YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI"

Transkript

1 YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Yüksek gerilim tekniğinin gelişiminde olanak sağlayan en önemli etken, bu sayede büyük miktarda enerjinin bir noktadan diğerine ekonomik bir biçimde taşınabilmesidir. Günümüzde yüksek gerilim tekniği yalnızca enerji taşımasıyla sınırlı kalmamış, Fabrikalardaki gazların filtre edilmelerini sağlayan Elektrostatik Çökeltileri (ESP), Elektrostatik Filtre (termik santrallerde baca külleri için yapılan filtreleme) Şehir artıklarının çıkardığı kötü kokuların giderilmesine olanak sağlayan Yüksek Gerilim Ozon Üreteçleri (Su veya hava arıtma kullanımında dezenfektan olarak), Elektrostatik Ayırma, Elektrostatik Boyama, Toz kaplama, Röntgen cihazları, Xerography (elektrostatik baskı, fotokopi makineleri) Elektron mikroskopları gibi elektrik mühendisliği ve biliminin diğer alanlarında da geniş uygulama alanı bulmuştur. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 1

2 YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Elektrik İzolasyon Malzemeleri Günümüz modern teknolojisi yüksek gerilimi yarı iletken malzemelere iyon sağlayıcı olarak, televizyon cihazlarında, osiloskoplarda kullanmaktadır. Görüldüğü üzere yüksek gerilim tekniğindeki gelişmeler yalnız elektrik mühendisliği değil, aynı zamanda diğer endüstri dallarını da yakından ilgilendirmektedir. Fiziksel ve kimyasal olaylar izolasyon malzemelerinin elektriksel özelliklerini belirledikleri için yüksek gerilim tekniğinde önemli rol oynarlar. Yüksek Gerilimlerde çalışan elektriksel cihazlarının üretiminde kullanılan malzemeler başlıca 3 sınıfa ayrılır: İletkenler (bakır, demir, vb. manyetik akıyı ve akımı taşımakta kullanılırlar.) Soğutucular (gaz veya likit halde olurlar, oluşan sıcaklık artışını gidermede kullanılırlar.) Yüksek gerilim ve akımların arzu edilen yönlerde dağıtımına olanak sağlayan izolatörler EEM13414 YÜKSEK GERİLİM TEKNİĞİ 2

3 YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Elektrik İzolasyon Malzemeleri İZOLATÖR: İzolatör yada dielektrik, genel anlamda elektriği iletmeyen (yalıtkan) malzemelere verilen isimdir. Kusursuz bir izolasyon malzemesi yoktur, ancak pratikte elektrik akımını belirli bir değerin altında, çok küçük değerlere sınırlayan malzemeler izolatör olarak adlandırılırlar. İzolasyon malzemelerinin seçimi aşamasında elektriksel olduğu kadar Mekanik, Fiziksel, Isıl ve Kimyasal özellikleri de dikkate alınmalıdır. İyi bir izolasyonda katı, sıvı ve gaz izolatörlerin karışımını bulmak mümkündür (trafo gibi). Aralarında büyük benzerlikler olduğu halde gazların, sıvıların ve katıların izolasyon özelliklerini belirleyen önemli faktörler vardır. Malzeme Dielektrik dayanıklılık (MV/m) Direnç Dm Hava 3 - Bakalit 24 >1 Selüloz kağıt 10 >10^3 Mika 100 >10^6 Yağ 10 >10^4 Porselen 10 >20 Cam 17 >20 EEM13414 YÜKSEK GERİLİM TEKNİĞİ 3

4 YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Elektrik İzolasyon Malzemeleri Katı İzolatörler: Daha önceleri selüloz kağıt, zift, kenevir ve doğal reçine önemli izolasyon malzemeleri olarak kullanıldılar. Daha sonraları mineral maddelerin (mica, asbest, mangane, vb.), seramik, hayvansal maddelerin (doğal ipek, peynir özü, balık tutkalı, vb.) ve selülozik ürünlerin (yün, pamuk, vb.) gibi yalıtım malzemesi olarak kullanıldı. Organik İzolatörler: Yağ emdirilmiş kağıt yada mukavvalar İnorganik İzolatörler: Porselen ve cam gibi yalıtkan malzemeler. Sentetik İzolatörler: Sentetik yada polimer izolatörler kendisini tekrar eden uzun molekül zincirlerinden oluşurlar. Sıvı İzolatörler: Sıvı yalıtkanlar madeni, reçineli, klorlu ve silikonlu yağlar olmak üzere birçok türlere ayrılırlar ve yüksek gerilim tekniğinde çok önemli bir yer tutarlar Trafo Yağları Sentetik Yağlar Gaz İzolatörler: Gazlar, diğer yalıtkan malzemelerle kıyaslandığında oldukça basit ve kolay bulunan izolatörlerdir. Günümüzde birçok cihazda hava temel yalıtkan malzeme olarak kullanılmakla birlikte, nitrojen (N 2 ), karbondioksit (CO 2 ), freon (CCl 2 F 2 ) ve sülfür hexaflorid (SF 6 ) bazı alanlarda geniş kullanım imkanı bulmuşlardır. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 4

5 BİRİMLER VE SABİTLER Elektrik Alan ve Manyetik Alan: Durgun ve hareket eden yükler, durmakta yada hareket eden diğer yükler üzerinde bir kuvvet uyguladığı kuvvet alanlarıdır. Statik Elektrik Alan: Yükler hareketsiz olduğunda ortaya çıkan alan olarak adlandırılır. Statik Manyetik Alan: Sabit hızlı yüklerin hareket ederken oluşturdukları alan ise olarak bilinir. Elektromanyetik Alan: İvmelenmiş yüklerin oluşturduğu, elektrik ve manyetik alanın zamanla değiştiği alanlardır. Elektrik Manyetik Alan Büyüklüğü Sembol Birim Elektrik Alan Şiddeti V/m Elektrik Akı Yoğunluğu C/m 2 Manyetik Akı Yoğunluğu T Manyetik Alan Şiddeti A/m EEM13414 YÜKSEK GERİLİM TEKNİĞİ 5

6 BİRİMLER VE SABİTLER Yüksek gerilim tekniğinde, genelde herhangi bir değişken manyetik alanın etkisi altında olmadan sadece elektriksel bir yük tarafından oluşan Elektriksel Alanlar incelenir. Elektrik alanlar için boşluğun özellikleri ile ilgili üç evrensel sabitin bilinmesi gerekir. Bunlar, Elektromanyetik Dalganın Boşluktaki Hızı c, Boşluğun Elektrik Geçirgenliği ε 0 ve Boşluğun Manyetik Geçirgenliği μ 0 dır. ε 0 ve μ 0 elektrik ve manyetik olaylarla ilgilidir. ε 0, boşluğun elektrik akı yoğunluğu D ile elektrik alan şiddeti E nin oranını olan sabit değerdir. D = ε 0 E μ 0, boşluğun manyetik akı yoğunluğu B ile manyetik alan sabiti H nin oranını olan sabit değerdir. H = 1 μ 0 B Evrensel Sabitler Sembol Değer Birim Işığın Boşluktaki Hızı c m/s Boşluğun Manyetik Geçirgenliği μ 0 4π H/m Boşluğun Elektrik Geçirgenliği ε 0 8, F/m EEM13414 YÜKSEK GERİLİM TEKNİĞİ 6

7 BİRİMLER VE SABİTLER Sembol Anlamı SI Birimi E Elektrik Alanı Volt/metre H Manyetik Alan Amper/metre D Elektrik Akı Yoğunluğu Coulomb/metre B Manyetik Akı Yoğunluğu Tesla, weber/metrekare J Akım Yoğunluğu Amper/metrekare Gradyen (Del) Operatörü Diverjans Operatörü 1/metre Rotasyonel Operatörü 1/metre Temel Birimler EEM13414 YÜKSEK GERİLİM TEKNİĞİ 7

8 SKALER VE VEKTÖREL BÜYÜKLÜKLER Değeri bir koordinat sistemine bağlı olmayan büyüklüklere Skaler Büyüklükler denir. Değeri bir büyüklük ve yön ile birlikte ifade edilen fiziksel büyüklükler Vektörel Büyüklüklerdir. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 8

9 Skaler ve Vektörel Çarpım A = (A x, A y, A z ) ve B = (B x, B y, B z ) ile ifade edilen iki vektör olsun. A ve B gibi iki vektörün Skaler (Nokta) Çarpımı A ve B nin mutlak değerleri ile, iki vektör arasındaki en küçük açının kosinüsünün çarpımıdır. İki vektörün skaler çarpımının sonucu skalerdir. Skaler çarpım, iki vektörün bir arada ne kadar hareket ettiğini gösterir. A B = A B cosθ AB A B = A x. B x + A y. B y + A z. B z EEM13414 YÜKSEK GERİLİM TEKNİĞİ 9

10 Skaler ve Vektörel Çarpım A ve B gibi iki vektörün Vektörel Çarpımı A B şeklinde gösterilir. Bu çarpım yine bir vektör olup; mutlak değeri, A ve B nin mutlak değerleri ile iki vektör arasındaki açının sinüsüyle çarpımına, yönü ise A ve B vektörlerinin içinde bulunduğu düzleme dik olacak şekildedir. A = A x. a x + A y. a y + A z. a z B = B x. a x + B y. a y + B z. a z A B = a n A B sinθ AB AxB = a x a y a z A x A y A z B x B y B z Sağ El Kuralı EEM13414 YÜKSEK GERİLİM TEKNİĞİ 10

11 ELEKTRİK ALANLAR - Tanımlar Yüksek gerilim tekniğinde, genelde herhangi bir değişken manyetik alanın etkisi altında olmadan sadece elektriksel bir yük tarafından oluşan Elektriksel Alanlar incelenir. Bu aşamada kullanılan başlıca 3 fonksiyon vardır. Gradyen (grad), Bir skaler alanın artış hızının büyüklüğünü ve yönünü gösteren vektördür. Skaler bir büyüklüğü vektörel büyüklüğe çevirmekte kullanılır. E = grad U veya E = U Vektör, E elektrik alanın herhangi bir noktasında U gerilimindeki maksimum azalmayı gösterir, yani birim mesafede U gerilimindeki azalmaya eşittir. Şekiller açıktan koyuya doğru artan skaler alanları ve artışa doğru yönelmiş Gradyen vektörünü göstermektedir. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 11

12 ELEKTRİK ALANLAR - Tanımlar Diverjans (div), bir A vektörünün bir noktadaki diverjansı, nokta etrafındaki hacim sıfıra giderken birim hacim başına A nın net dışarı akısı olarak tanımlanır. Vektörel bir büyüklüğü skaler bir büyüklüğe çevirmekte kullanılmaktadır. Bir vektör alanının diverjansı (a) Pozitif Diverjans; (b) Negatif Diverjans c) Sıfır Diverjans EEM13414 YÜKSEK GERİLİM TEKNİĞİ 12

13 ELEKTRİK ALANLAR - Tanımlar Rotasyonel (rot), bir vektör alanının del operatörü ile vektörel çarpımına eşittir. A vektör alanının rotasyoneli, büyüklüğü birim alan başına, alan sıfıra giderken A nın en büyük net dolaşımı olan bir vektördür. Vektörel bir fonksiyonu yine vektörel bir büyüklüğe çevirmekte kullanılır. rote = 0 ifadesi alanın herhangi bir manyetik değişken alana maruz kalmadığını ve belirli bir noktada ölçülen U x geriliminin takip edilen yoldan bağımsız olarak sabit bir değerde olduğunu belirtir. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 13

14 ELEKTRİK ALANLAR Gradyan ve Laplasyen Tanımı Gradyan: Nabla operatörü ile gösterilir. Grad olarak da yazılır. Üç boyutta türev alma işlevi görür. Skaler büyüklükleri vektörel büyüklüğe dönüştürür. = x i + y j + z k i x yönündeki birim vektör j y yönündeki birim vektör k z yönündeki birim vektör Verilen bir skaler f(x, y, z) fonksiyonu için gradyan tanımı grad f = f = f f f i + j + k x y z Laplasyen: Matematiksel bir kavram olup ile gösterilir. Gradyenin skaler çarpımıdır. = = 2 2 f = f = 2 f + 2 f + 2 f x 2 y 2 z 2 EEM13414 YÜKSEK GERİLİM TEKNİĞİ 14

15 ELEKTRİK ALANLAR Diverjans ve Rotasyonel Tanımı Diverjans (Iraksama): Bir A vektörünün diverjansı Div A = A = A x + A y + A z x y z Rotasyonel (Dönel): Bir A vektörünün rotasyoneli rot A = A = i j k / x / y / z A x A y A z EEM13414 YÜKSEK GERİLİM TEKNİĞİ 15

16 ELEKTRİK ALANLAR Tanımlar Koordinat Sistemleri Genelde fiziksel büyüklükler, uzay ve zamanın fonksiyonu olarak değişirler. Bu değişimleri ifade edilebilmesi için noktaların uygun bir şekilde koordinat sistemleri kullanılarak tanımlanması gerekir. Bir nokta, Ortogonal yada Ortogonal Olmayan bir koordinat sisteminde temsil edilebilir. Ortogonal sistemlerde koordinatlar birbirine diktir. Kartezyen (Dikdörtgen), Dairesel-silindirik, Küresel, Eliptik-silindirik, Parabolik-silindirik, Konik, Elipsoidal Koordinatlar Ortogonal Sistemlere örnek olarak verilebilir. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 16

17 ELEKTRİK ALANLAR Tanımlar Koordinat Sistemleri - Kartezyen Koordinat Sistemi Kartezyen Koordinat Sisteminde bir P(x,y,z) noktasının koordinatları x, y, z ve birim vektörleri i, j, k ile gösterilirse Gradyan Diverjans Laplasyen V = V V V i + j + k x y z V = V x + V y + V z x y z 2 V = 2 V + 2 V + 2 V x 2 y 2 z 2 Alanın sadece x ekseni boyunca değişmesi durumunda Laplace denklemi Elektrik alanı d 2 V dx 2 = 0 E = dv dx olur. Kartezyen Koordinatlar EEM13414 YÜKSEK GERİLİM TEKNİĞİ 17

18 ELEKTRİK ALANLAR Tanımlar Koordinat Sistemleri - Dairesel-Silindirik Koordinat Sisteminde Dairesel-Silindirik Koordinat Sisteminde bir P(r,θ,z) noktasının koordinatları x = r. cosθ y = r. sinθ z = z ve birim vektörleri i r, i θ, i z ile gösterilirse Gradyan Diverjans Laplasyen V = V i r r + 1 V i r θ θ + V i z z V = 1 (rv r r r) + 1 r 2 V = 2 V V + 2 V r 2 r 2 θ 2 z 2 V θ + V z θ z Alanın sadece r ekseni boyunca değişmesi durumunda Laplace denklemi Elektrik alanı da d 2 V dr r E = dv dr dv dr = 0 olur. Silindirik koordinat sistemi EEM13414 YÜKSEK GERİLİM TEKNİĞİ 18

19 ELEKTRİK ALANLAR Tanımlar Koordinat Sistemleri - Küresel koordinat Sistemi Küresel Koordinat Sisteminde bir P(r,θ,φ) noktasının koordinatları x = r. sinθ. cosφ y = r. sinθ. sinφ z = r. cosθ Gradyan ve birim vektörleri i r, i θ, i φ ile gösterilirse V = V i r r + 1 V i r θ θ + 1 r.sinθ V φ i φ Diverjans V = 1 r 2 r (r2 V r ) + 1 r.sinθ r (V θsinθ)+ 1 r.sinθ V φ φ Laplasyen 2 V = 1 r 2 r V r2 + 1 r r 2 sin θ θ V sinθ V θ r 2 sin 2 θ φ 2 Alanın sadece r ekseni boyunca değişmesi durumunda Laplace denklemi Elektrik alanı d 2 V dr r E = dv dr dv dr = 0 olur. Küresel koordinat sistemi EEM13414 YÜKSEK GERİLİM TEKNİĞİ 19

20 ELEKTRİK ALANLAR Statik Elektrik Alanı Bir noktadaki elektrik alan o noktadaki elektriksel potansiyelin negatif gradyanına eşittir. φ potansiyeli göstermek üzere elektrik alan şiddeti vektörü E = φ Deplasman vektörü (Deplasman akı yoğunluğu) ε = ε 0. ε R D = ε. E E = Elektrik alan şiddeti (kv/cm) D = Deplasman Vektörü (C/m 2 ) ε = Dielektrik sabiti (Farad/m) ε 0 = 8, F/m Boşluğun dielektirk sabiti ε R =Bağıl dielektrik sabiti EEM13414 YÜKSEK GERİLİM TEKNİĞİ 20

21 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri Yüksek gerilim tekniğinde, delinme ve atlama olaylarının incelenmesi ile ortamların yüksek gerilim altındaki davranışlarının belirlenmesi için statik elektrik alanın hesaplanması gerekir. Şekildeki gibi yalıtkan bir madde iki elektrot arasına konularak bir U gerilimi uygulandığında U gerilimi yavaş yavaş yükseltildiğinde, gerilimin bir U D değerinde elektrotlar arasında bir boşalma meydana gelir. Meydana gelen boşalma iki şekilde meydana gelir. Yalıtkan madde d yolu üzerinden delinir. Delinme anındaki gerilime Delinme Gerilimi denir. Boşalma a ile gösterilen yol üzerinden atlar, bu durumdaki boşalma gerilimine Atlama Gerilimi denir. Delinme olayında katı yalıtkan madde kullanılamaz hale gelirken, sıvı veya gaz malzemeler yeniden kullanılabilir. Atlama sırasında boşalma kısa süre devam eder ve malzeme tahrip olmaz. Atlama sırasında şebeke üzerinde aşırı gerilimler oluşabileceğinden delinme olayında olduğu gibi dikkat edilmelidir. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 21

22 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri Boşalma gerilimi U d ve işletme gerilimi U n ise U d U n ifadesine yalıtkan maddenin Emniyet Derecesi denir ve e ile gösterilir. Yalıtkan maddenin emniyet derecesi e = U d U n e nin değeri her zaman 1 den büyük olmalıdır. Bir yalıtkan maddenin gerilime dayanımı bakımından değerlendirmesi, birim yalıtkan madde kalınlığına karşılık gelen delinme gerilimi yardımıyla yapılabilir. Bu, Özgül Delinme Gerilimi ve Delinme Dayanımı denir ve E d ile gösterilir. Kalınlığı a (cm) olan bir yalıtkan madde U d (kv) geriliminde delinmişse bu maddenin delinme dayanımı, E d = U d a (kv/cm) olur. Yalıtkanın İsmi Hava Teflon Polistren Kağıt Pireks (Cam) Silikon Bakalit Kuvartz Mika Delinme Gerilimi 30 kv/cm 600 kv/cm 240 kv/cm 160 kv/cm 140 kv/cm 150 kv/cm 240 kv/cm 80 kv/cm 800 kv/cm EEM13414 YÜKSEK GERİLİM TEKNİĞİ 22

23 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri Örneğin; 0, 2cm kalınlığındaki bir yalıtkan maddenin delinme gerilimi 20kV ve 0, 1cm kalınlığındaki diğer bir yalıtkan maddenin delinme gerilimi 15kV ise; Birinci maddenin delinme dayanımı İkinci maddenin delinme dayanımı E d1 = U d1 a E d2 = U d2 a = 20 0,2 = 100kV/cm = 15 0,1 = 150kV/cm olur. İkinci maddenin delinme dayanımı bakımından birinci maddeden daha iyi olduğu söylenebilir. Ancak, delinme yalıtkan madde boyunca gerilim dağılımının ve buna bağlı olarak da elektrik alanının da önemi vardır. Özellikle boşalma olayında maksimum elektrik alanı büyük bir rol oynar. Gerçekte E = E max E d olduğu durumda boşalma başlar. E max değeri ancak elektrotlar arası elektrik alanının incelenmesi ile bulunabilir. Yalıtkanın İsmi Hava Teflon Polistren Kağıt Pireks (Cam) Silikon Bakalit Kuvartz Mika Delinme Gerilimi 30 kv/cm 600 kv/cm 240 kv/cm 160 kv/cm 140 kv/cm 150 kv/cm 240 kv/cm 80 kv/cm 800 kv/cm EEM13414 YÜKSEK GERİLİM TEKNİĞİ 23

24 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri Bu denklemler yapıldığı varsayılan dört deneyle elde edilebilir. Statik Elektrik Alanının Temel Denklemleri Deney 1. Kuvvetin varlığını ortaya çıkaran deney. Elektrik alan şiddetinin bir birim yüke etkiyen kuvvet olduğunu gösterir. (F = q. E). Deney 2. Elektrik alanının bir potansiyel alandan türediğini gösteren deney (E = V = grad V) Deney 3. Kapalı bir yüzey içindeki elektrik yükünün bu yüzeyden çıkan elektrik yüküne eşit olduğunu gösteren ve durağan yüklerin boş uzaydaki elektrik alanlarının davranışlarını inceleyen deney. ε 0 = π = 8, F/m Deney 4. Elektrik alanının malzeme ortamındaki davranışını gösteren deney. ε r. ε 0. E. ds = Q D = ε E EEM13414 YÜKSEK GERİLİM TEKNİĞİ 24

25 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri 1 Statik Elektrik Alanının Temel Denklemleri 1 Üzerinde Q elektrik yükü bulunan bir cismin etrafında kuvvet alanı meydana gelir. Kuvvet alanı, üzerinde küçük bir q elektrik yükü bulunan parçacığa etki eder. Parça üzerindeki elektrik yükü değiştiğinde kuvvet de elektrik yükü ile orantılı olarak değişir. Şiddet ve yönce bulunduğu yerde duran birim pozitif elektrik yüküne etki eden kuvvete Elektrik Alanı denir ve E ile gösterilir. Kuvvetle elektrik alanı arasındaki bağıntı F = k. q. E dir. F; Kuvvet E; Elektrik alanı q, Parçacık üzerindeki yük. Denklemde şiddet ve yön söz konusu olduğundan bu alan vektörel bir alandır. k katsayısı birimlere bağlı bir (orantı faktörü) katsayıdır. Q(C) ve E(V/m) cinsinden alınırsa, F nin (N) cinsinden çıkması için k = 1 olmalıdır. MKS birim sisteminde F = q. E olarak yazılır. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 25

26 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri2 Statik Elektrik Alanının Temel Denklemleri2 Eğer q yüklü parçacık elektrik alanının bulunduğu bölgede başladığı noktaya gelecek şekilde bir kapalı yol (Kare, elips, daire vs.) boyunca hareket ettirildiğinde yapılan toplam iş sıfır olur. Parçacığın izlediği yolun geometrik şekli önemli olmamakla beraber, parçacığın başlangıç noktasına kapalı bir yol çizerek geri gelmesi yeterlidir. Enerji, kuvvetle yolun skaler çarpımına eşit ve toplam enerji de yol boyunca meydana gelen enerjilerin toplamı veya integrali olduğuna göre F. ds = 0 dir. F yerine q. E yazılırsa q. E. ds = 0 olur. Vektör analizinden Stokes Teoremi uygulanırsa, q. E. ds = E. ds = rote. ds = 0 Burada (nabla) operatörünün Kartezyen koordinatlardaki ifadesi = i + j + k dır. x y z EEM13414 YÜKSEK GERİLİM TEKNİĞİ 26

27 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri2 rote = 0 ifadesinden elektrik alanının rotasyonelsiz olduğu anlaşılır. Vektör analizinden, rotasyonelsiz bir alanın, skaler bir V potansiyel alanından türediği bilindiğine göre, elektrik alanı eksi işaretli olarak V potansiyel alanının gradyanına eşittir. E = V = grad V Çoğu kez bir statik elektrik alanı probleminin çözümünde V potansiyel alanı bilindiğinden bu denklem yardımıyla E hesaplanır. Eğer kapalı bir eğri yerine 1 ve 2 noktaları arasındaki eğrisel integrali hesaplandığında bu iki nokta arasındaki U gerilimi elde edilir. U = 1 2 E. ds Potansiyel de bir nokta için tanımlanır ve V ile gösterilir. V = 1 E. ds = 1 E. ds = E. ds + K Elektrik potansiyeli V nin E elektrik alanına ters yönde arttığı kabul edildiğinden Eksi işaret kullanılmalıdır. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 27

28 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri3 Statik Elektrik Alanının Temel Denklemleri3 Kapalı bir yüzey (boşluk) içindeki elektrik yükü, bu yüzeyden çıkan elektrik akısına eşittir. Bu yüzey küre, küp, elipsoid olabilir. Yüzey, içinde kalan alanı dış uzaydan ayırır ve herhangi katı yada sıvı maddeyi içine almayacak veya böyle bir maddeyi kesmeyecek şekilde seçilir. Her türlü kapalı yüzey boyunca E. ds integrali hesaplanırsa, sonucun kapalı yüzey içinde kalan elektrik yükü ile orantılı olduğu görülür. ε 0 bir sabit ve Q da yüzey içindeki elektrik yükü ise, Boşlukta ε 0 E. ds = Q olur. Bu bir yüzey integralidir. S kapalı alanın yüzeyini gösterir. Kapalı yüzeyin içinde hiç elektrik yükü yoksa veya pozitif elektrik yüküne eşit miktarda negatif yük varsa denklem, ε 0. E. ds = 0 şeklinde yazılır. ε 0 boşluğun elektrik sabitidir. E(V/m), S(m 2 ) ve Q(C) cinsinden ölçülürse, ε 0 = π = 8, F/m EEM13414 YÜKSEK GERİLİM TEKNİĞİ 28

29 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri4 Statik Elektrik Alanının Temel Denklemleri4 Kapalı yüzey, yağ veya diğer yalıtkan maddeler içine konularak 3.deney tekrarlanırsa elde edilen ε 0 E. ds = Q denkleminin bütün yalıtkan maddelere uygulanabilmesi için denklemi bu maddelerin karakteristiği olan bir ε r katsayısı ile çarpmak gerekir. Bu katsayıya yalıtkan maddenin Bağıl Dielektrik Katsayısı adı verilir. ε r. ε 0 E. ds = Q Tüm yalıtkan maddelerin kullanımı için denklem genel olarak şu şekilde yazılabilir. ε r. ε 0. E. ds = Q ε r. ε 0 yerine ε yazılarak denklem ε. E. ds = Q halini alır. ε söz konusu maddenin Dielektrik Katsayısıdır. D = ε. E den denklem D. ds = Q halini alır. Burada D vektörünün yüzeysel integrali söz konusudur. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 29

30 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri4 D ye Elektriksel Akı Yoğunluğu veya Deplasman Vektörü denir. Deplasman vektörünün herhangi bir S yüzeyi boyunca integrali, bu yüzeyden geçen elektrik akısını tanımlar ve ψ harfi ile gösterilir. ψ = D. ds Denklemin sol tarafı kapalı yüzeyden çıkan elektrik akısını, sağ tarafı da bu yüzey içinde kalan elektrik yükünü gösterir. Bu nedenle kapalı yüzeysen çıkan elektrik akısı, bu yüzey içinde kalan elektriksel yüklerin cebirsel toplamına eşittir. ψ = Q EEM13414 YÜKSEK GERİLİM TEKNİĞİ 30

31 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri4 Bu denklemler statik elektrik için gerekli bütün bilgileri vermektedir. ψ = D. ds denklemine vektör analizinden bilinen Green Teoremi uygulanırsa; D. ds = D dv = div D dv = Q denklemi elde edilir. İçinde elektrik yükü bulunmayan bir bölgede Q = 0 dir ve dolayısıyla D dv = div D dv = 0 D = 0 veya div D = 0 Fakat yükün sıfır olmadığı yerde diverjans sıfır değildir. Diverjansı, ρ ile gösterilen hacimsel yük yoğunluğu cinsinden ifade etmek mümkündür. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 31

32 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri4 Kapalı bir yüzey içindeki elektrik yükü, yük yoğunluğunun bu yüzey içindeki hacimsel integraline eşittir. ρ. dv = D dv = div D dv = Q D = ρ veya div D = ρ Burada 'ρ' birim yükü, D ise elektrik akı yoğunluğunu göstermektedir ve Permitivite(Elektriksel geçirgenlik) (ε) ile elektrik alanın skaler çarpımına eşittir. D = ε E ε un noktadan noktaya değişmediği homojen (düzgün) bir madde içinde bu denklem aşağıdaki gibi yazılabilir E = ρ ε veya div E = ρ ε Bu denklem, elektrik alanı ile yük yoğunluğu arasındaki bağıntıyı vermektedir.. EEM13414 YÜKSEK GERİLİM TEKNİĞİ 32

33 ELEKTRİK ALANLAR Statik Elektrik Alanı Statik Elektrik Alanının Temel Denklemleri4 E = grad V = V denklemi E = div E = ρ denkleminde yerine koyarak potansiyel ε yük ile yük yoğunluğun arasındaki bağıntıyı verir. V = ρ ve div grad V = ρ veya ε ε 2 V = ρ ε (Poisson Denklemi) Elektrik yükü olmayan bir uzay parçası için denklem aşağıdaki yazılır. 2 V = 0 (Laplace Denklemi) EEM13414 YÜKSEK GERİLİM TEKNİĞİ 33

34 KAYNAKLAR ÖZKAYA, Muzaffer, Yüksek Gerilim Tekniği Cilt 1 ve Cilt 2 (Birsen Yayınevi) CHENG, David K., Mühendislik Elektromanyetiğin Temelleri (Palme Yayıncılık) KALENDERLİ, Özcan, Yüksek Gerilim Elemanları Ders Sunuları Yrd.Doç.Dr. C.V. BAYSAL Yüksek Gerilim Tekniği Ders Sunuları EEM13414 YÜKSEK GERİLİM TEKNİĞİ 34

YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI

YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Yüksek gerilim tekniğinin gelişiminde olanak sağlayan en önemli etken, bu sayede büyük miktarda enerjinin bir noktadan diğerine ekonomik bir biçimde taşınabilmesidir.

Detaylı

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ 2015-2016 YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis seyit.sis@balikesir.edu.tr, MMF 7. kat, ODA No: 3, Dahili: 5703 1 DERS İÇERİĞİNE GENEL BAKIŞ

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

ELEKTROMANYETİK ALAN TEORİSİ

ELEKTROMANYETİK ALAN TEORİSİ ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları

Detaylı

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar : iletkenlik katsayısı (S/m) Malzemelerin iletkenlikleri sıcaklık ve frekansla değişir. >>

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

KONDANSATÖRLER Farad(F)

KONDANSATÖRLER Farad(F) KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilir. Birimi Farad(F) C harfi

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE EM 420 Yüksek Gerilim Tekniği YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE KAPASİTE ÖLÇME YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 2 3 4 5 6 7 8 Örnek: Bir disk boyunca elektrik akısı r = 0.10 m A 30 E 3 210 N/C A (0.10 m) E 54 N m 2 2 0.0314 m EA cos (2.010 / C Örnek: Bir

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

2014/2 MÜHENDİSLİK BÖLÜMLERİ FİZİK 2 UYGULAMA 4

2014/2 MÜHENDİSLİK BÖLÜMLERİ FİZİK 2 UYGULAMA 4 2014/2 MÜHENDİSLİK BÖLÜMLERİ FİZİK 2 UYGULAMA 4 (SIĞA ve DİELEKTRİK/AKIM&DİRENÇ ve DOĞRU AKIM DEVRELERİ) 1. Yüzölçümleri 200 cm 2, aralarındaki mesafe 0.4 cm olan ve birbirlerinden hava boşluğu ile ayrılan

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

9. MANYETİK ALAN AMAÇLAR

9. MANYETİK ALAN AMAÇLAR 9. MAYETİK ALA AMAÇLAR 1. arklı mıknatıslar tarafından oluşturulan manyetik alan çizgilerini gözlemek. 2. Manyetik alanın pusula iğnesi üzerindeki etkisini incelemek. 3. ir selenoidden geçen akıma uygulanan

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER İletim Hatları ve Elektromanyetik Alan Mustafa KOMUT Gökhan GÜNER 1 Elektrik Alanı Elektrik alanı, durağan bir yüke etki eden kuvvet (itme-çekme) olarak tanımlanabilir. F parçacık tarafından hissedilen

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramından Gazların Isınma Isılarının Bulunması Sabit hacimdeki ısınma ısısı (C v ): Sabit hacimde bulunan bir mol gazın sıcaklığını 1K değiştirmek için gerekli ısı alışverişi. Sabit basınçtaki

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ DENEY 1: ISI IÇIN TERS KARE KANUNU 1. DENEYİN AMACI: Bir yüzeydeki ışınım şiddetinin, yüzeyin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ ELEKTİK DEELEİ-2 LABOATUAI I. DENEY FÖYÜ ALTENATİF AKIM DEESİNDE GÜÇ ÖLÇÜMÜ Amaç: Alternatif akım devresinde harcanan gücün analizi ve ölçülmesi. Gerekli Ekipmanlar: AA Güç Kaynağı, 1kΩ Direnç, 0.5H Bobin,

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

AŞIRI GERİLİMLERE KARŞI KORUMA

AŞIRI GERİLİMLERE KARŞI KORUMA n Aşırı akımlar : Kesici n Aşırı gerilimler: 1. Peterson bobini 2. Ark boynuzu ve parafudr 3. Koruma hattı 26.03.2012 Prof.Dr.Mukden UĞUR 1 n 1. Peterson bobini: Kaynak tarafı yıldız bağlı YG sistemlerinde

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru 2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları Arş.Gör. Arda Güney İçerik Uluslararası Birim Sistemi Fiziksel Anlamda Bazı Tanımlamalar Elektriksel

Detaylı

DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK ÖLÇÜMÜ DENEYİ FÖYÜ

DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK ÖLÇÜMÜ DENEYİ FÖYÜ T.C ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MALZEME BİLİMİ VE MÜHENDİSLİĞİ BÖLÜMÜ MALZEME ÜRETİM ve KARAKTERİZASYON LABORATUVARI DERSİ LABORATUVAR UYGULAMALARI DÖRT NOKTA TEKNİĞİ İLE ELEKTRİKSEL İLETKENLİK

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı Bölüm-6 Özeti Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı Bölüm-6 Özeti Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-6 Özeti 21.04.2015 Ankara Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar

Detaylı

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler."

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. Skaler ve Vektörel Büyüklükler. KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler." Eğitişim Dergisi. Sayı: 15 (Mayıs 2007). SKALER VE VEKTÖREL BÜYÜKLÜKLER Prof. Dr. Oktay Hüseyin (Guseinov) Hayvanların en basit

Detaylı

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 İŞ İş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir. Yola paralel bir F kuvveti

Detaylı