AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER"

Transkript

1 TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63

2 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması ve sunumu Grafikler, tablolar 3. Veri karakteri tanıma Ortalama Veri analizi T/Maker Co. Neden Karar Verme T/Maker Co. DERS I - 3/63 İstatistik nedir? İstatistik; örnek verilerden hareket ederek populasyon (ana kütle istatistik kütlesi) hakkında yorumlama, genelleme ve tahminleme yapma bilimidir. DERS I - 4/63

3 İnsanlar İstatistiği Ne zamandır Kullanıyorlar? zar atma, şans oyunları Laplace Gauss 17.Yüzy zyıl l ortaları, istatistik ilk kez ders kitaplarına girdi DERS I - 5/63 Uygulama Alanları Muhasebe Denetim Maliyet Yönetim Çalışanları tanıma Kalite iyileştirme Finansman Finansal Trendler Öngörümleme Pazarlama Tüketici tercihleri Pazarlama Etkileri DERS I - 6/63

4 Yönetim Problemlerine İstatistiksel Yaklaşım SORUN Yönetim formülasyonu İstatistiksel formülasyon UYGULAMA Yönetimsel yorum Yönetimsel çözüm İstatistiksel yorum İstatistiksel analiz İstatistiksel çözüm DERS I - 7/63 Kalitenin Arttırılmasında İstatistiğin Önemi Yönetim Felsefesi İstatistiksel Metodlar Davranış Araçları DERS I - 8/63

5 Niçin Veri Toplanır? 1. Araştırma için Bilgi Girişi Temin Edilmesi 2. Performansın Ölçülmesi 3. Karar Alternatiflerinin Formülasyonu 4. Merakın Giderilmesi DERS I - 9/63 İstatistiksel Bilgisayar Paketleri Tipik Programlar SAS SPSS MINITAB Excel DERS I - 1/63

6 İstatistiksel Yöntemler İstatistiksel Yöntemler Tanımlayıcı İstatistikler Yorumlayıcı İstatistikler DERS I - 11/63 Tanımlayıcı İstatistikler 1. İçerik Verilerin Toplanması Verilerin Sunuşu Veri Karakterinin Tanımlanması 2. Amaç Verilerin Tarifi 5 25 $ Q1 Q2 Q3 X = 3.5 S 2 = 113 Q4 DERS I - 12/63

7 Açıklayıcı İstatistikler 1. İçerik Tahminleme Hipotez Testi Populasyon? 2. Amaç Populasyon Karakteristiği hakkında karar verilmesi DERS I - 13/63 Anahtar Terimler 1.Populasyon (Evren) İlgilenilen tüm parçalar 2.Örnek Populasyonun Bir bölümü 3.Parametre Populasyonun Özet Ölçüleri 4.Örnek İstatistiği Örneğin Özet Ölçüleri Populasyon - Parametre Örnek - Örnek istatistiği DERS I - 14/63

8 Değişken Her gözleme g göre g farklı değerler erler alabilen objelere, özelliklere ya da durumlara denir Değişkenler nicel ya da nitel olabilir. DERS I - 15/63 Değişken Değişkenleri Kesikli Değişkenler Sürekli Değişkenleri DERS I - 16/63

9 Kesikli Değişkenler 1. Sayısal bir değerle ifade edilen bir olay 2 para atımındaki tura sayısı, 1 yada 2 tura gözlenmesi 2. Kesikli şans değişkeni ; Tam sayılar: (, 1, 2, 3 vb.) Sayarak elde edilmiş sayılar DERS I - 17/63 Kesikli Şans Değişkeni Örnekleri Deney Şans Değişkeni Mümkün Değerler 1 Satış araması yapmak Satış sayısı, 1, 2,..., 1 7 radyoyu muayene etmek Kusurlu sayısı, 1, 2,..., 7 33 soruya cevap vermek Doğru sayısı, 1, 2,..., 33 11: ile 13: arasında gişedeki araba sayısı Gelen araba sayısı, 1, 2,..., DERS I - 18/63

10 Sürekli Değişkenler Sürekli bir aralıktaki tüm değerleri alabilen değişkenlerdir. DERS I - 19/63 Veri Tipleri Veriler Sayısal (Kantitatif) Kategorik (Kalitative) Kesikli Sürekli DERS I - 2/63

11 Veri Tipi Örnekleri 1. Sayısal Kesikli Şu Anda Kaç Adet Dergiye Abonesiniz?(Sayı) Sürekli Boyunuz Ne Kadar? (Cm) 2. Kategorik Hisse Senedine yatırım yapar mısınız? Evet Hayır DERS I - 21/63 Kategorik mi? Sayısal mı (Kesikli veya Sürekli)? Hangi Ölçekte? 1. Cinsiyet Erkek, Dişi 2. Ağırlık 123kg, 14.2g vb. 3. Otomobil Hızı 78, 64, 45 vb. 4. Sıcaklık 78, 64, 85 vb. 5. # Kardeş -2, 3-5, Not A, B, C vb. DERS I - 22/63

12 Veriler Nasıl Ölçülür? 1. Nominal Ölçek Kategoriler Örnek., Erkek-Dişi Adet 2. Ordinal Ölçek Katagoriler Sıra Belirtilmesi Örnek., Fazla-Az Adet 3. Aralık Ölçeği Eşit Aralıklar Gerçek Sıfır Olmadan e.g., Degrees Celsius Ölçüm 4. Ratio Scale Eşit Aralıklar Gerçek Anlamlı Oranlar e.g., cm olarak boy DERS I - 23/63 İstatistiksel Araştırma Adımları 1. Amacın Belirlenmesi 2. Anket Dizaynı 3. Örnek Dizaynı Seçimi Örnek Tipi Örnek Hacmi 4. Veri Toplanması (Alan Çalışması) 5. Verilerin Hazırlanması Hazırlama Kodlama 6. Veri Analizi 7. Sonuçların Yorumu 8. Raporlama DERS I - 24/63

13 VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ DERS I - 25/63 Tek bir etiketle tanımlanabilen verilere kalitatif veri denir. Örnek: Televizyon kanalları, araba markaları Verilerin Organizasyonu VERİ Üzerinde dört işlem yapılabilen, sayısal verilere kantitatif veriler denir. Örnek: Boy, Kilo, Notlar Kalitatif Veriler Kantitatif Veriler Tablo Metotları 1.Frekans Dağ. 2.Relatif Fr.Dağ. Grafik Metotları 3.Çubuk gr. 4.Daire gr. 5.Çizgi gr. Tablo Metotları Grafik Metotları 6.Frekans Dağ. 9.Histogram 7.Rel.Fr.Dağ. 1.Fr.Poligonu 11.Gövde-Yaprak 8. Küm.Rel.Fr.Dağ. gösterimi DERS I - 26/63

14 İstatistiksel verileri anlamlı hale getirmenin 5 ayrı yolu: 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme 4. Verileri değerlendirerek istatistiksel ölçüler bulma 5. Bu yöntemlerde birkaçını birlikte uygulama DERS I - 27/63 Gövde-Yaprak Gösterimi Her Gözlem Gövde ve Yaprak Değerlerine Ayrıştırılır Gövde Değeri Sınıfı Belirler Yaprak Değeri Frekansı Belirler (Adet) X i DERS I - 28/63

15 Frekans Dağılımı Tablosu Ham Veriler: 24, 26, 24, 21, 27, 27, 3, 41, 32, 38 Sınıf Frekans 15 ve < ve < ve < 45 2 DERS I - 29/63 Frekans Dağılımı Tablosunun Adımları 1.Aralığın Belirlenmesi 2.Sınıf Sayısının Seçilmesi Genelde 5 & 15 (hariç) aralığında 3.Sınıf Aralıklarının Hesaplanması (Genişlik) 4.Sınıf Sınırlarının Belirlenmesi (Limitler) 5.Sınıf Orta Noktalarının Belirlenmesi 6.Gözlemlerin Sayılması, Sınıflara İşlenmesi DERS I - 3/63

16 Frekans Dağılımı Tablosu Örneği Ham Veriler 24, 26, 24, 21, 27, 27, 3, 41, 32, 38 Sınıf Orta Nokta Frekans Genişlik 15 ve < ve < ve < Sınırlar (Üst + Alt Sınırlar) / 2 DERS I - 31/63 Bağıl Frekans & % Yüzde Dağılımı Tabloları Bağıl Frekans Dağılımı Sınıf oran 15 ve < ve < ve < 45.2 Yüzde Dağılımı Sınıf % 15 but < but < but < DERS I - 32/63

17 SERİLERİN GRAFİKLE GÖSTERİLMESİ DERS I - 33/63 İstatistiksel Verileri Tasnif Etme Çizgi grafiği Frekans Puan DERS I - 34/63

