BTZ Kara Deliği ve Grafen

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BTZ Kara Deliği ve Grafen"

Transkript

1 BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi

2 BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei Sonuç

3 BTZ Kaa Deliği Kaa Delik : Mekezindeki büyük kütleden kaynaklanan kütleçekim alanından kaçış hızının ışık hızından büyük olduğu uzay-zaman bölgesi. Kaçış hızının ışık hızına eşit olduğu yüzey kaa deliğin olay ufku olaak adlandıılı. Olay ufkunun içinden ışık dışaı kaçamaz. 3

4 Bi kaa deliği betimlemek için üç fiziksel paamete yetelidi; Kütle (M) Açısal momentum (J) Yük (Q) (3+1) boyutlu kütleçekim teoisindeki kaa delik çözümlei; Statik kaa delik, M, Schwazschild Dönen kaa delik, M+J, Ke Yüklü ve dönen kaa delik, M+J+Q, Ke-Newman Kaa deliklein valığına ilişkin (dolaylı) gözlemsel kanıtla mevcuttu. 4

5 (+1) boyutta kütleçekimteoisi topolojikbi teoidi. Dolayısıyla lokalsebestlik deecelei yoktu. (Çözümle, nokta tekillikle içeen düz metikledi) Fakat, kozmolojik sabitin valığında duum faklıdı. Kozmolojik sabit, boşluğun eneji yoğunluğuna kaşılık geli. Pozitif ya da negatif değe alabili. Negatifkozmolojik sabitli, (+1) boyutlu kütleçekimteoisi bi kaa delik çözümüne sahipti. Bu çözüm BTZ kaa deliğidi. (Banados, Teitelboim, Zanelli PRL 69, 1849 (199)) 5

6 BTZ kaa delik metiği aşağıdaki biçimdedi t,,φ ds = dt + + dφ dt (+1) boyutlu uzay-zaman koodinatlaı, M kaa deliğin kütlesi ve J açısal momentumu, 1 Λ= l kozmolojik sabit d J = l J + 4 M Bu metik ikikoodinat tekilliğine sahipti, bunla kaa deliğin iç ve dış ufuklaına kaşılık geli 1/ M J m = l 1m 1 Ml kaa deliğin olay ufkudu ve vaolması için şu koşulla sağlanmalıdı; + M > 0, J Ml 1/ 6

7 Gafenve Eği Uzay-zamanla Gafen: Kabonatomlaının boyutlu altıgen ögüsü Eneji spektumu: Billouin bölgesindeki bazı izole noktaladadeğelik ve iletim bantlaı bibiine dokunu. Dolayısıyla gafenbi yaı-metaldi. 7

8 Gafendekidüşük enejili elektonik uyaılmala efektif olaak kütlesiz Diacdenklemini sağlayan psödo-paçacıkla aacılığıyla betimleni; ( k τ k ) H ( k) =hv + σ F xσ 1 3 y ( altögü için Pauli matislei ve τ K, K noktalaı için Pauli matisi) σi 3 Bu Hamiltonyenekaşılık gelen dispesiyon bağıntısı momentuma göe lineedi; E( k) =hv F k 8

9 İki boyutlu gafenyüzeyi, değişik deneysel yöntemle kullanılaak faklı eği biçimlee sokulabili. Dolayısıyla, eği gafenyüzeylei eği bi akaplandahaeket eden Diac paçacıklaını betimlemek için kullanılabili. İki boyutlu eği yüzeyle, eğiliği sadece uzay kısmında olan (+1) boyutlu uzay-zaman nesnelei olaak göülebilile. Bu yolla, Diacpaçacıklaının bi eği uzay-zaman kuantum alan teoisi ealizasyonu, üç boyut içeisine gömülebiliiki boyutlu gafen yüzeylei kullanılaak elde edilebili. 9

10 BeltamiTompeti ve DiacHamiltonyeni BTZ metiği aşağıdaki biçimde yazılabili ds = dt + d + dφ J dt Paantez içeisindeki kısım (optik BTZ metiği) Beltami tompeti yüzeyini ifade eden metikle aynı fomdadı; dt + dρ + C dφ Wdt ( ) C ve W, ρ koodinatının fonksiyonlaıdı. Dolayısıyla, BTZ kaa deliği Beltamitompeti yüzeyi ile konfomal olaak ilişkilidi. (Cvetic, Gibbons, Ann. Phys (01)) 10

11 BTZ metiği negatif sabit eğiliğe sahip olduğundan, yalnızca olay ufkunun dış > + kısmı ( ) 3 boyutlu uzaya boyutlu yüzey olaak gömülebili(hilbet teoemi) Dolayısıyla, olay ufkunun dışı 3 boyutlu uzaydaki Beltami tompeti yüzeyi ile modellenebili. Kütlesiz Diac denklemi konfomal simetiye sahipti; ~ ~ (1 D )/ =Ω g Ψ=Ω Ψ g µν µν g metik, Ψ Diac çözümü, Ω is konfomal çapan, D boyut Yani, Beltamitompeti akaplanındadiacdenklemi yazıldığında, BTZ kaa delik uzay-zamanında haeket eden Diac paçacıklaının özellikleine ulaşılabili. 11

12 Optik BTZ metiği akaplanındakidiacdenklemi aşağıdaki gibi yazılı; Paulimatislei ve dalga fonksiyonu biçiminde alındı. 0 ) ( = J J m E im J M ψ σ σ σ i σ φ ψ im iet e + = Ψ ) ( Psödo-Hemitselkuantum mekaniği yöntemlei kullanılaak, bu akaplaniçin HemitselDiacHamiltonyenişu şekilde elde edili; J m J m i H = σ σ σ =

13 Eneji Değelei ve GafenPaametelei Diac Hamiltonyenleinin spektumu alttan sınılı değildi (sonsuz negatif eneji özdeğelei vadı). Dolayısıyla, olağan vayasyonel yöntemle özdeğelei belilemek için kullanışlı değildi. Ancak, DiacHamiltonyenleininözdeğeleinintam kümesi kesikli baz kümesi yöntemi (discetebasisset method) kullanılaak bulunabili. (Dake and Goldman PRA 3, 093 (1981)) 13

14 Boyutsuz paametele kullanılaak c ( olay ufku) J J ' =, ~c Ml = optik BTZ akaplanındakidiachamiltonyeninineneji özdeğelei aşağıdaki gibi bulunu c Ml E = hv l F mj ' e ± ( ~ MJ ' Q) + ( 4 m R) ~ ~ c ~ J Q = ~ ' ~ ~ 1+ e d ~ c ~ ~ R = ~ c ~ J ' ~ ~ ~ 1+ ~ e d 14

15 Bu özdeğele, elektik(ef) ve manyetik(mf) alanlaın etkisi altındaki ve kütle teimine(k) sahip gafen psödopaçacıklaının enejilei ile aynı fomdadı; ( ) EF± K ( MF 3 a E = J + l 0 ) hvf buada J 0 = ve a gafenin ögü aalığıdı. 3a BTZ metiğindeki uzunluk paametesi gafendekidoğal uzunluk paametesi olan ögü aalığı a ya kaşılık geli. l Dolayısıyla, gafendeki elektik alan, manyetik alan ve kütle teimleini BTZ akaplanındaki özdeğelele kaşılaştıabiliiz. 15

16 B manyetik alanı uygulanmış bi gafenöneğinin eneji özdeğelei aşağıdaki gibidi; E B = sgn( m) hv Bm Bu ifade BTZ akaplanıenejisinin MF kısmı ile kaşılaştıılısa, BTZ metiğinin MF kısmının aşağıdaki uygulanmış manyetik alan ile betimlenebileceği bulunu ( Tesla biiminde ) 8hcm ~ 4 ~ B = R = 8 3,6 10 mr el Benze şekilde, EF ve K teimlei de elde edili (ev biiminde) EF 3 mj e 3 ~ c =,7 ' ~, K =,7 MJ ' Q Dolayısıyla, J ' paametesi gafenöneğine uygulanmış bi elektik alanile betimlenebiliken, M aalık (gap) açan kütle teimi ile ilişkilidi. F e c 16

17 Özel Duumla Benze analiz BTZ metiğindeki paametelein bazı özel hallei için de yapılabili. i) kozmolojik sabitli vakum duumu M = 0, J = 0 E m l ~ ( 3, ) 1= ± hvf Γ c ii) M 0, J = 0 statik BTZ kaa deliği 4m l E =± v h F ~ 1e ~ iii) anti de Sitte(AdS) uzay-zamanı M = 1, J = 0 4m l c E =± v 3 h F ~ c ~ ~ + 1e ~ ~ d~ ~ d~ 17

18 iv) ekstem BTZ kaa deliği M 0, J = Ml E 4 = hv l F me ± ~ ~ ( ) MQ + ( mr) ~ c [ ] ~ (1+ ) e (1+ ) e Γ(, ) Ei( ~ ) ~ 1 ~ c Q= c 4 c ~ ) ~ (1+ ~ ) ~ c e c c e R= 1 4 (+ 1 Γ(3, ) (i), (ii) and(iii) duumlaı gafenyüzeyine uygulanan bi manyetik alanla temsil edilebili. (iv) duumu gafeneuygulanan manyetik ve elektik alanla ve aalık (gap) açan kütle teimi ile temsil edilebili. 18

19 Sonuç BTZ kaa delik metiğine konfomalolaak eşdeğe olan Beltami tompeti akaplanındaki Diac psödopaçacıklaının enejilei gafendekimanyetik alan, elektik alan ve kütle teimlei ile temsil edilebili. Dolayısıyla, bi gafenyüzeyine uygun manyetik ve elektik alanla ile aalık (gap) açma posedüü uygulanısa, (+1) boyutlu bi BTZ kaa deliğinin laboatuva modeli elde edilebili. Bu analogmodel, BTZ kaa deliğinin fiziksel özellikleinin anlaşılmasında kullanılabili. 19

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Naual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 5/4 ENERGY DECAY FOR KIRCHHOFF EQUATION Müge MEYVACI Mima Sinan Güzel Sanala Ünivesiesi, Fen-Edebiya Fakülesi, Maemaik Bölümü,Beşikaş-İSTANBUL

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals Ç.Ü Fen e Mühendislik Bilimlei Deisi Yıl:0 Cilt:8-3 ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eienfequency Contous of ZnX (X=S, Se, Te) Photonic Cystals Utku ERDİVEN, Fizik Anabilim

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN:

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN: KLASİK MEKANİK- BÖLÜM- KLASİK MEKANİĞE GİRİŞ )UZAY VE ZAMAN: Uzay ve zaman fiziğin en temel vasayımlaı ile ilgili kavamladandı. Uzay ve zamanın süekli olduğunu vasaymak, ancak uzunluk ve zamanın bi standadının

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ

YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ Sevgi GÜRLER YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI Tez Yöneticisi: Yd. Doç. D. Fiket İŞIK EDİRNE-0

Detaylı

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei

Detaylı

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ Gazi Üniv. Müh. Mim. Fak. De. J. Fac. Eng. Ach. Gazi Univ. Cilt 8, No 4, 33-44, 003 Vol 8, No 4, 33-44, 003 ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME

Detaylı

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ 0. SNF ONU NTM 4. ÜNİTE: OPTİ. onu GÖGEER ve YDNNM ETİNİ ÇÖZÜMERİ Ünite 4 Optik. 5. Ünite. onu (yınlanma) nın Yanıtlaı pee. a. yaklaştıılmalıı. b. uzaklaştıılmalıı. B nin Yanıtlaı X Y. a. ekan. 3. şık

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

ATOM FİZİĞİ-1 BÖLÜM-1

ATOM FİZİĞİ-1 BÖLÜM-1 ATOM FİZİĞİ ÖLÜM HİDROJEN ATOMUNDA MERKEZCİL ALAN ÇÖZÜMLERİ ÖLÜM ATOMİK HAMİLTONİYENİN AZI TERİMLERİ Ruthefod oh Copton Pauli Fei Feynan ÖLÜM ATOMİK SPEKTROSKOPİ ÖLÜM 4 TEMEL PARÇACIKLAR ATOM FİZİĞİ- ÖLÜM-

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p VİDALA VE CIVAALA d : Miniu, inö yada diş dibi çapı (=oot) d : Otalaa, noinal çap yada böğü çapı (=ean) d : Maksiu, ajö çap, diş üstü çapı λ : Helis açısı p : Adı (p=pitch) l (hatve): Civatanın bi ta dönüşüne

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KUANTUM NOKTALARINDA POLARON ETKİLERİNİN SIKIŞTIRILMIŞ DURUMLARLA KURAMSAL İNCELENMESİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KUANTUM NOKTALARINDA POLARON ETKİLERİNİN SIKIŞTIRILMIŞ DURUMLARLA KURAMSAL İNCELENMESİ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KUANTUM NOKTALARINDA POLARON ETKİLERİNİN SIKIŞTIRILMIŞ DURUMLARLA KURAMSAL İNCELENMESİ Nazmiye KERVAN FİZİK ANABİLİM DALI ANKARA 4 He hakkı saklıdı

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ DENEY ADI RADYAL KAYMALI YATAKLARDA SÜRTÜNME KUVVETİNİN ÖLÇÜLMESİ DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR.

Detaylı

İKİ BOYUTLU DİREKT DİNAMİK PROBLEMİN ANALİTİK ÇÖZÜM YAKLAŞIMLARI

İKİ BOYUTLU DİREKT DİNAMİK PROBLEMİN ANALİTİK ÇÖZÜM YAKLAŞIMLARI Uludağ Ünivesitesi Mühendislik-Mimalık akültesi Degisi, Cilt 17, Sayı, 1 ARAŞTIRMA İKİ BOYUTLU DİREKT DİNAMİK PROBLEMİN ANALİTİK ÇÖZÜM YAKLAŞIMLARI Gökhan SEVİLGEN Özet: Bu çalışmada, m kütleli paçacığın

Detaylı

Fizik 102-Fizik II /II

Fizik 102-Fizik II /II 1 -Fizik II 2010-2011/II Gauss Yasası Nurdan Demirci Sankır Ofis: 325, Tel: 2924331 Kaynaklar: Giancoli, Physics, Principles With Applications, Prentice Hall Serway, Beichner, Fen ve Mühendislik için Fizik

Detaylı

ELEKTRONİĞİN FİZİKSEL ESASLARI

ELEKTRONİĞİN FİZİKSEL ESASLARI ELEKTRONİĞİN FİZİKSEL ESASLARI Bi elektonik elemanın özelliğini, bu elemanın üetiminde kullanılan malzemenin paametelei ve ısı, geilim ışık gibi dış etkenleden dolayı elemanın içinde geçekleşen fiziksel

Detaylı

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Bölüm 2: Akışkanların özellikleri Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Giriş Bir sistemin herhangi bir karakteristiğine özellik denir. Bilinenler: basınç P, sıcaklıkt,

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları İZ101 İZİK-I Ankaa Ünivesitesi en akültesi Kimya Bölümü B Gubu Bölüm V: Newton un Haeket Yasalaı 05.12.2014 Aysuhan OZANSOY Bölüm-V: Newton un Haeket Yasalaı: 1. Kuvvet Kavamı 2. Newton un I. Yasası (Eylemsizlik

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

) 2, ω 2 = k ve ε m m

) 2, ω 2 = k ve ε m m Harmonik Salınıcı (HO) Harmonik salınıcı bir m kütlesine etki eden bir geri çağırıcı kuvvetin etkisiyle ortaya çıkar ki bu kuvvet başlangıç noktasından itibaren yerdeğiştirme ile orantılıdır. Bu problemin

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ BÖLÜM SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ. Poblemin tanımlanması. Geen idantitesine daanan genel çöüm. Çöümün metodolojisi. Temel çöüm - Noktasal kanak.5 Temel çöüm - Noktasal duble.6

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

Çembersel Hareket. Test 1 in Çözümleri

Çembersel Hareket. Test 1 in Çözümleri 5 Çebesel Haeket est in Çözülei.. düşey eksen tabla He üç cisi aynı ipe bağlı olduğundan peiyotlaı eşitti. Açısal hız bağıntısı; ~ di. Bağıntısındaki sabit bi değedi. Ayıca cisilein peiyotlaı eşitti. hâlde

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

LİSELERARASI ORTAK DENEME SINAVI

LİSELERARASI ORTAK DENEME SINAVI LİSELERARASI ORTAK DENEME SINAVI SINAV KURALLARI 1-) Sınavın süresi 5 saattir. Sağlıklı ve adil sonuçların elde edilebilmesi için süre kuralına özen gösterilmesi önemle rica olunur. 2-) Sınava katılan

Detaylı

Işınım ile Isı Transferi Deneyi Föyü

Işınım ile Isı Transferi Deneyi Föyü Işınım ile Isı Transferi Deneyi Föyü 1. Giriş Işınımla (radyasyonla) ısı transferi ve ısıl ışınım terimleri, elektromanyetik dalgalar ya da fotonlar (kütlesi olmayan fakat enerjiye sahip parçacıklar) vasıtasıyla

Detaylı

PARABOLİK KALINLIKLI DÖNEN DİSKLERİN ELASTİK DEFORMASYONU: ANALİTİK ÇÖZÜMLER

PARABOLİK KALINLIKLI DÖNEN DİSKLERİN ELASTİK DEFORMASYONU: ANALİTİK ÇÖZÜMLER Gazi Üniv. Müh. Mim. Fak. De. J. Fac. Eng. Ach. Gazi Univ. Cilt 18, No, 115-135, 003 Vol 18, No, 115-135, 003 PARABOLİK KALINLIKLI DÖNEN DİSKLERİN ELASTİK DEFORMASYONU: ANALİTİK ÇÖZÜMLER Tunç APATAY *

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

BÖLÜM 17 RİJİT ROTOR

BÖLÜM 17 RİJİT ROTOR BÖLÜM 17 RİJİT ROTOR Birbirinden R sabit mesafede bulunan iki parçacığın dönmesini düşünelim. Bu iki parçacık, bir elektron ve proton (bu durumda bir hidrojen atomunu ele alıyoruz) veya iki çekirdek (bu

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

Yukarıdaki sonucu onaylarım. Prof.Dr. Ülkü MEHMETOĞLU Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof.Dr. Ülkü MEHMETOĞLU Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ KÜBİK GaN (001) YÜZEYİNİN ELEKTRONİK YAPISI Hakan GÜRÜNLÜ FİZİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 005 He hakkı saklıdı Pof. D. Boa ALKAN danışmanlığında,

Detaylı

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT 3 FA İEME n Çok azlı sistemle, geilimleinin aasında az akı bulunan iki veya daha azla tek azlı sistemin bileştiilmiş halidi ve bu işlem simetik bi şekilde yapılı. n ek azlı sistemlede güç dalgalı olduğu

Detaylı

Yasemin Öner 1, Selin Özçıra 1, Nur Bekiroğlu 1. Yıldız Teknik Üniversitesi yoner@yildiz.edu.tr, sozcira@yildiz.edu.tr, nbekir@yildiz.edu.tr.

Yasemin Öner 1, Selin Özçıra 1, Nur Bekiroğlu 1. Yıldız Teknik Üniversitesi yoner@yildiz.edu.tr, sozcira@yildiz.edu.tr, nbekir@yildiz.edu.tr. Düşük Güçlü Uygulamala için Konvansiyonel Senkon Geneatöle ile Süekli Mıknatıslı Senkon Geneatölein Kaşılaştıılması Compaison of Conventional Synchonous Geneatos and emanent Magnet Synchonous Geneatos

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ

KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ Ahmet TÜRER*, Hüseyin KAYA* *Ota Doğu Teknik Üniv., İnşaat Müh. Böl., Ankaa ÖZET Köpülein yapısal duumu hakkındaki değelendimele

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

SENKRON RELÜKTANS MAKİNASININ ANALİZİ

SENKRON RELÜKTANS MAKİNASININ ANALİZİ SENKRON REÜKTANS MAKİNASNN ANAİZİ Esoy BEŞER 1 H.Taık DURU 2 Sai ÇAMUR 3 Biol ARİFOĞU 4 Esa KANDEMİR 5 Elektik Mühendisliği Bölümü Mühendislik Fakültesi Koeli Ünivesitesi, Vezioğlu Kampusü, 411, Koeli

Detaylı

SU Lise Yaz Okulu. Evrenin Geometrisi ve Genel görelilik

SU Lise Yaz Okulu. Evrenin Geometrisi ve Genel görelilik SU Lise Yaz Okulu Evrenin Geometrisi ve Genel görelilik Genel Göreleliğe Giriş Newton mekaniği lokal olarak gayet güzel işliyor (Güneş sistemi). Ama tüm evrenin nasıl hareket e=ğini bulmak istersek genel

Detaylı

DENEY 4: Genlik Modülasyonu Uygulamaları

DENEY 4: Genlik Modülasyonu Uygulamaları DENEY 4: Genlik Mdülasynu Uygulamalaı AMAÇ: Genlik Mdülasynlu işaetlein elde edilmesi ve demdülasyn aşamalaının inelenmesi ÖN ÇALIŞMA Bilgi işaetinin, iletim kanalından veimli iletimi için uygun biçime

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-0 Ders 5 Elektrik Alanları Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik. Cilt (SERWAY) -Fiziğin Temelleri.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt ) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziği Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziğinin Standard Modeli fermion boson Dönü 2 Spin/Dönü Bir parçacık özelliğidir (kütle, yük

Detaylı

SU Lise Yaz Okulu. Samanyolu ve Diğer Gökadalar

SU Lise Yaz Okulu. Samanyolu ve Diğer Gökadalar SU Lise Yaz Okulu Samanyolu ve Diğer Gökadalar Samanyolu Gökadamız kendi kütleçekimi al1nda dengeli, milyarlarca yıldız, gaz ve tozdan oluşan bir yapıdır. Biz gökadamızı gökyüzünde bir kolon halinde görürüz.

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

ANKARA ÜNİVERSİTESİ EN İLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ OSE-EINSTEIN YOĞUŞMASINA İR YOĞUNLUK ONKSİYONELLERİ KURAMI YAKLAŞIMI Cahit DEDE İZİK ANAİLİM DALI ANKARA 8 He hakkı saklıdı TEZ ONAYI Cahit

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİKSEL POTANSİYEL TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİKSEL POTANSİYEL TEST ÇÖZÜMLERİ 11. SINIF SORU BNSI. ÜNİT: TRİ V MNYTİZM. onu TRİS POTNSİY TST ÇÖZÜMRİ lektiksel Potansiyel Test 1 in Çözümlei 1. y ı ca yük le en bi i (+), öte ki e ( ) ol ma lı ı. 1 in an uzak lı ğı 4 bi im ise, nin

Detaylı

Ağırlık Kuv. / Atalet Kuv. Viskoz Kuv. / Atalet Kuv. Basınç Kuv. / Atalet Kuv. Basınç ve basınç farkının önemli olduğu problemler

Ağırlık Kuv. / Atalet Kuv. Viskoz Kuv. / Atalet Kuv. Basınç Kuv. / Atalet Kuv. Basınç ve basınç farkının önemli olduğu problemler INS 6 Hidolik Hidolik Anabili Dalı Uygulaa Model benzeşii, fiziksel bi olayın laboatuvada yaılan benzeine o olayın fiziksel odeli deni. Geoetik benzeşi, odel ve ototite bibiine kaşı gelen uzunlukla aasında

Detaylı

Boru İçerisindeki Bir Akış Problemine Ait Analitik ve Nümerik Çözümler

Boru İçerisindeki Bir Akış Problemine Ait Analitik ve Nümerik Çözümler Afyon Kocatepe Üniesitesi Fen Bililei Degisi Afyon Kocatepe Uniesity Jounal of Sciences AKÜ FEBİD () 59 (-9) AKU J. Sci. () 59 (-9) Bou İçeisindeki Bi Akış Pobleine Ait Analitik e Nüeik Çözüle Eine Ceyan,Muhaet

Detaylı

İŞ 1.1. Viskoz olayların önemi. UZB 386 Sınır Tabaka Ders notları - M. Adil Yükselen

İŞ 1.1. Viskoz olayların önemi. UZB 386 Sınır Tabaka Ders notları - M. Adil Yükselen BÖLÜM 1- GİRİŞ İŞ 1.1. Viskoz olalaın önemi UZB 386 Sını Tabaka Des notlaı - M. Adil Yükselen 1 Akışı öneten temel denklemle A- İntegal biçimde Süeklilik t υ ρ dυ S ρ V n ds 0 Momentm Eneji t υ ( ρ dυ)

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler.

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Schrödinger denklemi Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Köşeli parantez içindeki terim, dalga fonksiyonuna etki eden bir işlemci olup, Hamilton

Detaylı

δx,δy,δz olan bir hacim elemanından meydana gelmiştir. Kütle, momentum ve enerji bütçeleri,

δx,δy,δz olan bir hacim elemanından meydana gelmiştir. Kütle, momentum ve enerji bütçeleri, TOPLAM DİFERANSİYEL Atmoseik haeketle üç temel iziksel pensip ile iae eilile: 1) Kütlenin kounumu 2) Momentumun kounumu 3) Enejinin kounumu. Bu yasalaı iae een matematiksel bağıntıla, akışkan içine sonsuz

Detaylı

SIĞA VE DİELEKTRİKLER

SIĞA VE DİELEKTRİKLER SIĞA VE DİELEKTRİKLER Birbirlerinden bir boşluk veya bir yalıtkanla ayrılmış iki eşit büyüklükte fakat zıt işaretli yük taşıyan iletkenlerin oluşturduğu yapıya kondansatör adı verilirken her bir iletken

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME TMMOB Haita ve Kadasto Mühendislei Odası 1. Tükie Haita Bilimsel ve Teknik Kuultaı 8 Mat - 1 Nisan 5, Ankaa DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

KM in Sorunları ve Başarısızlıkları

KM in Sorunları ve Başarısızlıkları Klasik Mekanik (CM) makroskopik kuantum olaylarını betimlemede başarısızlığa uğramıştır. Mikroskopik özelliklerin makroskopik dünyaya taşınımına ait olaylar şunlardır: üstün akışkanlık Yeterince düşük

Detaylı

Tek Boyutlu Potansiyeller: Potansiyel eşiği

Tek Boyutlu Potansiyeller: Potansiyel eşiği Tek Boyutlu Potansiyeller: Potansiyel eşiği Şekil I: V 0 yüksekliğindeki potansiyel eşiği. Parçacık soldan gelmekte olup, enerjisi E dir. Zamandan bağımsız bir durumu analiz ediyoruz ki burada iyi belirlenmiş

Detaylı

FİZK Ders 8 MANYETIK ALAN. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 8 MANYETIK ALAN. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-202 Ders 8 MANYETIK ALAN Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

Gezegenleri kim yuvarlıyor?

Gezegenleri kim yuvarlıyor? Gezegenlei kim yuvalıyo? Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com Özet Aalık 2015 te tam da Göeliliğin

Detaylı

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir püskürtücü dirsek, 30 kg/s debisindeki suyu yatay bir borudan θ=45 açıyla yukarı doğru hızlandırarak

Detaylı

FARADAY YASASI Dr. Ali ÖVGÜN

FARADAY YASASI Dr. Ali ÖVGÜN FİZK 104-202 Ders 9 FARADAY YASASI Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

En Küçük Kareler Ve Toplam En Küçük Kareler Yöntemleri İle Deformasyon Analizi

En Küçük Kareler Ve Toplam En Küçük Kareler Yöntemleri İle Deformasyon Analizi En Küçük Kaele Ve oplam En Küçük Kaele Yöntemlei İle Defomasyon nalizi Mustafa CR,evfik YN, Ohan KYILMZ Özet u çalışmada, oplam En Küçük Kaele (EKK) yönteminin defomasyon analizinde uygulanması, elde edilen

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss

Detaylı