(I) şimdiki. durum (S) belleği. saat. girşi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "(I) şimdiki. durum (S) belleği. saat. girşi"

Transkript

1 ers Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: Eşzamanlı (Senkron) Ardışıl evreler (Synchronous Sequential Circuits) Ardışıl (sequential) devrelerde çıkış değeri, hem girişlerden gelen değerlere hem de devrenin "una" bağlıdır. Sonlu lu makine (finite machine) modeline göre oluşturulan bu devrelerde bilgileri belleklerde (flip-floplarda) tutulur. Tüm flip-floplar aynı saat işareti ile eşzamanlı tetiklenirler (senkron). Buna göre makine sadece saat işaretinin etkin geçişlerinde değiştirebilir. Eşzamanlı ardışıl devreler iki farklı modele göre tasarlanabilir. a) Mealy Modeli (George H. Mealy, bilgisayar bilimleri, AB) Bu modelde çıkışlar hem o andaki girişlerin hem de o andaki un fonksiyonudur. girişler (I) şimdiki (S) sonraki lojiği F flip-flop sürme sonraki belirleme belleği saat girşi (I) şimdiki (S) çıkış lojiği G çıkışlar (O) O = G(S,I) saat işareti rd.oç.r. Feza BUZLUCA 7.1 b) Moore Modeli Edward Forrest Moore ( ) Matematik, bilgisayar bilimleri, AB Bu modelde çıkışlar sadece ların bir fonksiyonudur. Girişlerdeki değerler sadece sonraki u belirler. urum bilgisi de çıkıştaki değeri belirler. girişler (I) şimdiki (S) sonraki lojiği F flip-flop sürme sonraki belirleme belleği saat girşi şimdiki (S) çıkış lojiği G çıkışlar (O) O = G(S) saat işareti Bir modele göre tasarlanmış olan bir devreyi diğer modele dönüştürmek mümkündür. Bir çok devreyi hem Mealy hem de Moore modeline göre tasarlamak mümkündür rd.oç.r. Feza BUZLUCA 7.2

2 Eşzamanlı ardışıl devrelerin çözümlenmesi (Analiz) Bir ardışıl devrenin tasarlanıp gerçeklenmesi konusundan önce tasarlanmış olan bir devrenin nasıl çözümleneceği incelenecektir. Hatırlatma: Mealy modelinde bir devrenin gerçeklenmesi aşağıda gösterilmiş olan F (sonraki ) ve G (çıkış) fonksiyonlarının gerçeklenmesi anlamına gelmektedir. (Bkz. 7.1) S + = F(S,I) S: Şimdiki lar (urum), S + : Sonraki lar O = G(S,I) I: Girişler (Input), O : Çıkışlar (Çıkış) Bir ardışıl devrenin çözümlenmesi (analiz edilmesi) demek, F ve G fonksiyonları şeklinde verilmiş bir devrenin "ne yaptığının" belirlenmesi demektir. Çözümleme 3 adımdan oluşur: 1. evrenin çiziminden F (sonraki ) ve G (çıkış) fonksiyonlarının ifadeleri bulunur. 2. F ve G fonksiyonları kullanılarak olası tüm girişler ve şimdiki lar için makinenin hangi lara geçeceği (sonraki lar) ve hangi çıkışları üreteceği bir tablo halinde yazılır. Bu tabloya /çıkış tablosu denir. 3. Makinenin işlevini daha iyi görebilmek için geçişlerini ve çıkışları grafik olarak gösteren geçiş diyagramı çizilir rd.oç.r. Feza BUZLUCA 7.3 Sonraki urumların Bulunması: F fonksiyonu, flip-flopların girişlerine gelecek olan sürücü değerleri belirler. Bu giriş değerleri ise bir saat darbesi sonra flip-flopun içeriğinin hangi değeri alacağını (sonraki u) belirler. Gelen giriş değerlerine göre flip-flopun içeriğinin nasıl değişeceğini hesaplamak için flip-flopların karakteristik fonksiyonlarını bilmek gerekir. Flip-flopların karakteristik fonksiyonları: SR FF: Q(t+1) = S + R' Q(t), SR=0 JK FF: Q(t+1) = J Q(t)' + K' Q(t) FF : Q(t+1) = T FF : Q(t+1) = T Q(t) rd.oç.r. Feza BUZLUCA 7.4

3 Örnek: Aşağıda çizimi verilmiş olan eşzamanlı ardışıl devreyi çözümleyiniz. sonraki lojiği F belleği çıkış lojiği G çıkış giriş ' 0 flipflop sürme Q Q Z Mealy O=G(S,I) 1 Q Q ' saat işareti ' şimdiki S={(t),(t)} S + ={(t + ), (t + )} = ff(0,1) I={} O={Z} rd.oç.r. Feza BUZLUCA F fonksiyonunun ifadesi belirlenir. 0 = Q 0 ' + Q 0 ' 1 = Q 1 ' + Q 1 ' Q 0 + Q 1 Q 0 ' 2. Sonraki lar S + ={(t + ), (t + )} hesaplanır + = 0 ( tipi FF karakteristik fonksiyonu) + = 1 ( tipi FF karakteristik fonksiyonu) + = ' + ' + = ' + ' + ' 3. urum geçiş tablosu (urum transition table) oluşturulur Girişler Tabloyu daha anlaşılır hale getirmek için kodlarına simgeler karşı düşürülür. 00: A 01: B 10: C 11: S + S 0 1 A A B B B C C C A Sonraki Şimdiki urumlar urumlar S: Şimdiki S + : Sonraki ve : urum değişkenleri rd.oç.r. Feza BUZLUCA 7.6

4 4. Çıkış fonksiyonunu G'nin ifadesi belirlenir. Z = (Mealy modeli, çünkü çıkış hem a hem de girişe bağlı) 5. urum/çıkış tablosu oluşturulur. S +,Z S 0 1 A A,0 B,0 B B,0 C,0 C C,0,0,0 A,1 Bu tablo sonlu lu makinenin davranışını göstermektedir. Bu davranış görsel olarak diyagramları ile de gösterilebilir. A B Tablonun Okunması: Makine A undayken girişten 1 gelirse çıkış 0 olur, saat işaretinden sonra makine B una geçer. Z=1 C Makinenin davranışının sözle ifade edilmesi: A u başlangıç u olarak ele alınıp diyagram incelendiğinde, bu devrenin girişine 4 ün katları kadar 1 geldiğinde devrenin çıkışının 1 olduğu, aksi larda ise 0 olduğu görülür rd.oç.r. Feza BUZLUCA 7.7 JK Flip-flopları ile tasarlanmış bir senkron ardışıl devrelerin çözümlenmesi Bir önceki örnekten farklı olarak, burada sonraki değerleri Q i + belirlenirken JK flip-flopunun karakteristik fonksiyonu kullanılacaktır. Hatırlatma: Q + = J Q' + K' Q Örnek: ' J 0 K 0 J Q K Q Q 0 Q 0 ' ' J 1 K 1 J Q K Q Q 1 Q 0 Q 1 Q 0 ' Q 1 ' Z Mealy O=G(S,I) rd.oç.r. Feza BUZLUCA 7.8

5 1. Flip-flopların girişlerini süren F fonksiyonu: J0 = ' K0 = ' + J1 = + K1 = ' + ' 2. Sonraki lar S + ={(t + ), (t + ) } hesaplanır. + = J0 ' + K0' (JK tipi FF karakteristik fonksiyonu) + = ' ' + ( ' + )' + = ' ' + ' ' + ' ' + ' + = ' ' + ' ' + ' (sadeleştirme) + = J1 ' + K1' (JK tipi FF karakteristik fonksiyonu) + = ( + ) ' + ( ' + ' )' + = ' + ' + ' ' + ' ' + ' + + = ' + ' + + ' + ' ' (sadeleştirme) 3. Çıkış fonksiyonunun ifadesi belirlenir. Z = + ' ' rd.oç.r. Feza BUZLUCA 7.9 urum/çıkış Tablosu: + +,Z ,0 10,1 01,0 10, ,0 11,0 10,0 11, ,0 00,0 11,0 00, ,0 10,0 00,1 10,1 S +,Z S A A,0 C,1 B,0 C,1 B B,0,0 C,0,0 C C,0 A,0,0 A,0,0 C,0 A,1 C,1 ' ' /0 ' ' /0 A /0 /1 C ' /0 ' /0 ' /0 /1 ' /0 ' /1 B /0 ' ' /0 ' ' /0 Bazı giriş simgelerinin anlamları: ' ' anlamı, =0 anlamı =Φ, =1 Aslında bu simge iki farklı giriş kombinezonuna karşı düşmektedir:, =1 and, = rd.oç.r. Feza BUZLUCA 7.10

6 Moore modeline göre tasarlanmış bir ardışıl devrenin çözümlenmesi: Önceki örneklerde çözümlenen devreler Mealy modeline göre tasarlanmıştı. Aşağıdaki örnekte verilen devre ise Moore modeline göre tasarlanmıştır. Görüldüğü gibi Z çıkışı sadece lara (,) bağlıdır. giriş ' 0 sürme Q Q çıkış Z Moore O=G(S) ' 1 Q Q ' saat işareti şimdiki rd.oç.r. Feza BUZLUCA 7.11 Moore modeline göre tasarlanmış makinelerin çözümlenmesi Mealy modeli ile büyük ölçüde aynıdır. Sadece çıkış tablosu ve geçiş diyagramının oluşturulması farklıdır. 1. Flip-flopları süren F fonksiyonunun ifadesi belirlenir. 0 = ' + ' 1 = ' + ' + ' 2. Sonraki lar S + ={(t + ), (t + )} hesaplanır + = 0 + = 1 + = ' + ' + = ' + ' + ' 3. urum geçiş tablosu oluşturulur urum kodlarına simgeler karşı düşürülür. S + S 0 1 A A B B B C C C A S: Şimdiki S + : Sonraki ve : urum değişkenleri rd.oç.r. Feza BUZLUCA 7.12

7 4. Çıkış fonksiyonunun ifadesi belirlenir. Z = (Moore modeli; çıkış sadece değişkenlerine bağlı) 5. urum/çıkış tablosu oluşturulur. S + S 0 1 Z A A B 0 B B C 0 C C 0 A 1 Moore modelinde çıkış sadece ların bir fonksiyonu olduğu için tablonun her satırına bir çıkış değeri yazılır. Bu değer, makinenin çıkışının, o satırdaki a gelindiğinde alacağı değerdir. A,0 B,0 Moore modelinde geçiş diyagramı çizilirken çıkış değerleri ların içine yazılır.,1 C, rd.oç.r. Feza BUZLUCA 7.13 Mealy ve Moore Modellerinde Çıkışların orumlanması Mealy ve Moore modellerinde çıkıştaki değerin hangi anda geçerli olacağı (çıkışın ne zaman örnekleneceği) farklılık göstermektedir. Mealy Modeli: Mealy modelinde çıkış girişlere de bağlı olduğundan girişteki değer değiştiği anda çıkıştaki değer de değişir. Buna göre Mealy modeli ile tasarlanan bir makine şu şekilde çalışır: 1. Girişlere (I) değer verilir. 2. Çıkışların değeri, giriş ve o andaki un bir fonksiyonu olarak belirlenir. O=G(S,I) 3. Saat işareti etkin olur. Örneğin çıkan kenar oluşur. 4. eni a geçilir. eni, girişin ve o andaki un fonksiyonu olarak belirlenir. S + =F(S,I) rd.oç.r. Feza BUZLUCA 7.14

8 Örnek: anda geçiş diyagramı verilen ve Mealy modeline göre tasarlanmış olan ardışıl devrenin zamanlama diyagramı aşağıda gösterilmiştir. urum Kodlaması: Q 1 Q : A 0 1 : B 1 0 : C 1 1 : Z=1 A B C SAAT 0 0 URUM A A B C C C A A Z 0 0 Giriş değiştiği anda çıkış da değişmektedir rd.oç.r. Feza BUZLUCA 7.15 Moore Modeli: Moore modelinde çıkışın değeri sadece değişkenlerine bağlı olduğundan girişteki değerin değişimi çıkışı hemen etkilemez. Girişteki değerin çıkış üzerindeki etkisi ancak değiştikten sonra görülür. Buna göre Moore modeli ile tasarlanan bir makine şu şekilde çalışır: 1. Girişlere (I) değer verilir. 2. Saat işareti etkin olur. Örneğin çıkan kenar oluşur. 3. eni a geçilir. eni, girişin ve o andaki un fonksiyonu olarak belirlenir. S + =F(S,I) 4. Çıkışların değeri, yeni un bir fonksiyonu olarak belirlenir. O=G(S) Görüldüğü gibi bu modelde girişlerdeki değişimin çıkıştaki etkisi bir saat darbesi sonra görülür rd.oç.r. Feza BUZLUCA 7.16

9 Örnek: anda geçiş diyagramı verilen ve Moore modeline göre tasarlanmış olan ardışıl devrenin zamanlama diyagramı aşağıda gösterilmiştir. A,0 B,0,1 C,0 SAAT URUM A A B C C C A A Z Girişteki değişim çıkışı doğrudan etkilemez rd.oç.r. Feza BUZLUCA 7.17 Saat İşaretinin (Clock Signal) İşlevi ış Girişler I 0 -I m urum Q 0 -Q n F Sonraki lojiği (kombinezonsal) Flip-flopların girişleri 0 - n Flipfloplar Q 0 -Q n Bu devrenin propagasyon gecikmesi vardır. Çıkış değerleri her zaman geçerli değildir. Ayrıca (hazard) sorunları da oluşabilir. Saat işaretinin hızı (periyodu) F devresindeki en büyük gecikmeye (en uzun yol) göre belirlenir. Saat işareti etkin olmadan önce (örneğin çıkan kenar gelmeden önce) F devresi işini bitirmeli ve flip-flopların girişleri kararlı ve geçerli olmalı. F devresindeki olası kazalar da (hazards) saat işareti etkin olmadan önce sonlanmış olmalıdır. Ortak saat işareti Saat işareti etkin olduğunda (örneğin çıkan kenar) bu değerler kararlı ve geçerli olmalı Flip-flopların da iç gecikmeleri vardır. Kurma zamanı, tutma zamanı rd.oç.r. Feza BUZLUCA 7.18

10 Saat işaretinin hızının (periyot) belirlenmesi Saat işaretinin periyodu (P) Kurma süresi Tutma süresi KurmaTutma süresi süresi Flip-flopun gecikmesi Flip-flopun çıkışı ( değişkeni) geçerli ış giriş değerleri verildi. (kararlı, geçerli) F devresi çalışıyor. F'nin gecikmesi F devresi işini tamamlamış olmalı P min = Tutma Sür. + F'deki maks gecikme + Kurma Sür. Gerçek uygulamalarda bu süre daha uzun seçilir çünkü girişler anında hazır olamaz rd.oç.r. Feza BUZLUCA 7.19

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Y.Doç.Dr.Tuncay UZUN 6. Ardışıl Lojik Devreler 2. Kombinezonsal devre. Bellek. Bellek nedir? Bir bellek şu üç önemli özelliği sağlamalıdır:

Y.Doç.Dr.Tuncay UZUN 6. Ardışıl Lojik Devreler 2. Kombinezonsal devre. Bellek. Bellek nedir? Bir bellek şu üç önemli özelliği sağlamalıdır: 6.ARDIŞIL LOJĐK DEVRELER 6.1.Ardışıl Lojik Devre Temelleri SR Tutucu Flip-Flop(FF) Saat, Kenar tetikleme D FF, JK FF, T FF 6.2.Ardışıl Devrelerin Analizi Moore modeli: Çıkışlar= f(şimdiki durum) Mealy

Detaylı

Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik.

Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik. Flip-Flop Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik. Tutucular bazı problemlere sahiptir: Tutucuyu ne zaman enable yapacağımızı bilmeliyiz. Tutucuyu çabucak devredışı bırakabilmeliyiz

Detaylı

Bir devrede bellek elemanı olarak kullanılmak üzere latch leri inceledik.

Bir devrede bellek elemanı olarak kullanılmak üzere latch leri inceledik. Flip-Flop lar Bir devrede bellek elemanı olarak kullanılmak üzere latch leri inceledik. Latch ler bazı problemlere sahiptir: Latch i ne zaman enable yapacağımızı bilmeliyiz. Latch i çabucak devredışı bırakabilmeliyiz

Detaylı

ARDIŞIL DEVRELER (Sequential Circuits)

ARDIŞIL DEVRELER (Sequential Circuits) ayısal evreler (Lojik evreleri) AIŞIL EVELE (equential ircuits) ersin ilk bölümünde kombinezonsal (combinational) devreleri inceledik. Bu tür devrelerde çıkışın değeri o andaki girişlerin değerlerine bağlıdır.

Detaylı

Ardışıl Devre Sentezi (Sequential Circuit Design)

Ardışıl Devre Sentezi (Sequential Circuit Design) Ardışıl Devre Sentezi (Sequential Circuit Design) Ardışıl devre tasarımı prosedürü: Adım 1: Problemin tanımına uygun olarak durum tablosunu yapılır. Tablo şimdiki durumları, girişleri, gelecek durumları

Detaylı

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR DENEY 7: ASENKRON VE SENKRON SAYICILAR Deneyin Amaçları Asenkron ve senkron sayıcı devre yapılarının öğrenilmesi ve deneysel olarak yapılması Deney Malzemeleri 74LS08 Ve Kapı Entegresi (1 Adet) 74LS76

Detaylı

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER ARDIŞIL DEVRELER TANIM: ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ, GİRİŞLERİN YANLIZA O ANKİ DEĞERİNE BAĞLI OLAN DEVRELER KOMBİNASYONEL DEVRELER OLARAK İSİMLENDİRİLİR. ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ,

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek.

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. DENEY 7-2 Sayıcılar DENEYİN AMACI 1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. GENEL BİLGİLER Sayıcılar, flip-floplar

Detaylı

Temel Flip-Flop ve Saklayıcı Yapıları. Mikroişlemciler ve Mikrobilgisayarlar

Temel Flip-Flop ve Saklayıcı Yapıları. Mikroişlemciler ve Mikrobilgisayarlar Temel Flip-Flop ve Saklayıcı Yapıları 1 Sayısal alga Şekilleri 1 2 4 3 1. Yükselme Zamanı 2. Alçalma Zamanı 3. Sinyal Genişliği 4. Genlik (Amplitude) 2 Periot (T) : Tekrar eden bir sinyalin arka arkaya

Detaylı

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır SYISL ELETRONİ ÖLÜM 9 (OUNTERS) SYIILR u bölümde aşağıdaki konular anlatılacaktır Sayıcılarda Mod kavramı senkron sayıcılar senkron yukarı sayıcı (Up counter) senkron aşağı sayıcı (Down counter) senkron

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 3 FF Devreleri

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 3 FF Devreleri TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU Deney No: 3 FF Devreleri Yrd. Doç Dr. Ünal KURT Yrd. Doç. Dr. Hatice VURAL Arş. Gör. Ayşe AYDIN YURDUSEV

Detaylı

Sayıcılar n bitlik bir bilgiyi tutmanın yanısıra her saat çevriminde tuttukları değeri artıran veya azaltan ardışıl devrelerdir.

Sayıcılar n bitlik bir bilgiyi tutmanın yanısıra her saat çevriminde tuttukları değeri artıran veya azaltan ardışıl devrelerdir. Sayıcılar (Counters) Sayıcılar n bitlik bir bilgiyi tutmanın yanısıra her saat çevriminde tuttukları değeri artıran veya azaltan ardışıl devrelerdir. Genel olarak iki gruba ayrılır: Senkron sayıcılar Asenkron

Detaylı

SAYISAL DEVRELER. İTÜ Bilgisayar Mühendisliği Bölümündeki donanım derslerinin bağlantıları

SAYISAL DEVRELER. İTÜ Bilgisayar Mühendisliği Bölümündeki donanım derslerinin bağlantıları SAYISAL DEVRELER Doç.Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü Sayısal Devreler Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Detaylı

BÖLÜM 8 MANDAL(LATCH) VE FLİP-FLOPLAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 8 MANDAL(LATCH) VE FLİP-FLOPLAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır AYIAL ELETONİ BÖLÜM 8 MANAL(LATCH) VE FLİP-FLOPLA Bu bölümde aşağıdaki konular anlatılacaktır Mandallar(Latches),- Mandalı, Mandalı ontak sıçramasının mandallar yardımı ile engellenmesi Flip-Floplar,-

Detaylı

ARDIŞIL DEVRELER. Çıkışlar. Kombinezonsal devre. Girişler. Bellek

ARDIŞIL DEVRELER. Çıkışlar. Kombinezonsal devre. Girişler. Bellek ARDIŞIL DEVRELER Ardışıl Devreler konusunda Temel bellek elemanları Tutucu (Latch) Flip-flop Ardışıl devrelerin analizi Ardışıl devrelerin sentezi Saklayıcı (Register) ve Sayıcı (Counter) gibi çok kullanılan

Detaylı

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI Deneyin Amaçları Flip-floplara aģina olmak. DeğiĢik tipte Flip-Flop devrelerin gerçekleģtirilmesi ve tetikleme biçimlerini kavramak. ArdıĢık mantık devrelerinin

Detaylı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI. Deney 5 Flip Flop Devreleri

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI. Deney 5 Flip Flop Devreleri TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI Deney 5 Flip Flop Devreleri Öğrenci Adı & Soyadı: Numarası: 1. Flip Flop Devresi ve VEYADEĞİL

Detaylı

İÇİNDEKİLER. 1-1 Lojik ve Anahtara Giriş Lojik Kapı Devreleri... 9

İÇİNDEKİLER. 1-1 Lojik ve Anahtara Giriş Lojik Kapı Devreleri... 9 İÇİNDEKİLER BÖLÜM 1 TEMEL LOJİK KAPI DENEYLERİ 1-1 Lojik ve Anahtara Giriş 1 1-2 Lojik Kapı Devreleri... 9 a. Diyot Lojiği (DL) devresi b. Direnç-Transistor Lojiği (RTL) devresi c. Diyot-Transistor Lojiği

Detaylı

Mantık Devreleri Laboratuarı

Mantık Devreleri Laboratuarı 2013 2014 Mantık Devreleri Laboratuarı Ders Sorumlusu: Prof. Dr. Mehmet AKBABA Laboratuar Sorumlusu: Emrullah SONUÇ İÇİNDEKİLER Deney 1: 'DEĞİL', 'VE', 'VEYA', 'VE DEĞİL', 'VEYA DEĞİL' KAPILARI... 3 1.0.

Detaylı

DENEY 8- Flip Flop ve Uygulamaları. Amaç: - Flip Flop çalışma mantığını kavramak

DENEY 8- Flip Flop ve Uygulamaları. Amaç: - Flip Flop çalışma mantığını kavramak DENEY 8- Flip Flop ve Uygulamaları Amaç: - Flip Flop çalışma mantığını kavramak Deneyin Yapılışı: - Deney bağlantı şemasında verilen devreleri uygun elemanlarla kurunuz. Entegrenin besleme ve GND bağlantılarını

Detaylı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı SAYISAL ELEKTRONİK Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 6 Tutucular, Flip-Floplar ve Zamanlayıcılar Tutucular (Latches) Tutucu iki kararlı (bistable state) durumu olan en temel sayısal depolama

Detaylı

BLG311 Biçimsel Diller ve Otomatlar

BLG311 Biçimsel Diller ve Otomatlar BLG311 Biçimsel Diller ve Otomatlar Sonlu Durumlu Makineler A.Emre Harmancı Tolga Ovatman Ö.Sinan Saraç 2015 İçerik 1 Tanımlar ve Modeller (Mealy ve Moore) 2 Tanımlar ve Modeller (Mealy ve Moore) Hesaplayan

Detaylı

Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 1 BİLGİSAYAR MİMARİSİ Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü http:// http:// Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

Deney 6: Ardışıl Devre Analizi

Deney 6: Ardışıl Devre Analizi Deney 6: Ardışıl Devre Analizi Genel Bilgiler: Lojik devre derslerinde de görüldüğü gibi bir ardışıl devrenin analizi matematiksel model, durum tablosu veya durum diyagramı yardımıyla üç farklı biçimde

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-8 11.05.2016 MULTİVİBRATÖR VE FLİP FLOPLAR Giriş Kare veya dikdörtgen sinyal üreten elektronik devreler Multivibratör olarak

Detaylı

DENEY 5 RS FLİP-FLOP DENEYLERİ

DENEY 5 RS FLİP-FLOP DENEYLERİ Adı Soyadı: No: Grup: DENEY 5 RS FLİP-FLOP DENEYLERİ ÖN BİLGİ : Sayısal bilgiyi ( "0" veya "1" ) depolamada ve işlemede kullanılan temel devrelerden biri de F-F lardır. Genel olarak dört tipi vardır: 1-

Detaylı

Zaman Diyagramları (Timing Diagrams) A B C AB. Propagasyon Gecikmesi (Propagation Delay)

Zaman Diyagramları (Timing Diagrams) A B C AB. Propagasyon Gecikmesi (Propagation Delay) ayısal evreler (Lojik evreleri) Zaman iyagramları (Timing iagrams) ayısal devrelerin zaman içindeki davranışlarını (giriş/çıkış ilişkisini) gösteren diyagramlardır. x ekseninde zaman, y ekseninde ise girişlerin

Detaylı

7.Yazmaçlar (Registers), Sayıcılar (Counters)

7.Yazmaçlar (Registers), Sayıcılar (Counters) 7.Yazmaçlar (Registers), Sayıcılar (Counters) 7..Yazmaçlar Paralel Yüklemeli Yazmaçlar Ötelemeli Yazmaçlar 7.2.Sayıcılar Đkili Asenkron Sayıcılar (Binary Ripple Counter) Đkili Kodlanmış Onlu Asenkron Sayıcı

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi)

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 9. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar FLIP FLOPS S-R: Set-Reset Latch (Tutucu) Tetiklemeli D Latch (Tutucu) Kenar Tetiklemeli D Flip-Flop S-R

Detaylı

DENEY 2- Sayıcılar ve Kaydırmalı Kaydediciler

DENEY 2- Sayıcılar ve Kaydırmalı Kaydediciler DENEY 2- Sayıcılar ve Kaydırmalı Kaydediciler DENEY 2a- JK Flip-Flop Devreleri DENEYİN AMACI 1. Sayıcıların prensiplerinin ve sayıcıların JK flip-flopları ile nasıl gerçeklendiklerinin incelenmesi. GENEL

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

Ders hakkında" İletişim" Bu derste" Bellek" 12/3/12. BBM 231 Zamanuyumlu dizisel devreler (synchronous sequential logic)"

Ders hakkında İletişim Bu derste Bellek 12/3/12. BBM 231 Zamanuyumlu dizisel devreler (synchronous sequential logic) 2/3/2 ers hakkında" ykut Erdem aykut@cs.hacettepe.edu.tr Oda: el: 297 75 / 46 Ofis Saati: Carşamba 5:-6: M 23 Zamanuyumlu dizisel devreler (synchronous sequential logic)" etbook: Mano and Ciletti, igital

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU DENEYİN ADI : BELLEKLE TASARIM Seri Aritmetik Lojik Birim II (9.2) RAPORU HAZIRLAYAN : BEYCAN KAHRAMAN

Detaylı

KENAR TETİKLEMELİ D FLİP-FLOP

KENAR TETİKLEMELİ D FLİP-FLOP Karadeniz Teknik Üniversitesi Bilgisaar Mühendisliği Bölümü Saısal Tasarım Laboratuarı KENAR TETİKLEMELİ FLİP-FLOP 1. SR Flip-Flop tan Kenar Tetiklemeli FF a Geçiş FF lar girişlere ugulanan lojik değerlere

Detaylı

ROM ve PLD lerle ARDIŞIL DEVRE TASARIMI

ROM ve PLD lerle ARDIŞIL DEVRE TASARIMI Karadeniz Teknik Üniversitesi Mühendislik-Mimarlık Fakültesi Bilgisayar Mühendisli gi Bölümü Sayısal Tasarım Laboratuvarı ROM ve PLD lerle ARDIŞIL DEVRE TASARIMI Ardışıl devreler ROM (Read Only Memory)

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol EEM122SAYISAL MANTIK BÖLÜM 6: KAYDEDİCİLER VE SAYICILAR Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol KAYDEDİCİLER VE SAYICILAR Flip-flopkullanan devreler fonksiyonlarına göre iki guruba

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma TEMEL BİLGİSAYAR BİLİMLERİ Programcılık, problem çözme ve algoritma oluşturma Programcılık, program çözme ve algoritma Program: Bilgisayara bir işlemi yaptırmak için yazılan komutlar dizisinin bütünü veya

Detaylı

BÖLÜM 10 KAYDEDİCİLER (REGİSTERS) SAYISAL TASARIM. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 10 KAYDEDİCİLER (REGİSTERS) SAYISAL TASARIM. Bu bölümde aşağıdaki konular anlatılacaktır erin BÖLÜM 10 KYEİCİLER (REGİSTERS) Bu bölümde aşağıdaki konular anlatılacaktır Kaydedicilerin(Registers) bilgi giriş çıkışına göre ve kaydırma yönüne göre sınıflandırılması. Sağa kaydırmalı kaydedici(right

Detaylı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı SAYISAL TASARIM Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 1 Sayıcılar İkili (Binary) Sayma İkili (Binary) sayma 1 ve 0 ların belirli bir düzen içerisinde sıralanması ile yapılır. Her dört sayıda

Detaylı

Proje Teslimi: 2013-2014 güz yarıyılı ikinci ders haftasında teslim edilecektir.

Proje Teslimi: 2013-2014 güz yarıyılı ikinci ders haftasında teslim edilecektir. ELEKTRONĐK YAZ PROJESĐ-2 (v1.1) Yıldız Teknik Üniversitesi Elektronik ve Haberleşme Mühendisliği Bölümünde okuyan 1. ve 2. sınıf öğrencilerine; mesleği sevdirerek öğretmek amacıyla, isteğe bağlı olarak

Detaylı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan,

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Deney 4: 555 Entegresi Uygulamaları

Deney 4: 555 Entegresi Uygulamaları Deneyin Amacı: Deney 4: 555 Entegresi Uygulamaları 555 entegresi kullanım alanlarının öğrenilmesi. Uygulama yapılarak pratik kazanılması. A.ÖNBİLGİ LM 555 entegresi; osilasyon, zaman gecikmesi ve darbe

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Sayısal Lojik Tasarımı BIL281 3 5+0 5 6 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze

Detaylı

Algoritmanın Hazırlanması

Algoritmanın Hazırlanması Algoritmanın Hazırlanması Algoritma, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 TEMEL LOJİK ELEMANLAR VE UYGULAMALARI DENEY SORUMLUSU Arş. Gör. Erdem ARSLAN Arş. Gör.

Detaylı

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 2

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 2 FORMEL DİLLER VE SOYUT MAKİNALAR Hafta 2 OTOMATA TEORİSİ Otomata teorisi (özdevinim kuramı ya da otomat teorisi), teorik bilgisayar biliminde soyut makineleri (ya da daha uygun bir deyimle soyut 'matematiksel'

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

BİLGİSAYAR MİMARİSİ. << Bus Yapısı >> Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. << Bus Yapısı >> Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ > Özer Çelik Matematik-Bilgisayar Bölümü Veri yolu (BUS), anakarttaki tüm aygıtlar arası veri iletişimini sağlayan devrelerdir. Yani bilgisayarın bir bileşeninden diğerine

Detaylı

TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-206 SAYISAL ELEKTRONİK - II LABORATUVARI

TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-206 SAYISAL ELEKTRONİK - II LABORATUVARI TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-206 SAYISAL ELEKTRONİK - II LABORATUVARI DENEY FÖYÜ 1 EET-206 SAYISAL ELEKTRONİK - II LABORATUVARI DENEY NO : 1 DENEYİN ADI : OSİLATÖR DEVRESİ Giriş

Detaylı

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir. LİMİT VE SÜREKLİLİK A- LİMİTLER Bir top 10 metre yükseklikten bırakılmaktadır. Top yere vurduktan sonra ilk yüksekliğin 2/5 i kadar sıçramakta ve bunu her yükseliş için devam ettirmektedir. Topun sıçrayacağı

Detaylı

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER)

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER) AIŞIL EVELE TANIM: ÇIKIŞLAIN BELİLİ Bİ ANAKİ EĞEİ, GİİŞLEİN YANLIZA O ANKİ EGEİNE EĞİL, AYNI ZAMANA GİİŞLEİN ÖNEKİ EĞELEİNİN IAINA A BAĞLI OLAN EVELEE AIŞIL EVELE AI VEİLİ. GEÇMİŞ GİİŞ EĞELEİNİN IAI HAFIZA

Detaylı

BİÇİMSEL DİLLER VE OTOMATLAR

BİÇİMSEL DİLLER VE OTOMATLAR BİÇİMSEL DİLLER VE OTOMATLAR Hazırlayanlar: Prof.Dr. Emre HARMANCI Yard.Doç.Dr. Osman Kaan EROL İçindekiler: 1. Sonlu Durumlu Makinalar 1.1. Tanım ve modeller (Mealy ve Moore Modelleri) 1.2. Algoritmik

Detaylı

Yazılan programın simülasyonu için; (AB) ve (A=B) durumunu sağlayacak 2 şer tane değeri girerek modelsimde oluşan sonuçları çiziniz.

Yazılan programın simülasyonu için; (A<B), (A>B) ve (A=B) durumunu sağlayacak 2 şer tane değeri girerek modelsimde oluşan sonuçları çiziniz. Girilen iki sayının birbiriyle karşılaştırılıp sonucunda büyük, küçük veya eşit sinyallerinin verileceği bir programı VHDL dili ile yazınız. A : karşılaştırılacak 1.sayıdır. 8 bitlik giriştir. B : karşılaştırılacak

Detaylı

Tek kararlı(monostable) multivibratör devresi

Tek kararlı(monostable) multivibratör devresi Tek kararlı(monostable) multivibratör devresi Malzeme listesi: Güç kaynağı: 12V dc Transistör: 2xBC237 LED: 2x5 mm standart led Direnç: 2x330 Ω, 10 K, 100 K Kondansatör: 100μF, 1000μF Şekildeki tek kararlı

Detaylı

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir. 5. KOMBİNEZONSAL LOJİK DEVRE TASARIMI 5.1. Kombinezonsal Devre Tasarımı 1. Problem sözle tanıtılır, 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır, 3. Probleme ilişkin doğruluk tablosu

Detaylı

BBM 231 Zamanuyumlu dizisel devreler (synchronous sequential logic)" Hacettepe Üniversitesi Bilgisayar Müh. Bölümü

BBM 231 Zamanuyumlu dizisel devreler (synchronous sequential logic) Hacettepe Üniversitesi Bilgisayar Müh. Bölümü BBM 23 Zaanuyulu dizisel devreler (synchronous sequential logic)" Hacettepe Üniversitesi Bilgisayar Müh. Bölüü Ders hakkında" Aykut Erde aykut@cs.hacettepe.edu.tr Oda: Tel: 297 75 / 46 Ofis Saati: Carşaba

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR

Yrd.Doç.Dr. Celal Murat KANDEMİR Bilgisayar Mimarisi Ara Bağlantı Yapıları ve Bus Kavramı Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Ara Bağlantı Yapıları Bir bilgisayar sistemi MİB, bellek ve

Detaylı

Bu derste! BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Yazmaç Aktarımı Düzeyi! Büyük Sayısal Sistemler! 12/25/12

Bu derste! BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Yazmaç Aktarımı Düzeyi! Büyük Sayısal Sistemler! 12/25/12 BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Hacettepe Üniversitesi Bilgisayar Müh. Bölümü Bu derste! Büyük, karmaşık sayısal sistemlerin tasarımı ele alınacaktır. ASM ve ASMD çizgeleri Tasarım Örnekleri

Detaylı

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü 00223 - Mantık Devreleri Tasarımı Laboratuar Föyleri Numara: Ad Soyad: Arş. Grv. Bilal ŞENOL Devre Kurma Alanı Arş. Grv. Bilal ŞENOL

Detaylı

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi Deneyin Amacı: Temel kapı devrelerinin incelenmesi, deneysel olarak kapıların gerçeklenmesi ve doğruluk tablolarının elde edilmesidir. Deney Malzemeleri:

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

Deney 2: Lojik Devre Analizi

Deney 2: Lojik Devre Analizi eney : Lojik evre nalizi Genel ilgiler: u deneyde, SSI (Small Scale Integration: Küçük Ölçekte Tümleştirme, - kapı) devreler kullanılarak, lojik kapıların, oole fonksiyonlarının, oole ebri aksiyom ve teoremlerinin

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 6. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar KARNO HARITALARI İki ve Üç değişkenli Karno Haritaları Dört değişkenli Karno Haritaları Beş değişkenli

Detaylı

BM312 Ders Notları - 3 2014

BM312 Ders Notları - 3 2014 DETERMİNİSTİK SONLU OTOMATLAR (DETERMINISTIC FINITE AUTOMATA) Bir Sonlu Otomat (FA) sabit ve sonlu kapasitede bir merkezi işlem ünitesine sahiptir. Giriş bilgisini input tape üzerinden string olarak alır.

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

VE DEVRELER LOJİK KAPILAR

VE DEVRELER LOJİK KAPILAR ÖLÜM 3 VE DEVELEI LOJIK KPIL VE DEVELE LOJİK KPIL Sayısal devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilir. ir lojik kapı bir çıkış, bir veya birden fazla giriş hattına

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

BEKLEMELĐ ÇALIŞMA VE ZAMAN SINIRLI ĐŞLER. 1. Genel Tanıtım. 2- WAIT işaretinin üretilmesi

BEKLEMELĐ ÇALIŞMA VE ZAMAN SINIRLI ĐŞLER. 1. Genel Tanıtım. 2- WAIT işaretinin üretilmesi K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Mikroişlemciler Laboratuarı BEKLEMELĐ ÇALIŞMA VE ZAMAN SINIRLI ĐŞLER 1. Genel Tanıtım CPU lar bazı çevre birimlerine göre daha hızlı çalışabilir

Detaylı

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI Bu kısımda bir fonksiyon değerlerinin tablo şeklinde hesaplanması incelenecektir. İncelenecek fonksiyon y=f(x) şeklinde bir değişenli veya z=f(x,y) şeklinde iki

Detaylı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı T.C. Maltepe Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı Dersin Sorumlusu Yrd. Doç. Dr. Zehra Çekmen

Detaylı

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi ) ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) (Proje, İş Yeri ) Kredisi Bu derste, her türlü asenkron ve senkron elektrik makinalarının uçlarının bulunması, devreye bağlanması ve çalıştırılması

Detaylı

Seri Giriş, Seri Çıkış

Seri Giriş, Seri Çıkış Seri Giriş, Seri Çıkış Seri-giriş/seri-çıkış kaydıran yazmaçlar bir zaman için bir veri geciktirir. Her bir kaydırma için bir bit veri saklarlar. Bir seri-giriş/seri-çıkış kaydıran yazmacı birden 64 bite

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN:

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN: ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ DENEYİ YAPANLAR Grup Numara Ad Soyad RAPORU HAZIRLAYAN: Deneyin Yapılış Tarihi Raporun Geleceği Tarih Raporun

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

Algoritmalar ve Programlama. Algoritma

Algoritmalar ve Programlama. Algoritma Algoritmalar ve Programlama Algoritma Algoritma Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER DENEYİN AMACI: Bu deneyde temel lojik kapılar incelenecek; çift kararlı ve tek kararlı ikili devrelerin çalışma prensipleri gözlemlenecektir. ÖN HAZIRLIK Temel lojik

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 DENEYİN ADI: LOJİK FONKSİYONLARIN SADECE TEK TİP KAPILARLA (SADECE NAND (VEDEĞİL), SADECE NOR (VEYADEĞİL)) GERÇEKLENMESİ VE ARİTMETİK İŞLEM DEVRELERİ

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

5. LOJİK KAPILAR (LOGIC GATES)

5. LOJİK KAPILAR (LOGIC GATES) 5. LOJİK KPILR (LOGIC GTES) Dijital (Sayısal) devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilmektedir. Her lojik kapının bir çıkışı, bir veya birden fazla girişi vardır.

Detaylı

1 İ.T.Ü. Elektrik Elektronik Fakültesi Elektronik Mühendisliği Programı Devreler ve Sistemler Anabilim Dalı

1 İ.T.Ü. Elektrik Elektronik Fakültesi Elektronik Mühendisliği Programı Devreler ve Sistemler Anabilim Dalı DENEY 1 : TTL ve CMOS KAPI KARAKTERİSTİKLERİ Genel Açıklamalar : Bir lojik kapının temel karakteristikleri, tümdevrelere ait giriş/çıkış seviye0/seviye1 gerilim ve akım değerleri, propagasyon gecikme süreleri,

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer ayıal evreler (Lojik evreleri) AIŞIL VL (equential ircuit) erin ilk bölümünde kombinezonal (combinational) devreleri inceledik. Bu tür devrelerde çıkışın değeri o andaki girişlerin değerlerine bağlıdır.

Detaylı