AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER"

Transkript

1 TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63

2 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması ve sunumu Grafikler, tablolar 3. Veri karakteri tanıma Ortalama Veri analizi T/Maker Co. Neden Karar Verme T/Maker Co. DERS I - 3/63 İstatistik nedir? İstatistik; örnek verilerden hareket ederek populasyon (ana kütle istatistik kütlesi) hakkında yorumlama, genelleme ve tahminleme yapma bilimidir. DERS I - 4/63

3 İnsanlar İstatistiği Ne zamandır Kullanıyorlar? zar atma, şans oyunları Laplace Gauss 17.Yüzy zyıl l ortaları, istatistik ilk kez ders kitaplarına girdi DERS I - 5/63 Uygulama Alanları Muhasebe Denetim Maliyet Yönetim Çalışanları tanıma Kalite iyileştirme Finansman Finansal Trendler Öngörümleme Pazarlama Tüketici tercihleri Pazarlama Etkileri DERS I - 6/63

4 Yönetim Problemlerine İstatistiksel Yaklaşım SORUN Yönetim formülasyonu İstatistiksel formülasyon UYGULAMA Yönetimsel yorum Yönetimsel çözüm İstatistiksel yorum İstatistiksel analiz İstatistiksel çözüm DERS I - 7/63 Kalitenin Arttırılmasında İstatistiğin Önemi Yönetim Felsefesi İstatistiksel Metodlar Davranış Araçları DERS I - 8/63

5 Niçin Veri Toplanır? 1. Araştırma için Bilgi Girişi Temin Edilmesi 2. Performansın Ölçülmesi 3. Karar Alternatiflerinin Formülasyonu 4. Merakın Giderilmesi DERS I - 9/63 İstatistiksel Bilgisayar Paketleri Tipik Programlar SAS SPSS MINITAB Excel DERS I - 1/63

6 İstatistiksel Yöntemler İstatistiksel Yöntemler Tanımlayıcı İstatistikler Yorumlayıcı İstatistikler DERS I - 11/63 Tanımlayıcı İstatistikler 1. İçerik Verilerin Toplanması Verilerin Sunuşu Veri Karakterinin Tanımlanması 2. Amaç Verilerin Tarifi 5 25 $ Q1 Q2 Q3 X = 3.5 S 2 = 113 Q4 DERS I - 12/63

7 Açıklayıcı İstatistikler 1. İçerik Tahminleme Hipotez Testi Populasyon? 2. Amaç Populasyon Karakteristiği hakkında karar verilmesi DERS I - 13/63 Anahtar Terimler 1.Populasyon (Evren) İlgilenilen tüm parçalar 2.Örnek Populasyonun Bir bölümü 3.Parametre Populasyonun Özet Ölçüleri 4.Örnek İstatistiği Örneğin Özet Ölçüleri Populasyon - Parametre Örnek - Örnek istatistiği DERS I - 14/63

8 Değişken Her gözleme g göre g farklı değerler erler alabilen objelere, özelliklere ya da durumlara denir Değişkenler nicel ya da nitel olabilir. DERS I - 15/63 Değişken Değişkenleri Kesikli Değişkenler Sürekli Değişkenleri DERS I - 16/63

9 Kesikli Değişkenler 1. Sayısal bir değerle ifade edilen bir olay 2 para atımındaki tura sayısı, 1 yada 2 tura gözlenmesi 2. Kesikli şans değişkeni ; Tam sayılar: (, 1, 2, 3 vb.) Sayarak elde edilmiş sayılar DERS I - 17/63 Kesikli Şans Değişkeni Örnekleri Deney Şans Değişkeni Mümkün Değerler 1 Satış araması yapmak Satış sayısı, 1, 2,..., 1 7 radyoyu muayene etmek Kusurlu sayısı, 1, 2,..., 7 33 soruya cevap vermek Doğru sayısı, 1, 2,..., 33 11: ile 13: arasında gişedeki araba sayısı Gelen araba sayısı, 1, 2,..., DERS I - 18/63

10 Sürekli Değişkenler Sürekli bir aralıktaki tüm değerleri alabilen değişkenlerdir. DERS I - 19/63 Veri Tipleri Veriler Sayısal (Kantitatif) Kategorik (Kalitative) Kesikli Sürekli DERS I - 2/63

11 Veri Tipi Örnekleri 1. Sayısal Kesikli Şu Anda Kaç Adet Dergiye Abonesiniz?(Sayı) Sürekli Boyunuz Ne Kadar? (Cm) 2. Kategorik Hisse Senedine yatırım yapar mısınız? Evet Hayır DERS I - 21/63 Kategorik mi? Sayısal mı (Kesikli veya Sürekli)? Hangi Ölçekte? 1. Cinsiyet Erkek, Dişi 2. Ağırlık 123kg, 14.2g vb. 3. Otomobil Hızı 78, 64, 45 vb. 4. Sıcaklık 78, 64, 85 vb. 5. # Kardeş -2, 3-5, Not A, B, C vb. DERS I - 22/63

12 Veriler Nasıl Ölçülür? 1. Nominal Ölçek Kategoriler Örnek., Erkek-Dişi Adet 2. Ordinal Ölçek Katagoriler Sıra Belirtilmesi Örnek., Fazla-Az Adet 3. Aralık Ölçeği Eşit Aralıklar Gerçek Sıfır Olmadan e.g., Degrees Celsius Ölçüm 4. Ratio Scale Eşit Aralıklar Gerçek Anlamlı Oranlar e.g., cm olarak boy DERS I - 23/63 İstatistiksel Araştırma Adımları 1. Amacın Belirlenmesi 2. Anket Dizaynı 3. Örnek Dizaynı Seçimi Örnek Tipi Örnek Hacmi 4. Veri Toplanması (Alan Çalışması) 5. Verilerin Hazırlanması Hazırlama Kodlama 6. Veri Analizi 7. Sonuçların Yorumu 8. Raporlama DERS I - 24/63

13 VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ DERS I - 25/63 Tek bir etiketle tanımlanabilen verilere kalitatif veri denir. Örnek: Televizyon kanalları, araba markaları Verilerin Organizasyonu VERİ Üzerinde dört işlem yapılabilen, sayısal verilere kantitatif veriler denir. Örnek: Boy, Kilo, Notlar Kalitatif Veriler Kantitatif Veriler Tablo Metotları 1.Frekans Dağ. 2.Relatif Fr.Dağ. Grafik Metotları 3.Çubuk gr. 4.Daire gr. 5.Çizgi gr. Tablo Metotları Grafik Metotları 6.Frekans Dağ. 9.Histogram 7.Rel.Fr.Dağ. 1.Fr.Poligonu 11.Gövde-Yaprak 8. Küm.Rel.Fr.Dağ. gösterimi DERS I - 26/63

14 İstatistiksel verileri anlamlı hale getirmenin 5 ayrı yolu: 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme 4. Verileri değerlendirerek istatistiksel ölçüler bulma 5. Bu yöntemlerde birkaçını birlikte uygulama DERS I - 27/63 Gövde-Yaprak Gösterimi Her Gözlem Gövde ve Yaprak Değerlerine Ayrıştırılır Gövde Değeri Sınıfı Belirler Yaprak Değeri Frekansı Belirler (Adet) X i DERS I - 28/63

15 Frekans Dağılımı Tablosu Ham Veriler: 24, 26, 24, 21, 27, 27, 3, 41, 32, 38 Sınıf Frekans 15 ve < ve < ve < 45 2 DERS I - 29/63 Frekans Dağılımı Tablosunun Adımları 1.Aralığın Belirlenmesi 2.Sınıf Sayısının Seçilmesi Genelde 5 & 15 (hariç) aralığında 3.Sınıf Aralıklarının Hesaplanması (Genişlik) 4.Sınıf Sınırlarının Belirlenmesi (Limitler) 5.Sınıf Orta Noktalarının Belirlenmesi 6.Gözlemlerin Sayılması, Sınıflara İşlenmesi DERS I - 3/63

16 Frekans Dağılımı Tablosu Örneği Ham Veriler 24, 26, 24, 21, 27, 27, 3, 41, 32, 38 Sınıf Orta Nokta Frekans Genişlik 15 ve < ve < ve < Sınırlar (Üst + Alt Sınırlar) / 2 DERS I - 31/63 Bağıl Frekans & % Yüzde Dağılımı Tabloları Bağıl Frekans Dağılımı Sınıf oran 15 ve < ve < ve < 45.2 Yüzde Dağılımı Sınıf % 15 but < but < but < DERS I - 32/63

17 SERİLERİN GRAFİKLE GÖSTERİLMESİ DERS I - 33/63 İstatistiksel Verileri Tasnif Etme Çizgi grafiği Frekans Puan DERS I - 34/63

18 İstatistiksel Verileri Tasnif Etme Çubuk Grafik Frekans Puan DERS I - 35/63 İstatistiksel Verileri Tasnif Etme Çubuk Grafik Çözülen net soru sayısı TÜRKÇE SOSYAL MATEMATİK FEN Yıllar DERS I - 36/63

19 Histogram Frekans Bağıl Frekans Frekans Yüzde Adet Alt Sınır Sınıf Frek. 15 (hariç)< (hariç) < (hariç) < 45 2 Çubuklar temas halinde DERS I - 37/63 Pasta Diyagramı 1. Toplam miktarın kategorilere dağılışını gösterir 2. Bağıl farkları göstermek için kullanışlı 3. Açı Büyüklüğü (36 )(%) Ekonomi. 1% 36 (36 ) (1%) = 36 Branşlar Yönetim. 25% Muhas. 65% DERS I - 38/63

20 İstatistiksel Verileri Tasnif Etme Pasta grafiği Genel lise Meslek lisesi 36% 64% Pasta grafiği, bir bütünün parçalarını karşılaştırmada kullanılır DERS I - 39/63 Frekans Poligonu Frekans Bağıl Frekans Yüzde Adet Fiktif Sınıf Orta nokta Sınıf Frek. 15 (hariç) < (hariç) < (hariç) < 45 2 DERS I - 4/63

21 Çift Değişkenli Sayısal Verilerin Grafik Gösterimi 1. İkili Diyagram Birarada çalışılan iki farklı şans değişkeninin oluşturduğu (X i, Y i ) noktalarını gösterir 2. Zaman Serisi Plotu Sayısal veri serilerinin zamana karşı nasıl bir değişim gösterdiğini sergiler DERS I - 41/63 İkili Diagram (X i, Y i ) çiftlerinin oluşturduğu noktalar Y X DERS I - 42/63

22 Zaman Serisi Plotu Satışlar Yıl DERS I - 43/63 Çubuk Diyagramı Kategorik Değişkenler için Yatay Çubuklar 1/2 Çubuk Genişliği Branş Yön. Ekon. Muh. Çubuk uzunluğu frekansı veya % yi gösterir Eşit çubuk genişlikleri Sıfır Noktası Frekans Yüzde de kullanılabilir DERS I - 44/63

23 Kontenjans Tablosu Örneği Yerleşim: Cinsiyet: C C O O C C O O C O E E K K E E K E E K (C=Kampüste, O=Kampüs Dışı; E=Erkek, K=Kadın) Cinsiyet Yerleşim Erkek Kadın Total Kampüste 5 5 Kampüs Dışı Total DERS I - 45/63 Simetrik Dağılım A.O = Med = Mod Sağa çarpık dağılım A.O > Med > Mod Sola çarpık dağılım A.O < Med < Mod İki modlu simetrik dağılım Modu olmayan dağılım Tekdüzen dağılım DERS I - 46/63

24 Verilerin Sunumundaki Hatalar 1. Gereksiz Tabloların Kullanımı 2. Verilerin Karşılaştırılmasında Temelde Uyumsuzluk 3. Dikey Eksenin Sıkıştırılması 4. Dikey Eksende Sıfır Noktasının Bulunmayışı DERS I - 47/63 Doğru Grafik Seçme AB Ülkelerinde Genel Lise Meslek Lisesi Oranları Genel Lise Meslek Lisesi 35% % Genel Lise Meslek Lisesi İkisi de olabilir. Birincisi daha uygun DERS I - 48/63

25 Doğru Grafik Seçme Ülkelere Göre Eğitim Yaşı 1 8 6,5 8,3 9,4 4,6 6, Dünya Avrupa 15'ler Doğu Avrupa 4,6 Türkiye 9,4 8,3 Dünya Avrupa 15'ler Doğu Avrupa Türkiye Doğru Yanlış DERS I - 49/63 Kötü Sunum Minimum Maaş 196: $1. 197: $ : $ : $3.8 4 İyi Sunum Minimum Maaş $ DERS I - 5/63

26 Temelde Uyumsuzluk Kötü Sunum Sınıflardaki A lar Frek FR SO JR SR İyi Sunum Sınıflardaki A lar % 3% 2% 1% % FR SO JR SR DERS I - 51/63 Dikey Eksenin Sıkıştırılması Kötü Sunum İyi Sunum 2 $ Mevsimlik Satışlar 5 $ Mevsimlik Satışlar 1 25 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 DERS I - 52/63

27 Dikey Eksende Sıfır Noktası Bulunmaması Kötü Sunum Aylık Satışlar $ J M M J S N İyi Sunum Aylık Satışlar $ J M M J S N DERS I - 53/63 Örnek1 - Kalitatif Veriler 15 kişiye en çok seyrettikleri televizyon kanalları sorulmuş ve aşağıdaki cevaplar alınmıştır: KanalD, Star, KanalD, ATV, ShowTV, KanalD, ATV, Star, ATV, ATV, KanalD, ShowTV, ShowTV, ATV, ATV Bu veriler kantitatif verilerdir. Verileri kullanarak frekans dağılımını oluşturalım. DERS I - 54/63

28 ÇÖZÜM KanalD, Star, KanalD, ATV, ShowTV, KanalD, ATV, Star, ATV, ATV, KanalD, ShowTV, ShowTV, ATV, ATV Her kanalın kaç kere tercih edildiği o kanala ait frekansı verir. Herbir kanalın tercih sayısının toplam içindeki payı, relatif frekansı verir. Kanal frekans Relatif frekans KanalD 4 4/15=.27 ShowTV 3 3/15=.2 Star 2 2/15=.13 ATV 6 6/15=.4 Toplam DERS I - 55/63 Frekanslar İçin Çubuk Grafiği KanalD ShowTV Star ATV Relatif Frekanslar İçin Çubuk Grafiği Kanal frekans Relatif frekans KanalD 4 4/15=.27 ShowTV 3 3/15=.2 Star 2 2/15=.13 ATV 6 6/15=.4 Toplam KanalD ShowTV Star ATV DERS I - 56/63

29 Daire Grafiği: ATV 4% KanalD 27% Star 13% ShowTV 2% DERS I - 57/63 Örnek2 Kantitatif Veriler Sınıftaki 2 erkeğin ağırlıklarını ele alalım: 8, 7, 85, 9, 65, 7, 85, 73, 82, 78, 75, 77, 82, 71, 8, 76, 74, 72, 75, 8 Kantitatif verilerde frekans dağılımını oluşturabilmek için verileri sınıflara bölmek gerekir. istenilen sayıda sınıf alınabilir fakat genelde en az 5, en çok 18 sınıf alınır. 5 sınıftan daha azı bize örnek hakkında bilgi vermez. 18 taneden fazla sınıfın ise görsel olarak algılanması zordur. Sınıflar oluşturulurken herbir verinin sadece tek bir sınıfa düşmesine dikkat edilmelidir. Her sınıf aralığı eşit olmalıdır. Şimdi sınıf genişliğini hesaplayalım. Bu veriler içinde en düşük değer 65, en yüksek değer 9 dır. 5 sınıf oluşturmak istersek sınıf genişliği: (9-65)/5=5 olacaktır. DERS I - 58/63

30 ÇÖZÜM 8, 7, 85, 9, 65, 7, 85, 73, 82, 78, 75, 77, 82, 71, 8, 76, 74, 72, 75, 8 Şimdi en küçük değer olan 65 ten başlayarak 5 birim genişliğinde sınıfları oluşturalım: sınıflar frekans Relatif fr. Kümülatif fr. Kümülatif rel. fr. 65 ten küçük ve eşit 7 dahil 3 3/2= ten küçük 75 dahil 6 6/2= ten küçük 8 dahil 6 6/2= ten küçük 85 dahil 4 4/2= ten küçük 9 dahil 1 1/2= Toplam 2 1. DERS I - 59/63 Frekanslar İçin Histogram Kümülatif fr Relatif fr. için Histogram Kümülatif rel. fr Kümülatif rel. fr. DERS I - 6/63

31 Örnek 3: İkili Veriler Bir otomobil acentasının 4 yıllık otomobil satışları bir tablo şeklinde gösterilmiştir: Ford Opel BMW Toplam DERS I - 61/63 Çizgi Grafiği FORD Satışları Satışlar Ford Opel BMW Toplam Satışlar Yıllar Yıllar DERS I - 62/63

32 Ford Opel BMW Toplam BMW Ford %31 Ford %38 Opel BMW Opel %31 Hazırlayan: Öğr. Grv. Dr. Mehmet AKSARAYLI DEÜ İİBF EKONOMETRİ BÖLÜMÜ ÖĞRETİM ÜYESİ DERS I - 63/63

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

2. 3. BÖLÜM 1: GİRİŞ. Bölümün Amaçları. İstatistik: Karar Verme Yaklaşımı. İstatistik nedir? TEMEL İSTATİSTİK YÖNTEMLER. İstatistik Sözcüğünün Kökeni

2. 3. BÖLÜM 1: GİRİŞ. Bölümün Amaçları. İstatistik: Karar Verme Yaklaşımı. İstatistik nedir? TEMEL İSTATİSTİK YÖNTEMLER. İstatistik Sözcüğünün Kökeni www.mehmetaksarayli.com 1 TEMEL İSTATİSTİK YÖNTEMLER Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli aksarayli@deu.edu.tr KAVRAM VERİ YAPILARI VERİ TOPLAMA BÖLÜM 1: GİRİŞ TANIMLAYICI

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

İstatistik Nedir? Tanım 1:

İstatistik Nedir? Tanım 1: İSTATİSTİK 1 İstatistik Nedir? Tanım 1: İstatistik bilimi, verilerin toplanması, düzenlenmesi, özetlenmesi, takdimi, analizi ve bu analizler aracılığıyla elde edilen sonuçların yorumlanması ve bir karara

Detaylı

Kavramlar ve Sayısal Bilginin Özetlenmesi

Kavramlar ve Sayısal Bilginin Özetlenmesi İSTATİSTİK 1 Kavramlar ve Sayısal Bilginin Özetlenmesi İstatistik nedir? Tanımlar İş Hayatındaki Önemi Sayısal Bilginin Özetlenmesi Anakütle Örneklem Parametre-Örnek İstatistiği Değişken-Şans Değişkeni

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

İstatistik 20.02.2013. İstatistik Nedir? İstatistik Nedir? İstatistik Nedir?

İstatistik 20.02.2013. İstatistik Nedir? İstatistik Nedir? İstatistik Nedir? yanlış ellere düştüğünde şu sekil çıkarımlara yol açabilecek bilim: A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik - bir uçakta bir bomba bulunması ihtimali milyonda birse, iki bomba birden bulunması

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR 1. ve 2. Hafta İstatistik Nedir? Bir tanım olarak istatistik; belirsizlik altında bir konuda karar verebilmek amacıyla, ilgilenilen konuya ilişkin verilerin toplanması, düzenlenmesi,

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

ĐSTATĐSTĐK. Okan ERYĐĞĐT

ĐSTATĐSTĐK. Okan ERYĐĞĐT ĐSTATĐSTĐK Okan ERYĐĞĐT Araştırmacı, istatistik yöntemlere daha işin başında başvurmalıdır, sonunda değil..! A. Bradford Hill, 1930 ĐSTATĐSTĐĞĐN AMAÇLARI Bilimsel araştırmalarda, araştırmacıya kullanılabilir

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD.

TABLO ve GRAFİKLER. Epidemiyoloji Konferansları Serisi 14.05.2015. Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Halk Sağlığı AD. TABLO ve GRAFİKLER Epidemiyoloji Konferansları Serisi 14.05.2015 Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Prof. Dr. Bahar GÜÇİZ DOĞAN, HÜTF Neden gerekli? Tablo ve grafikler araştırma sonucunda elde edilen verilerin

Detaylı

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi BBY 606 Araştırma Yöntemleri 1 SPSS in açılması 2 SPSS programı 3 Veri giriş ekranı 4 Değişken giriş ekranı 5 Veri toplama Kayıtlardan yararlanarak Örneğin

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler Mühendislikte İstatistik Yöntemler Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt, Beyhan Oğuz, Birsen Yayınevi Mühendislikte İstatistik Metodlar, Erdem KOÇ,ÇÜ, Müh.Mim.Fak.

Detaylı

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri**

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **** ARAŞTIRMA YÖNTEMLERİNE GİRİŞ ** 1. Yarıyıl** **Hafta 11** Hazırlayan: **Dr. Özlem İnanç, Işık Üniversitesi-İstanbul** Giriş Bu haftaki dersimizde

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr.

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr. TESOY-Hafta-1 ve Değerlendirme BÖLÜM 1-2 ve Değerlendirmenin Önemi ve Temel Kavramları Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Eğitimde ölçme ve değerlendirme neden önemlidir? Eğitim politikalarına

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI Dersin Kodu Kredisi Dersin Niteliği İŞL 601 Pazarlama Teorileri 3 Zorunlu İŞL 603 Finansman Teorisi 3 Zorunlu İŞL 605 Uluslararası

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

SPSS İLE VERİ ANALİZİ

SPSS İLE VERİ ANALİZİ SAKARYA ÜNİVERSİTESİ EKONOMETRİ SEMİNERİ 2014 SPSS İLE VERİ ANALİZİ YRD. DOÇ. DR. SEMA ULUTÜRK AKMAN ARAŞ. GÖR. HAKAN BEKTAŞ İstatistik kelimesi günlük yaşamda sıkça kullandığımız ortalama gelir, suç oranı,

Detaylı

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ 1 BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ Veri seti; satırlarında gözlem birimleri, sütunlarında ise değişkenler bulunan iki boyutlu bir matristir. Satır ve sütunların kesişim bölgelerine 'hücre

Detaylı

OLASILIK TEORİSİ VE İSTATİSTİK

OLASILIK TEORİSİ VE İSTATİSTİK OLASILIK TEORİSİ VE İSTATİSTİK İstatistik: Derslerimiz içinde bu sözcük iki anlamda kullanılacaktır. İlki ve en yaygın kullanılan biçimi rakamla elde edilen bilgilerin belli kuralarla anlaşılır ve yorumlanabilir

Detaylı

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir. İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne

Detaylı

BÖLÜM I:TEMEL KAVRAMLAR

BÖLÜM I:TEMEL KAVRAMLAR İÇİNDEKİLER Önsöz. III BÖLÜM I:TEMEL KAVRAMLAR 13 Eğitim.. 13 Eğitim Türleri ve Sınıflandırılması. 17 Formal (Resmi, Biçimsel) Eğitim.... 18 İnformal (Resmi Olmayan, Biçimsel Olamayan).. 20 Davranış..

Detaylı

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler.

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler. GRAFİKLER Verilerin matematiksel temellere sahip şekiller olarak gösterilmelerine grafik adı verilir. Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Grafikler gözlem sonuçlarının

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ

İstatistiK. Yrd.Doç.Dr. Levent TERLEMEZ İstatistiK Yrd.Doç.Dr. Levent TERLEMEZ istatistik birimlerin ya da bireylerin sayılabilir, tartılabilir ve ölçülebilir özellikleri ile ilgili bilgilerin yani verilerin toplanması toplanan verilerin açık

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 EXCEL DE GRAFİK UYGULAMA GRAFİKLER Grafikler, çok sayıda verinin ve farklı veri serileri arasındaki ilişkinin anlaşılmasını

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR 1 BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR İstatistik öğrenmelerinde sıklıkla karşılaşılacak olan temel bazı kavramlar, eğitim alanına yönelik örnekleriyle birlikte aşağıda açıklanmaktadır. 1.1.

Detaylı

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm 0 2) Sayısal Bölüm 0 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım kurallarını

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

DERS BİLGİLERİ. Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501

DERS BİLGİLERİ. Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501 Müfredat I. Yarıyıl Bilimsel Araştırma Yöntemleri Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501 Kredi AKTS Güz 3 3 6 Dili Seviyesi Yüksek Lisans Türü Zorunlu Amacı Öğrencilerin bilim ve bilim felsefesi konusunda

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm %50 2) Sayısal Bölüm %50 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım

Detaylı