18 İstatistiksel Verileri Tasnif Etme Çubuk Grafik Frekans Puan DERS I - 35/63 İstatistiksel Verileri Tasnif Etme Çubuk Grafik Çözülen net soru sayısı TÜRKÇE SOSYAL MATEMATİK FEN Yıllar DERS I - 36/63

19 Histogram Frekans Bağıl Frekans Frekans Yüzde Adet Alt Sınır Sınıf Frek. 15 (hariç)< (hariç) < (hariç) < 45 2 Çubuklar temas halinde DERS I - 37/63 Pasta Diyagramı 1. Toplam miktarın kategorilere dağılışını gösterir 2. Bağıl farkları göstermek için kullanışlı 3. Açı Büyüklüğü (36 )(%) Ekonomi. 1% 36 (36 ) (1%) = 36 Branşlar Yönetim. 25% Muhas. 65% DERS I - 38/63

20 İstatistiksel Verileri Tasnif Etme Pasta grafiği Genel lise Meslek lisesi 36% 64% Pasta grafiği, bir bütünün parçalarını karşılaştırmada kullanılır DERS I - 39/63 Frekans Poligonu Frekans Bağıl Frekans Yüzde Adet Fiktif Sınıf Orta nokta Sınıf Frek. 15 (hariç) < (hariç) < (hariç) < 45 2 DERS I - 4/63

21 Çift Değişkenli Sayısal Verilerin Grafik Gösterimi 1. İkili Diyagram Birarada çalışılan iki farklı şans değişkeninin oluşturduğu (X i, Y i ) noktalarını gösterir 2. Zaman Serisi Plotu Sayısal veri serilerinin zamana karşı nasıl bir değişim gösterdiğini sergiler DERS I - 41/63 İkili Diagram (X i, Y i ) çiftlerinin oluşturduğu noktalar Y X DERS I - 42/63

22 Zaman Serisi Plotu Satışlar Yıl DERS I - 43/63 Çubuk Diyagramı Kategorik Değişkenler için Yatay Çubuklar 1/2 Çubuk Genişliği Branş Yön. Ekon. Muh. Çubuk uzunluğu frekansı veya % yi gösterir Eşit çubuk genişlikleri Sıfır Noktası Frekans Yüzde de kullanılabilir DERS I - 44/63

23 Kontenjans Tablosu Örneği Yerleşim: Cinsiyet: C C O O C C O O C O E E K K E E K E E K (C=Kampüste, O=Kampüs Dışı; E=Erkek, K=Kadın) Cinsiyet Yerleşim Erkek Kadın Total Kampüste 5 5 Kampüs Dışı Total DERS I - 45/63 Simetrik Dağılım A.O = Med = Mod Sağa çarpık dağılım A.O > Med > Mod Sola çarpık dağılım A.O < Med < Mod İki modlu simetrik dağılım Modu olmayan dağılım Tekdüzen dağılım DERS I - 46/63

24 Verilerin Sunumundaki Hatalar 1. Gereksiz Tabloların Kullanımı 2. Verilerin Karşılaştırılmasında Temelde Uyumsuzluk 3. Dikey Eksenin Sıkıştırılması 4. Dikey Eksende Sıfır Noktasının Bulunmayışı DERS I - 47/63 Doğru Grafik Seçme AB Ülkelerinde Genel Lise Meslek Lisesi Oranları Genel Lise Meslek Lisesi 35% % Genel Lise Meslek Lisesi İkisi de olabilir. Birincisi daha uygun DERS I - 48/63

25 Doğru Grafik Seçme Ülkelere Göre Eğitim Yaşı 1 8 6,5 8,3 9,4 4,6 6, Dünya Avrupa 15'ler Doğu Avrupa 4,6 Türkiye 9,4 8,3 Dünya Avrupa 15'ler Doğu Avrupa Türkiye Doğru Yanlış DERS I - 49/63 Kötü Sunum Minimum Maaş 196: $1. 197: $ : $ : $3.8 4 İyi Sunum Minimum Maaş $ DERS I - 5/63

26 Temelde Uyumsuzluk Kötü Sunum Sınıflardaki A lar Frek FR SO JR SR İyi Sunum Sınıflardaki A lar % 3% 2% 1% % FR SO JR SR DERS I - 51/63 Dikey Eksenin Sıkıştırılması Kötü Sunum İyi Sunum 2 $ Mevsimlik Satışlar 5 $ Mevsimlik Satışlar 1 25 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 DERS I - 52/63

27 Dikey Eksende Sıfır Noktası Bulunmaması Kötü Sunum Aylık Satışlar $ J M M J S N İyi Sunum Aylık Satışlar $ J M M J S N DERS I - 53/63 Örnek1 - Kalitatif Veriler 15 kişiye en çok seyrettikleri televizyon kanalları sorulmuş ve aşağıdaki cevaplar alınmıştır: KanalD, Star, KanalD, ATV, ShowTV, KanalD, ATV, Star, ATV, ATV, KanalD, ShowTV, ShowTV, ATV, ATV Bu veriler kantitatif verilerdir. Verileri kullanarak frekans dağılımını oluşturalım. DERS I - 54/63

28 ÇÖZÜM KanalD, Star, KanalD, ATV, ShowTV, KanalD, ATV, Star, ATV, ATV, KanalD, ShowTV, ShowTV, ATV, ATV Her kanalın kaç kere tercih edildiği o kanala ait frekansı verir. Herbir kanalın tercih sayısının toplam içindeki payı, relatif frekansı verir. Kanal frekans Relatif frekans KanalD 4 4/15=.27 ShowTV 3 3/15=.2 Star 2 2/15=.13 ATV 6 6/15=.4 Toplam DERS I - 55/63 Frekanslar İçin Çubuk Grafiği KanalD ShowTV Star ATV Relatif Frekanslar İçin Çubuk Grafiği Kanal frekans Relatif frekans KanalD 4 4/15=.27 ShowTV 3 3/15=.2 Star 2 2/15=.13 ATV 6 6/15=.4 Toplam KanalD ShowTV Star ATV DERS I - 56/63

29 Daire Grafiği: ATV 4% KanalD 27% Star 13% ShowTV 2% DERS I - 57/63 Örnek2 Kantitatif Veriler Sınıftaki 2 erkeğin ağırlıklarını ele alalım: 8, 7, 85, 9, 65, 7, 85, 73, 82, 78, 75, 77, 82, 71, 8, 76, 74, 72, 75, 8 Kantitatif verilerde frekans dağılımını oluşturabilmek için verileri sınıflara bölmek gerekir. istenilen sayıda sınıf alınabilir fakat genelde en az 5, en çok 18 sınıf alınır. 5 sınıftan daha azı bize örnek hakkında bilgi vermez. 18 taneden fazla sınıfın ise görsel olarak algılanması zordur. Sınıflar oluşturulurken herbir verinin sadece tek bir sınıfa düşmesine dikkat edilmelidir. Her sınıf aralığı eşit olmalıdır. Şimdi sınıf genişliğini hesaplayalım. Bu veriler içinde en düşük değer 65, en yüksek değer 9 dır. 5 sınıf oluşturmak istersek sınıf genişliği: (9-65)/5=5 olacaktır. DERS I - 58/63

30 ÇÖZÜM 8, 7, 85, 9, 65, 7, 85, 73, 82, 78, 75, 77, 82, 71, 8, 76, 74, 72, 75, 8 Şimdi en küçük değer olan 65 ten başlayarak 5 birim genişliğinde sınıfları oluşturalım: sınıflar frekans Relatif fr. Kümülatif fr. Kümülatif rel. fr. 65 ten küçük ve eşit 7 dahil 3 3/2= ten küçük 75 dahil 6 6/2= ten küçük 8 dahil 6 6/2= ten küçük 85 dahil 4 4/2= ten küçük 9 dahil 1 1/2= Toplam 2 1. DERS I - 59/63 Frekanslar İçin Histogram Kümülatif fr Relatif fr. için Histogram Kümülatif rel. fr Kümülatif rel. fr. DERS I - 6/63

31 Örnek 3: İkili Veriler Bir otomobil acentasının 4 yıllık otomobil satışları bir tablo şeklinde gösterilmiştir: Ford Opel BMW Toplam DERS I - 61/63 Çizgi Grafiği FORD Satışları Satışlar Ford Opel BMW Toplam Satışlar Yıllar Yıllar DERS I - 62/63

32 Ford Opel BMW Toplam BMW Ford %31 Ford %38 Opel BMW Opel %31 Hazırlayan: Öğr. Grv. Dr. Mehmet AKSARAYLI DEÜ İİBF EKONOMETRİ BÖLÜMÜ ÖĞRETİM ÜYESİ DERS I - 63/63

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

2. 3. BÖLÜM 1: GİRİŞ. Bölümün Amaçları. İstatistik: Karar Verme Yaklaşımı. İstatistik nedir? TEMEL İSTATİSTİK YÖNTEMLER. İstatistik Sözcüğünün Kökeni

2. 3. BÖLÜM 1: GİRİŞ. Bölümün Amaçları. İstatistik: Karar Verme Yaklaşımı. İstatistik nedir? TEMEL İSTATİSTİK YÖNTEMLER. İstatistik Sözcüğünün Kökeni www.mehmetaksarayli.com 1 TEMEL İSTATİSTİK YÖNTEMLER Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli aksarayli@deu.edu.tr KAVRAM VERİ YAPILARI VERİ TOPLAMA BÖLÜM 1: GİRİŞ TANIMLAYICI

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

İstatistik Nedir? Tanım 1:

İstatistik Nedir? Tanım 1: İSTATİSTİK 1 İstatistik Nedir? Tanım 1: İstatistik bilimi, verilerin toplanması, düzenlenmesi, özetlenmesi, takdimi, analizi ve bu analizler aracılığıyla elde edilen sonuçların yorumlanması ve bir karara

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Kavramlar ve Sayısal Bilginin Özetlenmesi

Kavramlar ve Sayısal Bilginin Özetlenmesi İSTATİSTİK 1 Kavramlar ve Sayısal Bilginin Özetlenmesi İstatistik nedir? Tanımlar İş Hayatındaki Önemi Sayısal Bilginin Özetlenmesi Anakütle Örneklem Parametre-Örnek İstatistiği Değişken-Şans Değişkeni

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

İstatistik 20.02.2013. İstatistik Nedir? İstatistik Nedir? İstatistik Nedir?

İstatistik 20.02.2013. İstatistik Nedir? İstatistik Nedir? İstatistik Nedir? yanlış ellere düştüğünde şu sekil çıkarımlara yol açabilecek bilim: A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik - bir uçakta bir bomba bulunması ihtimali milyonda birse, iki bomba birden bulunması

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR 1. ve 2. Hafta İstatistik Nedir? Bir tanım olarak istatistik; belirsizlik altında bir konuda karar verebilmek amacıyla, ilgilenilen konuya ilişkin verilerin toplanması, düzenlenmesi,

Detaylı

İSTATİSTİK I. İstatistik Nedir? TANIM1:

İSTATİSTİK I. İstatistik Nedir? TANIM1: İSTATİSTİK I 1 İstatistik Nedir? TANIM1: Bir anakütleyi tanımlamak için ilgili anakütleden belirli yöntemlerle elde edilen örnek verilerinin analizine dayanarak anakütle ile ilgili tahminler yapan ve sonuç

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

ĐSTATĐSTĐK. Okan ERYĐĞĐT

ĐSTATĐSTĐK. Okan ERYĐĞĐT ĐSTATĐSTĐK Okan ERYĐĞĐT Araştırmacı, istatistik yöntemlere daha işin başında başvurmalıdır, sonunda değil..! A. Bradford Hill, 1930 ĐSTATĐSTĐĞĐN AMAÇLARI Bilimsel araştırmalarda, araştırmacıya kullanılabilir

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi BBY 606 Araştırma Yöntemleri 1 SPSS in açılması 2 SPSS programı 3 Veri giriş ekranı 4 Değişken giriş ekranı 5 Veri toplama Kayıtlardan yararlanarak Örneğin

Detaylı

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD.

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD. TABLO ve GRAFİKLER Epidemiyoloji Konferansları Serisi 14.05.2015 Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Neden gerekli? Tablo ve grafikler araştırma sonucunda elde edilen verilerin

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler Mühendislikte İstatistik Yöntemler Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt, Beyhan Oğuz, Birsen Yayınevi Mühendislikte İstatistik Metodlar, Erdem KOÇ,ÇÜ, Müh.Mim.Fak.

Detaylı

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri**

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **** ARAŞTIRMA YÖNTEMLERİNE GİRİŞ ** 1. Yarıyıl** **Hafta 11** Hazırlayan: **Dr. Özlem İnanç, Işık Üniversitesi-İstanbul** Giriş Bu haftaki dersimizde

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr.

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr. TESOY-Hafta-1 ve Değerlendirme BÖLÜM 1-2 ve Değerlendirmenin Önemi ve Temel Kavramları Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Eğitimde ölçme ve değerlendirme neden önemlidir? Eğitim politikalarına

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI Dersin Kodu Kredisi Dersin Niteliği İŞL 601 Pazarlama Teorileri 3 Zorunlu İŞL 603 Finansman Teorisi 3 Zorunlu İŞL 605 Uluslararası

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

VERİLERİN SINIFLANDIRILMASI

VERİLERİN SINIFLANDIRILMASI VERİLERİN SINIFLANDIRILMASI Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr NİTEL VE NİCEL VERİLERİN SINIFLANDIRMASI Sınıflandırma

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ 1 BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ Veri seti; satırlarında gözlem birimleri, sütunlarında ise değişkenler bulunan iki boyutlu bir matristir. Satır ve sütunların kesişim bölgelerine 'hücre

Detaylı

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir. İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

BÖLÜM I:TEMEL KAVRAMLAR

BÖLÜM I:TEMEL KAVRAMLAR İÇİNDEKİLER Önsöz. III BÖLÜM I:TEMEL KAVRAMLAR 13 Eğitim.. 13 Eğitim Türleri ve Sınıflandırılması. 17 Formal (Resmi, Biçimsel) Eğitim.... 18 İnformal (Resmi Olmayan, Biçimsel Olamayan).. 20 Davranış..

Detaylı

MehmetAli CANDAN. İstatistik ve Analiz Yöntemleri. Uygulamalı Eğitimi. Mali Müşavir, Eğitmen İşletme Bilim Uzmanı

MehmetAli CANDAN. İstatistik ve Analiz Yöntemleri. Uygulamalı Eğitimi. Mali Müşavir, Eğitmen İşletme Bilim Uzmanı İstatistik ve Analiz Yöntemleri Uygulamalı Eğitimi MehmetAli CANDAN Mali Müşavir, Eğitmen İşletme Bilim Uzmanı İstatistik Nedir? Araştırma Nedir? Ölçek Türleri ve Ölçek Belirleme Verileri Analize Hazırlama

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ İstatistiK Yrd.Doç.Dr. Levent TERLEMEZ istatistik birimlerin ya da bireylerin sayılabilir, tartılabilir ve ölçülebilir özellikleri ile ilgili bilgilerin yani verilerin toplanması toplanan verilerin açık

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler.

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler. GRAFİKLER Verilerin matematiksel temellere sahip şekiller olarak gösterilmelerine grafik adı verilir. Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Grafikler gözlem sonuçlarının

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

BEDEN EĞİTİMİ VE SPOR DERSLERİNDE ALTERNATİF ÖLÇME-DEĞERLENDİRME YÖNTEMLERİ KULLANILMASINA İLİŞKİN ÖĞRETMEN GÖRÜŞLERİNİN İNCELENMESİ

BEDEN EĞİTİMİ VE SPOR DERSLERİNDE ALTERNATİF ÖLÇME-DEĞERLENDİRME YÖNTEMLERİ KULLANILMASINA İLİŞKİN ÖĞRETMEN GÖRÜŞLERİNİN İNCELENMESİ BEDEN EĞİTİMİ VE SPOR DERSLERİNDE ALTERNATİF ÖLÇME-DEĞERLENDİRME YÖNTEMLERİ KULLANILMASINA İLİŞKİN ÖĞRETMEN GÖRÜŞLERİNİN İNCELENMESİ Onur ÖZKOPARAN MEB Gümüşhacıköy Anadolu Lisesi, Amasya ozkoparanonur@hotmail.com

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

SPSS İLE VERİ ANALİZİ

SPSS İLE VERİ ANALİZİ SAKARYA ÜNİVERSİTESİ EKONOMETRİ SEMİNERİ 2014 SPSS İLE VERİ ANALİZİ YRD. DOÇ. DR. SEMA ULUTÜRK AKMAN ARAŞ. GÖR. HAKAN BEKTAŞ İstatistik kelimesi günlük yaşamda sıkça kullandığımız ortalama gelir, suç oranı,

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

OLASILIK TEORİSİ VE İSTATİSTİK

OLASILIK TEORİSİ VE İSTATİSTİK OLASILIK TEORİSİ VE İSTATİSTİK İstatistik: Derslerimiz içinde bu sözcük iki anlamda kullanılacaktır. İlki ve en yaygın kullanılan biçimi rakamla elde edilen bilgilerin belli kuralarla anlaşılır ve yorumlanabilir

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı