklid geometrisi, matematik tarihinde bunun önde gelen örneğidir. Matematiksel doğruların,
17 ÞUBAT 2016 5. kontrol
17 ÞUBAT 2016 5. kontrol 3 puanlýk sorular 1. Tuna ve Coþkun un yaþlarý toplamý 23, Coþkun ve Ali nin yaþlarý toplamý 24 ve Tuna ve Ali nin yaþlarý toplamý 25 tir. En büyük olanýn yaþý kaçtýr? A) 10 B)
Teorem: ABCP içbükey dörtgeninde y + z < b + c dir.
Fermat-Torielli Noktası Mustafa Yağı yagimustafa@yahoo.om Üniversite sınavlarının geometri kısmıyla biraz olsun ilgilenen her öğreni u < x + y + z < u eşitsizliklerini görmüş olmalı. Bu eşitliksizlikler
Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?
İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :