4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu"

Transkript

1 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X 1i, X i,, X ki ) = β 0 + β 1 X 1i + β X i + + β k X ki dir. Böyle bir modelde katsayıların anlamı şudur: β 0 : Tüm açıklayıcı değişkenler sıfıra eşitken (X 1i = X i = = X ki = 0) bağımlı değişkenin aldığı değerdir. β 1 : X 1 dışındaki tüm açıklayıcı değişkenler sabitken, X 1 deki bir birimlik değişmenin bağımlı değişkende ortaya çıkardığı değişmedir. E(Y i X 1i, X i,, X ki ) nin X 1i ye göre türevine eşittir. Herhangi bir β j : X j dışındaki tüm açıklayıcı değişkenler sabitken, X j deki bir birimlik değişmenin bağımlı değişkende ortaya çıkardığı değişmedir. Örnek 4.1: W i = β 0 + β 1 E i + u i modelinde W i herhangi bir kişinin aylık ücretini ve E i eğitim yılı sayısıdır. Bu modelin tahmini sonucu W i = E i bulunmuştur. Katsayıların yorumu şu şekildedir: β 0 : Kişinin eğitim yılı sayısı 0 iken yani hiç eğitimi olmayan bir kişinin aylık ücreti 1,00TL dir. β 1 : Kişinin eğitim yılı bir yıl arttığında ücreti 300TL artar. Örnek 4.: C t = β 0 + β 1 Y t + β C t-1 + u t modelinde C t Türkiye nin herhangi bir t yılındaki tüketim harcamalarını (milyon TL), Y t ulusal gelirini (milyon TL) ve C t-1 bir önceki yılın tüketim harcamalarını (milyon TL) gösterir. Bu model tahmin edilmiş, C t = Y t + 0.3C t bulunmuştur. Katsayıların yorumu şu şekildedir: β 0 : Türkiye de ulusal gelir ve önceki yılın tüketim harcamaları sıfır iken bu yılın tüketim harcaması (otonom tüketim harcaması) 75 milyon TL dir. β 1 : Bir önceki yılın tüketim harcamasında bir değişme yokken ulusal gelirde 1 milyon TL değişme olduğunda bu yılın tüketim harcamaları aynı yönde 630,000TL değişir. Marjinal tüketim eğilimi 0.63 tür. β 1 : Ulusal gelirde bir değişme yokken bir önceki yılın tüketim harcamasında 1 milyon TL lik değişme olduğunda bu yılın tüketim harcamalarında 30,000TL lik artış olur. 3-1

2 4.. Belirlilik Katsayısı: R Belirlilik katsayısı 1 (R ) örneklem verileri kullanılarak elde edilen örneklem eğrisinin verilere ne kadar iyi uyduğunu ölçmek amacıyla kullanılan bir ölçüttür. Grafik 4.1 örneklem verilerinin ÖRF fonksiyonu etrafında dağıldığını göstermektedir. Grafik 4.1: Örneklem Verileri ve Örneklem Eğrisi Y ÖRF X En iyi durumda, diğer bir deyişle tam bir uyumun sağlandığı durumda, bütün gözlemler eğri üzerinde olacaktır. Ancak böyle bir duruma rastlama olasılığı çok düşüktür. Genellikle gözlemler eğrinin etrafında dağılacaktır. Gözlemler eğriye ne kadar yakınsa (hata terimleri ne kadar küçükse) o kadar iyi bir uyum sağlanmış olur. Belirlilik katsayısı ise gözlemlerin eğriye ne kadar yakın olduğunu, diğer bir deyişle örneklem regresyon eğrisinin veriye ne kadar iyi uyduğunu gösteren özet bir ölçüdür. R yi hesaplamak için önce her bir y değerini tahmin değeri ile hata teriminin toplamı olarak ifade edelim: Y i = Y i +u i Bunu ortalamadan sapmalar olarak yazarsak (Y i -Y i )=(Y i -Y i )+u i Karelerini ve toplamlarını alırsak 1 Coefficient of Determination 3-

3 (Y i -Y i ) = (Y i -Y i ) +u i Burada (Y i -Y i ) ifadesi Y değerlerinindeki (ortalamalara göre) toplam değişimi gösterdiğinden Bütün Kareler Toplamı (BKT), (Y i -Y ) ifadesi tahmin edilmiş Y değerlerinindeki (ortalamalara göre) toplam değişimi gösterdiğinden Açıklanan Kareler Toplamı (AKT) ve u i Y değerlerinin açıklanamayan kısmını gösterdiğinden Kalıntı Kareler Toplamı (KKT) olarak adlandırılır. Yeniden ifade etmek gerekirse, BKT Y deki toplam değişimleri ifade ederken bu değişimlerin yaptığımız tahminin açıklayabildiği kısmı AKT, açıklayamadığı kısmı KKT ile gösterilmiştir. BKT = AKT + KKT veya 1= AKT BKT + KKT BKT R değeri, BKT nın ne kadarının tahminimiz tarafından açıklandığını ölçer, yani AKT/BKT dir. RR =1- KKT BKT u i =1- (Y i -Y i ) (4.1) =1- u i Y i - ( Y i) n Modelde sabit terim varsa, R değeri 0 ile 1 arasında bir değer alır. Bire ne kadar yakınsa modelin bağımlı değişken Y deki değişmeleri açıklama gücü o kadar yüksek demektir. Örneğin R 0.75 çıkmış ise, model Y deki değişmelerin yüzde 75 ini açıklamaktadır. Zaman serileri genellikle trend içerdiğinden R genellikle yüksek çıkmaktadır. Bu nedenle zaman serisi kullanılıyorsa, R 0.9 veya üzerinde çıkıyorsa modelin açıklama gücü yüksek kabul edilir. Kesit verisinde ise 0.5 veya üzerinde çıkması durumunda açıklama gücü yüksek kabul edilir. 3-3

4 Örnek 4.3: Örnek 3.1 de kullanılan verileri ve elde edilen tahmin sonuçlarını kullanarak R değerini hesaplayalım. Tablo 3.1 ve ve 3. deki bilgileri kullanarak R değeri aşağıdaki gibi hesaplanabilir: RR =1- u i Y i - ( Y i) n = ,100- (1,110) 10 = 0.96 Bulduğumuz sonuca göre model Y deki değişmelerin yüzde 96. sini açıklamaktadır. Kesit verisi kullanıldığı ve elde edilen değer 0.50 nin üzerinde olduğundan modelin açıklama gücü yüksektir diyebiliriz Düzeltilmiş R : R Modele açıklayıcı değişken eklendikçe R değeri asla azalmaz, genellikle artar. Bu nedenle R değeri, açıklayıcı değişken sayısı aynı olan modellerin açıklama güçlerinin karşılaştırılmasında kullanılmalıdır. Açıklayıcı değişken sayısı farklı olan modelleri karşılaştırmada R değerini kullanmak doğru değildir. Bunun yerine, modele ilgisiz açıkayıcı değişken eklendiğinde bu işlemi cezalandıran alternatif bir istatistik, Düzeltilmiş R (R ) kullanılmalıdır. R u i /(n k) = 1- (Y i -Y i ) /(n 1) 1- u i /(n k) ( Y i - ( Y i) n )/(n 1) (4.) R formülünü de dikkate alarak 3.15 no lu denklem R cinsinden de yazılabilir. R = 1-(1-RR ) n 1 n k (4.3) Düzeltilmiş R istatistiğinin özellikleri R ile benzerdir. Farklı olarak modelde sabit terim yer alsa bile düzeltilmiş R eksi değerli olabilir. Ayrıca modele yeni değişken eklendiğinde R nin aksine düzeltilmişi R azalabilir: Yeni değişken eklendiğinde k artacağından (n-1)/(n-k) değeri azalacaktır. Yeni değişkenin Y yi açıklama gücü düşükse R değeri fazla artmayacağından düzeltilmiş R değeri azalabilir. Düzeltilmiş R istatistiğinin yorumu R ile aynıdır. 3-4

5 Örnek 4.4: Örnek 3.1 de kullanılan veriler ve tahmin sonuçları ile düzeltilmiş R değerini hesaplayalım. R = 1-(1-RR ) n = 1-(1-0.96) n k 10 = Düzeltilmiş R değerine göre model Y deki değişmelerin yüzde 95.7 sini açıklamaktadır Hipotez Testleri Ekonometrik analizlerin temel amacı örneklem tahminlerini bularak anakütle ile ilgili çıkarsamalar yapmaktır. Bu amaçla katsayı tahminlerini (β 0, β 1 gibi) bulmak yanında bu tahminleri kullanarak anakütle katsayıları (β 0, β 1 gibi) ile ilgili çıkarımlarda bulunmaktır. Bu noktada u i hata terimlerinin olasılık dağılımları ile ilgili varsayımlarda bulunmamız gerekir. Gujarati ve Porter (01) Ek 3.A. de gösterildiği gibi katsayı tahmin edicileri (β 0, β 1 ) hata terimlerinin (u i ) doğrusal bir fonksiyonudur. Dolayısıyla katsayı tahmin edicilerinin olasılık dağılımları hata terimlerinin olasılık dağılımları ile ilgili varsayımlarımıza dayanır Normallik Varsayımı Burada yapılacak varsayım, hata terimlerinin daha önce belirtilen özellikleri (üçüncü, dördüncü ve beşinci varsayımlar) yanında normal dağılıma da sahip olduğudur. Üçüncü, dördüncü ve beşinci varsayımlar sırasıyla E(u i X i ) = 0, Var (u i X i ) = σ u ve Cov(u i, u j X i, X j )= 0 olmasıdır. Normallik varsayımıyla beraber hata terimleri için gösterim u i ~ N(0, σ u ) (4.4) şeklindedir. Burada ~ biçiminde dağılmaktadır anlamına gelir. N normal dağılım ı temsil eder. Parantez içindeki ifadeler ortalama ve varyansı gösterir. Hata terimlerinin normal dağıldığı varsayımı yapıldığında EKK tahmin edicileri de normal dağılıma sahiptirler. 3-5

6 İki değişkenli Y i = β 0 + β 1 X i modeli için bu durum aşağıdaki gibi gösterilebilir. E(β 0 ) = β 0, E(β 1 ) = β 1, Var(β 0 )=σ X β0 =σ i u ve β n X i ( X i ) 0 ~ N(β 0, σ β0 ) Var(β 1 )=σ n β1 =σσ uu ve β n X i ( X i ) 1 ~ N(β 1, σ β1 ) İstatistik derslerinden hatırlanabileceği gibi normal dağılıma sahip bir değişkenden ortalaması çıkartılıp standart hatasına bölündüğünde elde edilen değişken standartlaştırılmış normal dağılıma, diğer bir deyişle ortalaması 0, varyansı 1 olan normal dağılıma sahiptir. Yani ZZ = β 0 β 0 σ β0, ZZ = β 1 β 1 σ β1 Z ~ N(0, 1) Ayrıca hata terimlerinin 0 ortalama ve σ u varyans ile normal dağılıma sahip olması, Y i nin de aşağıdaki ortalama ve varyans ile normal dağılıma sahip olması anlamına gelir. E(Y i ) = β 0 + β 1 X i Var(Y i ) =σσ uu (4.5) (4.6) Kısaca, Y~N(β 0 + β 1 X i, σσ uu ) (4.7) İki değişkenli Y i = β 0 + β 1 X i modeli için geçerli olan bu durum daha genel çok değişkenli model için de geçerlidir Katsayılar için Hipotez Testleri Hipotez testi uygulaması için, dağılımı bilinen ve teorik tablo değerleri bulunan bir test istatistiğine gereksinme duyarız. Yukarıda katsayılar için normallik varsayımı yapılmıştır. Bu durumda eğer σσ uu biliniyorsa katsayıların varyansları ve dolayısıyla Z değerleri hesaplanabilir ve Z dağılımı kullanılabilir. Ancak genellikle σσ uu bilinmez, tahmin edilmesi gerekir. Bu durumda kullanılması en uygun istatistik t dağılımına sahip istatistiktir. 3-6

7 tt h = β 0 β 0 ssh(ββ 0 ) = β 0 β 0 σσ β0 = β 0 β 0 XX σσ uu ii nn XX ii ( XX ii ) (4.8) tt h = β 1 β 1 ssh(ββ 1 ) = β 1 β 1 σσ β1 = β 1 β 1 (4.9) n σσ uu n X i ( X i ) Burada sh tahmin edilmiş standart hata anlamına gelmektedir. Bu şekilde tanımlanmış t istatistiği n-k serbestlik derecelidir ve hem çift taraflı hem de tek taraflı testlerde kullanılabilir. Çift taraflı testte H 0 boş hipotezi eşitlik olarak ifade edilir. * H 0 : β 1 = β 1 * H 1 : β 1 β 1 Eğer β * 1 = 0 ise uygulanan test anlamlılık testidir. Hesaplanan t istatistiği t tab = t α/,n-k tablo değeri ile karşılaştırılmalıdır. Burada α (1. Tip) hata payıdır ve %1, % 5 veya %10 seçilebilir. Serbestlik derecesi n-k da yer alan n gözlem sayısı, k denklemde yer alan katsayı adedidir. Eğer tt h > t tab ise H 0 hipotezi ret, H 1 hipotezi kabul edilir (t h Grafik 4. de ret bölgesindedir). Eğer tt h t tab ise H 0 hipotezi kabul, H 1 hipotezi reddedilir (t h Grafik 4. de kabul bölgesindedir). 3-7

8 Grafik 4.: Çift taraflı testte kabul ve ret bölgeleri f(t) Ret bölgesi α/ -t α/,n-k Kabul bölgesi 1-α 0 t α/,n-k Ret bölgesi α/ t H 0 boş hipotezinin reddedilmesi β 1 in β 1 * dan farklı olduğu anlamına gelir. Eğer yapılan anlamlılık testi ise, diğer bir deyişle β 1 * = 0 ise boş hipotezin reddedilmesi, ilgili açıklayıcı değişkenin bağımlı değişken Y yi açıklamakta anlamlı katkısı olduğu anlamına gelir. H 0 boş hipotezinin kabul edilmesi β 1 in β 1 * dan farklı olmadığı anlamına gelir. Anlamlılık testinde ilgili açıklayıcı değişkenin bağımlı değişken Y yi açıklamakta anlamlı katkısı olmadığını gösterir. Örnek 4.5: Örnek 3.1 de Örneklem 1 e ait 10 veri kullanarak Y i = β 0 + β 1 X i + u i modeli tahmin edilmiş ve β 1 = , σσ uu = 4.16, Var(β 1 )= bulunmuştur. Şimdi β 1 için anlamlılık testi yapalım. H 0 : β 1 = 0 H 1 : β 1 0 tt h = β 1 β 1 σσ β1 = β 1 β 1 Var(β 1 ) = = Hata payı % 5 için (α=0.05) t tab = t α/,n-k = t 0.05,10- = t 0.05,8 =.306 dır. Grafikte: 3-8

9 Grafik 4.3: Çift taraflı testte kabul ve ret bölgeleri f(t) Ret bölgesi % Kabul bölgesi Ret bölgesi %.5 t tt h t tab olduğundan H 0 hipotezi kabul edilir: %5 hata payıyla X değişkeninin (gelirin) bağımlı değişken Y yi (tüketim harcamalarını) açıklamakta istatistiki olarak anlamlı katkısı yoktur. Tek taraflı testte H 0 boş hipotezi eşitsizlik olarak ifade edilir. Eşitsizlik iki farklı şekilde ifade edilebilir. Birinci eşitsizlik: * H 0 : β 1 β 1 * H 1 : β 1 > β 1 t istatistiği çift taraflı testte olduğu gibi hesaplanır. Tablo değerinde ise artık α/ değil, α değeri kullanılır: t tab = t α,n-k. Karar kuralı Grafik 4.4 yardımıyla açıklanabilir. 3-9

10 Grafik 4.4: Birinci tür tek taraflı testte kabul ve ret bölgeleri f(t) Kabul bölgesi 1-α 0 t α,n-k Ret bölgesi α t Eğer tt h > t tab ise H 0 hipotezi ret, H 1 hipotezi kabul edilir. Eğer tt h t tab ise H 0 hipotezi kabul, H 1 hipotezi reddedilir. Örnek 4.6: Örnek 3.1 de yer alan Örneklem 1 e ait verileriyle aşağıdaki hipotezi test edelim. H 0 : β 1 0. H 1 : β 1 > 0. tt h = β 1 β 1 = = 8.58 σσ β Hata payı % 5 için (α=0.05) t tab = t α,n-k = t 0.05,8 = 1.86 dır. tt h =8.58 > t tab (=1.86) olduğundan H 0 hipotezi ret, H 1 hipotezi kabul edilir: %5 hata payıyla X değişkeninin katsayısı 0. den küçük değildir. İkinci eşitsizlik: * H 0 : β 1 β 1 * H 1 : β 1 < β 1 Karar kuralı Grafik 4.5 te gösterildiği gibidir. 3-10

11 Grafik 4.4: İkinci tür tek taraflı testte kabul ve ret bölgeleri f(t) Ret bölgesi α Kabul bölgesi 1-α -t α,n-k 0 t Eğer tt h < -t tab ise H 0 hipotezi ret, H 1 hipotezi kabul edilir. Eğer tt h -t tab ise H 0 hipotezi kabul, H 1 hipotezi reddedilir. Örnek 4.6: Örnek 3.1 de yer alan Örneklem 1 e ait verileriyle aşağıdaki hipotezi test edelim. H 0 : β H 1 : β 1 < 0.6 tt h = β 1 β 1 = =.58 σσ β Hata payı % 5 için (α=0.05) t tab = t α,n-k = t 0.05,8 = 1.86 dır. tt h =-.58 < -t tab (=-1.86) olduğundan H 0 hipotezi ret, H 1 hipotezi kabul edilir: %5 hata payıyla X değişkeninin katsayısı 0.6 dan büyük değildir. 3-11

12 4.4.3 Modelin Açıklama Gücüne İlişkin F Testi Aşağıdaki çok sayıda açıklayıcı değişken bulunan modelde açıklayıcı değişken katsayılarının tümünün birden sıfır olduğu hipotezi test edilmek istenebilir. Y i = β 0 + β 1 X 1i + β X i + + β k X ki Bu durumda boş ve alternatif hipotezler aşağıdaki gibidir. H 0 : β 1 = β = = β k = 0 H 1 : β 1, β,, β k 0 Burada dikkat edilmesi gereken nokta, boş ve alternatif hipotezde sabit terimin bulunmaması, testin sadece eğim katsayıları ile ilgili olmasıdır. Bu hipotezler aynı zamanda H 0 : R = 0 H 1 : R 0 olarak da ifade edilebilir. Diğer bir deyişle, bu test ile R nin sıfırdan farklı olup olmadığı da test edilmektedir. Bu hipotezli test etmek için kullanılacak istatistik F dağılımına sahiptir ve aşağıdaki gibi hesaplanmaktadır. FF h = AAAAAA/(kk 1) KKKKKK/(nn kk) = RR /(kk 1) (1 RR )/(nn kk) (4.10) İkinci adıma geçebilmek için R tanımından yararlanılmıştır. F h değeri hesaplandıktan sonra F tab tablo değeri ile karşılaştırılmalıdır. F tab = F α (k-1,n-k). Eğer F h >F tab ise H 0 reddedilir: α hata payıyla modeldeki açıklayıcı değişkenlerin tümü birden bağımlı değişkeni açıklayabilmektedir. Modelin R değeri sıfırdan farklıdır. 3-1

13 Örnek 4.7: Y i = β 0 + β 1 X 1i + β X i + β 3 X 3i aşağıdaki sonuçlar elde edilmiştir. modeli 0 veri ile tahmin edilmiş, Y i = X 1i X i 0.14X 3i R = 0.7 açıklayıcı değişken katsayılarının tümünün birden sıfır olduğu hipotezini test ediniz. H 0 : β 1 = β = β 3 = 0 (R = 0) H 1 : β 1, β, β 3 0 (R 0) FF h = 0.7/(4 1) (1 0.7)/(0 4) = F tab = F 0.05 (3,16) = 3.4 F h >F tab olduğundan H 0 reddedilir: %5 hata payıyla modeldeki açıklayıcı değişkenlerin tümü birden bağımlı değişkeni açıklayabilmektedir. Modelin R değeri sıfırdan farklıdır Katsayıların Doğrusal Bileşimi İçin t Testi Bazı durumlarda iktisat teorisi, bazı katsayıların doğrusal bileşimleri ile ilgili hipotez önerebilir. Bunun en tipik örneği Cobb-Douglas üretim fonksiyonudur. Bu üretim fonksiyonu Q = AL β 1K β e u (4.11) olarak yazılabilir. Modelin tahmin edilebilmesi için doğrusal hale getirilmesi gerekir. Bunun için iki tarafın logaritması alınırsa lnq = β 0 + β 1 L + β K + u (4.1) şekline dönüşür. Burada β 0 = ln A dır. Eğer ölçeğe göre sabit getiri varsa β 1 + β = 1 olmasını bekleriz. Katsayıların bu şekilde doğrusal bileşimlerine ilişkin test t testi uygulanarak sınanabilir. Y i = β 0 + β 1 X 1i + β X i + + β k X ki genel modelinde aşağıdaki gibi bir hipotezi test ettiğimizi düşünelim. 3-13

14 H 0 : a 1 β 1 + a β + + a k β k = r H 1 : a 1 β 1 + a β + + a k β k r Bu durumda kullanılacak t istatistiği aşağıdaki gibi hesaplanır. tt h = aa 1ββ 1 + aa ββ + + aa kk ββ kk r ssh(aa 1 ββ 1 + aa ββ + + aa kk ββ kk ) = aa 1 ββ 1 + aa ββ + + aa kk ββ kk r VVVVVV (aa 1 ββ 1 + aa ββ + + aa kk ββ kk ) (4.13) Karar kuralı çift taraflı t testinde olduğu gibidir. Eğer tt h > t tab ise H 0 hipotezi ret, H 1 hipotezi kabul edilir. Eğer tt h t tab ise H 0 hipotezi kabul, H 1 hipotezi reddedilir. Doğrusal bileşimin tahmin edilmiş standart hatasının hesaplanmasında varyans özelliklerinden yararlanılır. Örneğin H 0 : β 1 + 3β 3 = 5 H 1 : β 1 + 3β 3 5 için tt h = ββ 1 + 3ββ 3 5 ssh(ββ 1 + 3ββ 3 ) = ββ 1 + 3ββ 3 5 VVVVVV (ββ 1 + 3ββ 3 ) ββ 1 + 3ββ 3 5 = VVVVVV ββ 1 + 9VVVVVV ββ 3 + 6CCCCCC(ββ 1, ββ 3 ) Burada VVVVVV(aaaa + bbbb) = aa VVVVVV (XX) + bb VVVVVV(YY) + aaaaaaaaaa(xx, YY) özelliğinden yararlanılmıştır. Bu test iki katsayının eşitliğinin sınanması amacıyla da kullanılabilir. Örneğin H 0 : β = β 3 H 1 : β β 3 hipotezleri H 0 : β - β 3 = 0 H 1 : β - β

15 olarak yazılabilir. Bu durumda ββ ββ 3 tt h = VVVVVV (ββ ββ 3 ) ββ ββ 3 = VVVVVV ββ + VVVVVV ββ 3 CCCCCC(ββ, ββ 3 ) Burada VVVVVV(XX YY) = VVVVVV (XX) + VVVVVV(YY) CCCCCC(XX, YY) özelliğinden yararlanılmıştır. Örnek 4.8: I t = β 0 + β 1 Y t + β R t + u t modelinde I yatırımları, Y ulusal geliri ve R faiz oranını göstermektedir. Bu model Türkiye için arası 35 veri ile tahmin edilmiş, aşağıdaki sonuçlar elde edilmiştir. I t = Y t R t, Var β 1 = , Var β = , Cov β 1, β = H 0 : β 1 + β = 0.5 H 1 : β 1 + β 0.5 Hipotezlerini test ediniz. tt h = ββ 1 + ββ 0.5 VVVVVV (ββ 1 + ββ ) ββ 1 + ββ 0.5 = VVVVVV ββ 1 + VVVVVV ββ + CCCCCC(ββ 1, ββ ) = (0.001) = α=0.05 için t tab = t α/,n-k = t 0.05,35-3 = t 0.05,3 =.037 dir. tt h = > t tab =.037 olduğundan H 0 hipotezi reddedilir: %5 hata payıyla : β 1 ve β katsayılarının toplamı istatistiki olarak 0.5 den farklıdır. 3-15

16 4.4.5 Yapısal Farklılaşma İçin Chow Testi Ekonometrik modelin uygulandığı dönemde söz konusu ekonomide veya sektörde bir yapısal değişikliğin olup olmadığı da test edilmek istenebilir. Örneğin Y t = β 0 + β 1 X 1t + β X t + + β k X kt genel modelinin t = 1 n veri ile tahmin edilmekte olduğunu düşünelim. Bu incelenen dönem içinde ise dönem için katsayıların ikinci dönem katsayılarından farklılaşacağını test etmek için nedenlerimiz olabilir. İlk döneme ait modeli Y t = α 0 + α 1 X 1t + α X t + + α k X kt, ikinci döneme ait modeli Y t = γ 0 + γ 1 X 1t + γ X t + + γ k X kt ile gösterirsek, hiçbir yapısal değişimin olmadığı (yapısal kararlılığın olduğu) durumda iki modelin katsayıları birbirine eşit olmalıdır: α i = γ i. Eğer yapısal farklılaşma varsa iki modelin katsayıları farklılaşacaktır. Bu durumda boş ve alternatif hipotezler aşağıdaki gibidir. H 0 : α i = γ i H 1 : α i γ i Hipotezin test edilmesi için veri dönemi ikiye ayrılmalıdır. Birinci dönemde n 1, ikinci dönemde n veri olsun (n 1 + n = n dir). Testin uygulanabilmesi için model birinci dönem için (n 1 veri ile), ikinci dönem için (n veri ile) ve modelin tüme verilerini kullanarak (n 1 + n = n veri ile) tahmin edilmelidir. Birinci dönem için yapılan tahmin sonucunda elde edilen hata kareleri toplamına KKT 1, ikinci döneminkine KKT, ve tüm dönem ile yapılan tahmininkime KKT diyelim. Test istatistiği aşağıdaki gibi hesaplanır. FF h = (KKKKKK KKKKKK 1 KKKKKK )/kk (KKKKKK 1 + KKKKKK )/(nn kk) = Burada payın serbestlik derecesi (n-k)-(n 1 -k)-(n -k)=k işlemi ile bulunmuştur. Paydanın serbestlik derecesi ise (n 1 -k)+(n -k) = n-k olmaktadır. Hesaplanan F istatistiği k, n-k 3-16

17 serbestlik dereceli F dağılımına sahiptir. Eğer F h >F tab ise α hata payı ile H 0 reddedilir: α hata payı ile iki dönem arasında yapısal farklılık vardır. Örnek 4.9: Örnek 4.8 de kullanılan modelde 1989 dan itibaren bir yapısal değişiklik olduğunu düşünüyor olalım. Bu durumda model dönemi, dönemi ve dönemi için ayrı ayrı tahmin edilmiş ve aşağıdaki sonuçlar elde edilmiştir dönemi: n 1 = 13, KKT 1 = dönemi: n =, KKT = dönemi: n= 35, KKT = 8.31 Yapısal farklılaşma testi aşağıdaki gibi uygulanacaktır. H 0 : α i = γ i H 1 : α i γ i FF h = ( )/3 ( )/(35 6) = F tab = F 0.05 (3,9) =.93 F h <F tab olduğundan %5 hata payı ile H 0 kabul edilir: %5 hata payı ile iki dönem arasında yapısal farklılık yoktur Hata Teriminin Normal Dağılımı için χ Testi Burada ele alınan hipotez testleri hata teriminin normal dağılıma sahip olduğunu varsaydığından bu varsayımın geçerliliği de test edilmelidir. Bu bölümde hata teriminin normal dağıldığı hipotezini test etmede kullanılan Jarque-Bera testi ele alınacaktır. Bu testte boş ve alternatif hipotezler aşağıdaki gibidir. H 0 : u ~ N (hata terimleri normal dağılıma sahiptir) H 1 : u N (hata terimleri normal dağılıma sahip değildir) Jarque-Bera testi hata terimlerinin çarpıklık (S) ve basıklık 3 (K) katsayılarını kullanarak aşağıdaki istatistiği hesaplar. skewness 3 kurtosis 3-17

18 JJJJ = nn SS 6 (KK 3) 4 SS = μμ 3 σσ 3 = uu 3 /nn σσ 3, KK = μμ 4 σσ 4 = uu 4 /nn σσ 4, σσ = μμ = uu /nn Bu istatistik serbestlik dereceli χ dağılımına sahiptir (χ tab= χ ()). Normal dağılımlı bir değişken için S=0, K=3 tür. Eğer χ h> χ tab ise H 0 reddedilir: hata terimleri normal dağılıma sahip değildir. Örnek 4.10: Örnek 3.1 de kullanılan modelde uu 3 =-780, uu 4 =1,511, uu =337.7 bulunmuştur. Ayrıca n=10 olduğu bilinmektedir. Normallik testi aşağıdaki gibi uygulanmalıdır. H 0 : u ~ N (hata terimleri normal dağılıma sahiptir) H 1 : u N (hata terimleri normal dağılıma sahip değildir) σσ = uu /nn = 337.7/10=5.807 SS = 780/10 1,511 (5.807) 3 = KK = = 1.89 (5.807) 4 JJJJ = 10 ( 0.398) 6 (1.89 3) = χ tab= χ ()=5.991 χ h< χ tab olduğundan H 0 kabul edilir: hata terimleri normal dağılıma sahiptir. 3-18

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Bölüm 9. Çoklu Bağlanım Çözümlemesi - Çıkarsama Sorunu. 9.1 T Sınamaları Çoklu Bağlanımda Önsav Sınaması

Bölüm 9. Çoklu Bağlanım Çözümlemesi - Çıkarsama Sorunu. 9.1 T Sınamaları Çoklu Bağlanımda Önsav Sınaması Bölüm 9 Çoklu Bağlanım Çözümlemesi - Çıkarsama Sorunu 9.1 T Sınamaları 9.1.1 Çoklu Bağlanımda Önsav Sınaması Bu bölümde daha önce iki değişkenli bağlanım modelleri için ele almış olduğumuz aralık tahmini

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

Üstel modeli, iki tarafın doğal logaritması alınarak aşağıdaki gibi yazılabilir.

Üstel modeli, iki tarafın doğal logaritması alınarak aşağıdaki gibi yazılabilir. 5. FONKSİYON KALIPLARI VE KUKLA DEĞİŞKENLER 5.1. Fonksiyon Kalıpları Bölüm 4.1 de doğrusal bir modelin katsayılarının yorumu ele alınmıştır. Bu bölümde farklı fonksiyon kalıpları olması durumunda katsayıların

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

Bölüm 6. Çıkarsama Sorunu. 6.1 Aralık Tahmini Bazı Temel Noktalar

Bölüm 6. Çıkarsama Sorunu. 6.1 Aralık Tahmini Bazı Temel Noktalar Bölüm 6 İki Değişkenli Bağlanım Modeli - Çıkarsama Sorunu 6.1 Aralık Tahmini 6.1.1 Bazı Temel Noktalar Yansız SEK tahmincilerinin ürettiği tahminlerin anakütle değerlerine eşit olması beklenir. Ancak,

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ 10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ Bu bölümde; Fonksiyonel Form için EViews Tablosu EViews ta Quasi R 2 Hesaplanması EViews ta Doğrusal ve Log-Lin Modeller için Quasi R 2 Hesaplanması EViews

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

İki Değişkenli Bağlanım Modelinin Uzantıları

İki Değişkenli Bağlanım Modelinin Uzantıları İki Değişkenli Bağlanım Modelinin Uzantıları Bağlanım Modellerinin İşlev Biçimleri Ekonometri 1 Konu 20 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Yöney Özbağlanım Modeli Ekonometri 2 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

Çıkarsama Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Çıkarsama Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) İki Değişkenli Bağlanım Modeli Çıkarsama Sorunu Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

CHAPTER 6 SIMPLE LINEAR REGRESSION

CHAPTER 6 SIMPLE LINEAR REGRESSION CHAPTER 6 SIMPLE LINEAR REGRESSION Bu bölümdeki amacımız değişkenler arasındaki ilişkiyi gösteren en uygun eşitliği kurmaktır. Konuya giriş için şu örnekle başlayalım; Diyelim ki Mr. Bump adındaki birisi

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur? EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Regresyon Modelinin Uzantılar

Regresyon Modelinin Uzantılar Bölüm m 6:İki Degişkenli Dogrusal Regresyon Modelinin Uzantılar ları İki degişkenli modellere paralel olarak Sıfır r noktasından ndan geçen en regresyonu yani β 1 yok iken... Ölçü birimleri sorunu ve Y

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi

Zaman Serisi Verileriyle Regresyon Analizi Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi

Detaylı

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s )

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s ) Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s.285-293) Y=β 1 + β 2 X 2 + β 3 X 3 + u (SR) Y=β 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + β 5 X 5 + u 1.Aşama (SM) H 0 : β

Detaylı

EŞANLI DENKLEM MODELLERİ

EŞANLI DENKLEM MODELLERİ EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

Çoklu Bağlanım Çözümlemesi

Çoklu Bağlanım Çözümlemesi Çoklu Bağlanım Çözümlemesi Tahmin Sorunu Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı