ELEKTROMANYETİK DALGALAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTROMANYETİK DALGALAR"

Transkript

1 ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik alan oluşturur. Değişken bir manyetik alan da elektrik alan oluşturur. Aynı zamanda değişken elektrik alan da manyetik alan oluşturur. Böylece osilasyon hareketi yapan bir yük elektromanyetik alan oluşturur. Elektrik veya manyetik alanlarda bir tanesi zamana göre değişmeye başlayınca etrafını etkiler ve civarında diğer tür bir etkilenme alanı oluşturur. Bütün bu olayları tek bir teoride birleştiren Maxwell (İskoçyalı fizikçi James Clerk Maxwell, ) bir bölgede zamanla değişen elektrik ve manyetik alanlar nedeniyle elektromanyetik bir bozulmanın uzayda bir bölgeden diğerine ilerleyebilmesinin mümkün olduğu fikrini ileri sürmüştür. Bu bozulmanın ilerlemesine uzayın boşluktan meydana gelmesi engel değildir. Böyle bir bozulma eğer varsa, dalga özellikleri taşımak zorundadır. Bu tür bozulmalara elektromanyetik dalga denir. Elektromanyetik Dalgaların Önemli Özellikleri: Enine dalgadır, E ve B birbirlerine diktir aynı zamanda her ikisi de dalganın yayılma doğrultusuna diktir. Dalganın yayılma yönü E x B vektörel çarpımın yönündedir. E ve B nin büyüklükleri arasında şeklinde bir oran vardır. Dalga boşlukta kesin ve değişmeyen bir süratle ilerler. Mekanik dalgalarının aksine, elektromanyetik dalgaların yayılması için maddesel bir ortama ihtiyaç yoktur. MAXWELL DENKLEMLERİ Elektrik ve manyetik alanlar ve bunların kaynakları arasındaki bağıntılar Maxwell denklemleri olarak bilinen dört denklem ile verilmektedir. Maxwell denklemleri elektromanyetizmanın bütünü için temel denklemleridir. Manyetik ve dielektrik madde yokken Maxwell denklemleri şöyledir: 1) : için Gauss Yasası (1.a) 2) : için Gauss Yasası (1.b) 3) : Faraday Yasası (1.c) 4) : Yer değiştirme akımını da içeren Amper yasası (1.d) 1) Maxwell denklemlerinin iki tanesi (1.a ve 1.b) ve nin kapalı bir yüzey üzerinden integralini içerir. Birincisi basitçe elektrik alan için Gauss yasasıdır ve herhangi bir kapalı yüzey üzerinden nin integralinin, ile yüzey içindeki net Q yükünün çarpımına eşit olduğunu ifade eder. 2) İkincisi (1.b), manyetik alanlar için benzer bir bağıntıdır ve nın kapalı bir yüzey üzerinden yüzey integralinin daima sıfır olduğunu ifade eder. Bu ifadenin anlamı, başka bir şeylerin yanında, manyetik alan kaynağı gibi davranan manyetik monopollerin (tek manyetik yükler) var olamayacağıdır. (Burada, elektrik alanı ) nin; ise nin seçilen kapalı yüzeye dik bileşenlerini temsil eder). 1

2 3) Üçüncü denklem (1.c) Faraday yasasıdır ve değişen bir manyetik alan veya manyetik akının bir indüksiyon elektrik alanına neden olduğunu ifade eder (burada B manyetik akıdır). Eğer değişken bir manyetik akı varsa, (1.c) denklemindeki çizgi integral sıfırdan farklıdır, değişen manyetik akı alan oluşturur. Bu çizgi integralinin hareketsiz bir kapalı eğri üzerinden alınması gerektiğini biliyoruz. 4) Dördüncü denklem (1.d) yer değiştirme akımını da kapsayan Amper yasasıdır. Burada iletkenlik akımı ve yer değiştirme akımı manyetik alan kaynağı gibi davranır (burada elektrik akısıdır). Yukarıda verdiğimiz denklemler boş uzaydaki elektrik ve manyetik alan için geçerlidir. Ortamda bir malzeme varsa, denklemlerde boşluktaki dielektrik geçirgenliği ve manyetik geçirgenliği yerine, ortamdaki malzemelerin ( ) ve ( ) kullanmak gerekir. relatif dielektrik ve manyetik geçirgenlik katsayısı. Birçok malzeme için sabittir ve yaklaşık 1 e eşittir, ancak frekansın fomksiyonudur ve ifadesi ile verilir. Bu konu daha sonra anlatılacak. Yukarıda verdiğimiz 1.a, 1.b, 1.c ve 1.d denklemleri MAXWELL DENKLEMLERİNİN integral biçimidir. Maxwell Denklemlerinin Diferansiyel Biçimi Maxwell denklemleri, çoğu kez denklem 1 de verilen integral biçiminden daha kullanışlı olan DİFERANSİYEL BİÇİMİ ile verilmektedir. Maxwell denklemlerinin diferansiyel biçimlerini elde etmek için matematik derslerinden bildiğimiz iki integral teoremini kullanacağız. 1. DİVERJANS TEOREMİ Üç boyutlu uzayda kapalı bir yüzeyi ele alalım. Kapalı yüzey ve bunun içinde kalan hacminde tanımlı bir ( ) vektör alanı olsun. vektörünün herbir bileşeninin kısmi türevleri sürekli ise (2) dir. Bu teorem bir vektör fonksiyonunun bir yüzey üzerindeki integrali ile diverjansının bu yüzeyin kuşatmış olduğu hacim üzerinden integrali arasında bir bağlantı kurar (Gauss veya Ostrogradsky teoremi olarak da bilinir). işlemcisine del işlemcisi denilir ve Kartezyen koordintlarda, (3) Biçiminde tanımlanmıştır. (4) İfadesine ise nin diverjansı denilir. 2

3 2. STOKES TEOREMİ vektör alanının kapalı bir yol boyunca çizgi integrali yerine, yüzeyi üzerinde nin integarli alınabilir. (5) Burada ye vektör alanının rotasyoneli denir. (6.a) veya ( ) ( ) ( ) (6.b) Şimdi bu iki integral teoremini kullanarak Maxwell denklemlerinin boş uzaydaki diferansiyel biçimlerini elde edeceğiz. Şimdi bu iki teoremi kullanarak Maxwell denklemlerinin boş uzaydaki diferansiyel biçimlerini elde edebiliriz. 1. Diverjans (Gauss) teoremini Denklem (1.a) ile verilen Gauss Yasasına uygulayalım: (7) Şimdi elektrik yükü, yük yoğunluğu nun hacim integrali olarak yazılabilir: (8) Bunu 7-denkleminde kullanırsak (9) yazabiliriz. Bu eşitliğin her iki tarafında da aynı hacim üzerinde alınan integraller bulunmaktadır. Hacimlerin büyüklükleri ve şekilleri ne olursa olsun bunun doğru olabilmesi için integrantların eşit olması gerekir. (10) Bu eşitlik Gauss teoreminin diferansiyel biçimidir. 2. Maxwell denklemlerinin ikincisi olan eşitliği de aynı şekilde incelenirse (11) bulunur. 3. Şimdi stokes teoremini (denklem 5) Maxwell denklemlerinin üçüncüsüne (denklem 1-c) uygulayalım: (12) 3

4 Manyetik akı olduğundan, (13) nin konuma da bağlı olması nedeniyle kısmi türevini kullandık. Bunlar aynı yüzey üzerinden alınan integrallerdir. Bu eşitliğin herhangi bir yüzey için, hatta çok küçük bir yüzey bile olsa doğru olması bize, (14) denklemini verir. Bu Maxwell in diferansiyel biçimindeki üçüncü denklemidir. 4. Maxwell in son denklemine Stokes teoremini uygulayalım ve yazalım: (15) İletim akımı I yı akım yoğunluğu cinsinden yazılabilir: (16) O zaman Maxwell in dördüncü denklemi şu biçimi alır: (17) Büyüklüğü ve biçimi ne olursa olsun bu eşitliğin sağlanması için eşitliğin iki tarafındaki integrallerin integrantlarının birbirlerine eşit olmaları gerekir: Aşağıdaki Maxwell denklemlerinin integral ve diferansiyel biçimleri birarada verilmiştir. (18) BOŞ UZAYDA MAXWELL DENKLEMLERİ 1 2 İntegral Biçimi Diferansiyel Biçimi 3 4 4

5 Maxwell denklemlerine göre durağan bir nokta yük statik elektrik alanı üretirken, manyetik alanı üretmez. Öte yandan sabit hızla hareket eden bir yüklü parçacık ve alanlarının her ikisini de üretir. Bu yüklü parçacığın elektromanyetik alan üretebilmesi için ivmelenmesi gerektiği Maxwell denklemleri kullanılarak gösterilebilir. Maxwell denklemlerinin önemli bir sonucu da, ivmelendirilen her yüklü parçacığın elektromanyetik dalga ışımak zorunda olmasıdır. Bir yüklü parçacığın elektromanyetik dalga ışımasını sağlamasının bir yolu, parçacığa bir harmonik salınım yaptırmaktır. Elektromanyetik dalgalar dalga boyunun ve frekansının çok geniş bir tayfını içerir. Bu elektromanyetik tayf radyo ve TV vericisi, görünür ışık, kızıl ötesi ve mor ötesi yayılma, X- ışınları ve gama ışınlarının tamamını içerir. Elektomanyetik dalgaların 1 Hz ile Hz frekans aralığında yayıldığı fark edilmiştir. Elektomanyetik tayfın en çok karşılaşılan kısmı yandaki Şekilde değişen yaklaşık dalga boyu ve frekans değerleri için gösterilmiştir. Şekil 1. Elektromanyetik Spektrumda Bölgeler. 5

6 Elektromanyetik Dalga Denklemi: Serbest yükün ve akımın olmadığı uzay bölgesinde ( ) Maxwell denklemlerini şeklinde yazabiliriz. Şimdi 3 ve 4 denklemlerinin her iki tarafının t ye göre türevlerini alalım: (3.denkelemden) (19a) (4. denklemden) (19b) yazabiliriz. (19a) denkleminde yerine (19b) denkleminde yerine yazalım (4 ve 3 nolu Maxwell denklemlerinden); ( ) ( ) (20a) ( ) ( ) (20b) Her hangi bir vektörel alan için ( ) ( ) (21) yazıldığını biliyoruz. Burada (22) ve (23) dir. (21) ifadesini (20a) ve (20b) ifadesindeki ve vektörleri için kullanırsak ( ) [ ( ) ] (24a) ( ) [ ( ) ] (24b) ve olduğunu burada kullanırsak (25a) 6

7 (25b) Burada biliyoruz. Buradan ışığın boşluktaki hızı'dır ( ve olduğunu elde edilir). 25a ve 25b denklemini yeniden (26a) (26b) yazabiliriz. Bu iki denklem daha önce elde ettiğimiz dalga denklemleri ile aynı matematiksel formdadır ve elektromanyetik dalga denklemleri olarak bilinir. Burada ( ) ( ) ( ) (27a) ( ) ( ) ( ) (27b) olduğunu biliyoruz (Matematiksel kitaplarına bakınız). Şimdi (26a) ve (26b) dalga denklemlerini kullanarak elektrik alanı doğrultusunda, manyetik alanı doğrultusunda olan ve yayılma yönü -ekseni yönünde olan elektromanyetik dalganın denklemini yazalım: alanı doğrultusunda olduğu için türevinin sadece bileşeni olacaktır. Dalga -ekseni yönünde ilerlediği için vektörünün sadece bileşeni olacaktır ( vektörlerin eşit olma özelliğinden). ( ) ( ) ( ) olduğunu biliyoruz. 'nin ve 'e göre türevleri sıfır olmak zorundadır. Bu durumda olacaktır. Bu iki sonucu kullanırsak söylenen özelliklerdeki elektromanyetik dalganın elektrik alan bileşeninin denklemi (28a) olacaktır. Benzer şekilde (28b) olacaktır. 7

8 alan vektörünün sadece bileşeni olduğu için ( ) ve alan vektörünün sadece bileşeni olduğu için ( ) şeklinde ifade edilecektir. (şekil 3). Burada ( ) ve ( ) herhangi bir t anında elektrik ve manyetik alan vektörlerinin x-eksenine göre enine yer değişimleridir. ve bu alanların maksimum değerleri veya genlikleri, açısal frekans ( ); dalga sayısı ( ) ve dalga boyudur. (28a) ve (28b) dalga denklemlerinin çözümü için ( ) ( ) (29a) ( ) ( ) (29b) yazabiliriz. Dalga fonksiyonlarını vektörel olarak da yazabiliriz; ( ) ( ) (30a) ( ) ( ) (30b) Şekil 3 de -yönünde ilerleyen doğrusal kutuplanmış bir sinüzoidal elektromanyetik dalga gösterilmiştir (ilerleme yönü vektörü yönündedir). UYARI: sembölünün iki anlamı vardır. İki farklı olduğuna dikkat ediniz; +z-yönünde birim vektör ve dalga sayısı k. Şekil-3'de ekseni yönünde ilerleyen doğrusal kutuplanmış bir sinüzoidal elektromanyetik dalgayı göstermektedir. ve alanları birbiriyle uyum içinde (aynı fazda salınmaktadırlar, yani ve aynı anda maksimum veya sıfırdırlar. Ayrıca eğer vektörü yönünde ise vektörü yönündedir. vektörü uzayın bütün noktalarında dalganın yayılma doğrultusundadır ( yönünde). Şekil-3'deki dalga doğrultusunda kutuplanmıştır; alan vektörü daima eksenine paraleldir. Bu tür dalgalar düzlemine paralel olan bütün düzlemlerde aynı tür alanlara sahiptir ve DÜZLEM DALGALAR olarak tanımlanır. Dolaysıyla, elektrik ve manyetik alanlar birbirine diktir ve yazılabilir. 12a ve 12b dalga denklemlerinin genel çözümleri için yazabiliriz. ( ) ( ) ( ) ( ) 8

9 Elektromanyetik Dalgalarda Enerji ve alanlarının bulunduğu bir boş uzay bölgesinde toplam enerji yoğunluğunun ( ) aşağıdaki bağıntıyla verildiğini biliyoruz (Temel Fizik II dersinde incelediniz): (1) Boşluktaki elektromanyetik dalgalar için ve 'nin büyüklükleri arasındaki bağıntının ise (2) ile verildiğini de biliyoruz (denklem 2 yi boşluktaki basit bir elektromanyetik dalganın şeklinde de yazabiliriz.) Denklem (1) ve (2) birleştirilince, toplam enerji yoğunluğunu aşağıdaki şekilde ifade edebiliriz. ( ) (3) Bu denklemin gösterdiğine göre, boşlukta dalganın elektrik alanındaki enerji yoğunluğu, manyetik alanındaki enerji yoğunluğuna eşittir. Elektromanyetik dalgada, elektrik alanın büyüklüğü konumun ve zamanın bir fonksiyonudur; o halde toplam enerji yoğunluğu da konum ve zamana bağlıdır. Elektromanyetik Enerji Akışı ve Poynting vektörü Elektromanyetik dalgalar bir bölgeden diğerine enerji aktaran ilerleyen dalgalardır. Bu enerji aktarımını, dalganın ilerleme doğrultusuna dik bir yüzey için, birim zamanda birim kesit alana aktarılan enerji veya birim alandaki güç cinsinden tanımlayabiliriz. Enerji akışı ile elektrik ve manyetik alan arasındaki ilişkiyi anlamak için, eksenine dik olan ve herhangi bir zamanda dalga cephesiyle örtüşen bir durgun düzlem düşünelim. Bir zamanından sonra, dalga cephesi düzlemin sağına doğru mesafesi kadar ilerler. Bu durgun düzlem içinde bir yüzey alanını ele alırsak (Şekil-4), bu alanın sağında bulunan uzaydaki enerjinin yeni konumuna ulaşmak için alanından daha önceden geçmiş olması gerekir. Söz konusu bölgenin hacmi, taban alanı ile mesafesinin çarpımına eşittir ve bölgedeki enerjisi ise enerji yoğunluğuyla bu hacminin çarpımına eşittir: ( )( ) (boşlukta) (4) Şekil-1 9

10 GÜÇ: Herhangi bir kapalı yüzeyden birim zamanda geçen toplam enerji akışı (yani güç, P) nin yüzey üzerinden integraline eşittir. (5) Bu enerji alanından zamanı içinde geçer. Birim zamanda ve birim alandan geçen enerji akışı ( olarak tanımlanır) için aşağıdaki ifadeyi yazabiliriz: (6) Bu değer nin anlık değeridir. Bu denklemi yeniden ( ) (7) şeklinde yazabiliriz. : olarak tanımlanır. SI birim sisteminde 'nin birimi 'dir. Enerji akış hızının büyüklüğünü ve yönünü birlikte açıklayan bir niceliği tanımlayabiliriz. (8) vektörüne İngiliz fizikçi John Poynting'in ( ) anısına Poynting vektörü denir. Vektör yönü şekil-1'de görüldüğü gibi dalga yayılma yönü ile aynıdır. ve birbirine dik olduklarından olduğunda (9) dir. Poynting Vektörünün Ortalaması: Sinüzoidal ve diğer karmaşık dalgalar için, herhangi bir noktadaki elektrik ve manyetik alanlar ve dolayısıyla Poynting vektörü zamanla değişir. Tipik elektromanyetik dalgaların frekansları çok yüksek olduğundan, Poynting vektörünün zamanla değişimi çok hızlıdır. Bu nedenle onun ortalamasına bakmak daha uygundur. nin ortalama değerinin herhangi bir noktadaki büyüklüğüne o noktadaki ışımanın ŞİDDETİ denir. Bir elektromanyetik dalganın şiddet ifadesini çıkaralım: ( ) ( ) ( ) [ ( ] [ ( ] 10

11 ( ) [ ( )] (10) ( ) daima dalganın ilerleme yönündedir. Poynting vektörünü yeniden ( ) [ ( )] (11) yazabiliriz. Bunun tam bir devir üzerinden ortalamasını alarak (12) elde edilir ( ( ) in bir periyot üzerinden ortalaması sıfırdır). Bir sinüzoidal dalga için nin ortalama değerinin büyüklüğü dalganın şiddetini verir ve nin maksimum değerinin yarısıdır. ve Bağıntılarını kullanarak, şiddeti birkaç eşdeğer biçimde ifade edebiliriz: ( ) (13) yönünde ilerleyen dalga için Poynting vektörü her noktada yönündedir ancak büyüklüğü ekseni yönünde ilerleyen dalganın Poynting vektörünün büyüklüğü ile aynıdır. Şiddet ifadesini eşitliğini kullanarak (14) şeklinde de yazabiliriz. Madde İçindeki Elektromanyetik Dalgalar Elektromanyetik dalgalar maddesel ortamda da yayılırlar (havada, suda, cam içinde yayılan ışığı biliyorsunuz). Burada incelemelerimizi elektromanyetik dalgaların iletken olmayan yani dielektrik ortamlarda yayılması üzerine yoğunlaştıracağız. Boşlukta ilerleyen elektromanyetik dalgalar için kullandığımız yöntemi takip ederek, madde içinde ilerleyen elektromanyetik dalgaların hızını bulabiliriz; (15) Burada maddenin göreceli elektrik geçirgenlik sabiti ya da dielektrik sabiti, ise dielektrik geçirgenliğidir ( ). dielektriğin göreceli manyetik geçirgenlik sabiti, de manyetik geçirgenliğidir ( ). Yalıtkan malzemelerin çoğu için nin değeri 1 civarındadır (İletken ferromanyetik malzemeler hariç). olduğu durumlarda, dalganın malzame içindeki hızı (16) olur. 11

12 Dielektrik malzemeler için değeri her zaman 1 den büyük olduğundan (boşluk için ) elektromanyetik dalgaların dielektrik ortamlardaki hızı boşluktaki hızından daima oranında küçüktür ( ). Boşluktaki hızı ile maddesel ortamdaki v hızı arasındaki oran optikte malzemenin kırma indisi olarak bilinir. olduğu durumlarda dir. Bazı malzemelerin 20 de (17) dielektrik sabitleri Tablo 1 de verilmiştir. Maddenin dielektrik sabiti statik elektrik alanlarda ölçüldüğünden, Tablo 1 de verilen değerlerini bu denklemde kullanamayız. Alanlar hızla salındığından düzgün alanlarda oluşan elektrik dipollerin kısa bir süre içinde yönlerini yeniden ayarlamaları mümkün değildir. Hızla değişen alanlardaki değerleri genelde Tablo 1 de verilen değerlerden çok küçüktür. Örneğin suyun katsayısı tablo 1 de 80.4 olarak veriliyor, fakat görünür ışık frekans aralığında sadece 1.80 civarında değerler alır. Bu nedenle, dielektrik sabiti aslında frekansın bir fonksiyonudur ve ileri seviyedeki incelemelerde dielektrik fonksiyonu olarak bilinir. Tablo 1. Bazı malzemelerin 20 de dielektrik sabitleri Malzeme Malzeme Vakum (boşlu) 1 Polivinil klorür 3.18 Hava (1 atm) Pleksiglas 3.40 Hava (100 atm) Cam 5-10 Teflon 2.1 Neopren 6.7 Polietilen 2.25 Germanyum 16 Benzen 2.28 Gliserin 42.5 Mika 3-6 Su 80.4 Bazı malzemelerin kırma indisleri aşağıdaki Tabloda verilmiştir. 12

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

TEMEL İŞLEMLER KAVRAMLAR

TEMEL İŞLEMLER KAVRAMLAR EM 420 Yüksek Gerilim Tekniği TEMEL İŞLEMLER VE KAVRAMLAR YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY Bölüm 10: Faraday Yasası 1. İndüksiyon (Etkileme) Deneyleri 2. Faraday

Detaylı

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması KUTUPLANMA (Polarizasyon) Kutuplanma enine dalgaların bir özelliğidir. Ancak burada mekanik dalgaların kutuplanmasını ele almayacağız. Elektromanyetik dalgaların kutuplanmasını inceleyeceğiz. Elektromanyetik

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

Faraday Yasası. 31. Bölüm

Faraday Yasası. 31. Bölüm Faraday Yasası 31. Bölüm 1. Faraday İndüksiyon Yasası Faraday ve Henri: Değişen manyetik alanlar da emk (dolayısıyla akım) oluşturur. Şekilde görüldüğü gibi akım ile değişen manyetik alan arasında bir

Detaylı

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ]

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ 2015-2016 YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis seyit.sis@balikesir.edu.tr, MMF 7. kat, ODA No: 3, Dahili: 5703 1 DERS İÇERİĞİNE GENEL BAKIŞ

Detaylı

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ YALITKANLAR VE İLETKENLER...

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ YALITKANLAR VE İLETKENLER... İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ... 2 1.2. YALITKANLAR VE İLETKENLER... 4 1.2.1. İletkenler, Yalıtkanlar ve Yarıiletkenler... 4 1.2.2. Topraklanma...

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t)

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t) Dalgalar Tireşimlerin bir uyarının veya bir sarsınının uzay içinde zamanla ilerlemesine dalga denir. Maemaiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ GRADİYENT: f(,y,z) her noktada sürekli ve türevlenebilir bir skaler alan olsun. Herhangi bir

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

BÖLÜM 17 RİJİT ROTOR

BÖLÜM 17 RİJİT ROTOR BÖLÜM 17 RİJİT ROTOR Birbirinden R sabit mesafede bulunan iki parçacığın dönmesini düşünelim. Bu iki parçacık, bir elektron ve proton (bu durumda bir hidrojen atomunu ele alıyoruz) veya iki çekirdek (bu

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: Bir nesnenin sabit hızda, net gücün etkisi altında olmadan düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplanmaktır. GENEL BİLGİLER:

Detaylı

Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-1

Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-1 Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

ELEKTROMANYETİK ALAN TEORİSİ

ELEKTROMANYETİK ALAN TEORİSİ ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

ELEKTROMANYETİK ALAN TEORİSİ

ELEKTROMANYETİK ALAN TEORİSİ ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 2 3 4 5 6 7 8 Örnek: Bir disk boyunca elektrik akısı r = 0.10 m A 30 E 3 210 N/C A (0.10 m) E 54 N m 2 2 0.0314 m EA cos (2.010 / C Örnek: Bir

Detaylı

FARADAY YASASI Dr. Ali ÖVGÜN

FARADAY YASASI Dr. Ali ÖVGÜN FİZK 104-202 Ders 9 FARADAY YASASI Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

Şekil 6.1 Basit sarkaç

Şekil 6.1 Basit sarkaç Deney No : M5 Deney Adı : BASİT SARKAÇ Deneyin Amacı yer çekimi ivmesinin belirlenmesi Teorik Bilgi : Sabit bir noktadan iple sarkıtılan bir cisim basit sarkaç olarak isimlendirilir. : Basit sarkaçta uzunluk

Detaylı

Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü?

Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü? Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü? A. Manyetik Alan doğrultusunda. B. Manyetik Alan doğrultusuna zıt. C. Manyetik Alan doğrultusuna

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

elektrikle yüklenmiş

elektrikle yüklenmiş ELEKTRİK ALANLARI Birkaç basit deneyle elektrik yüklerinin ve kuvvetlerinin varlığı kanıtlanabilmektedir. Örneğin; Saçınızı kuru bir günde taradıktan sonra, tarağı küçük kağıt parçalarına dokundurursanız

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 35 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 4. 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim rekansı ışık

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar : iletkenlik katsayısı (S/m) Malzemelerin iletkenlikleri sıcaklık ve frekansla değişir. >>

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler.

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Schrödinger denklemi Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Köşeli parantez içindeki terim, dalga fonksiyonuna etki eden bir işlemci olup, Hamilton

Detaylı

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak

Detaylı

Newton un F = ma eşitliğini SD den türete bilir miyiz?

Newton un F = ma eşitliğini SD den türete bilir miyiz? burada yine kısmi integrasyon kullanıldı ve ± da Ψ ın yok olduğu kabul edildi. Sonuç olarak, p = p, yani p ˆ nin tüm beklenti değerleri gerçeldir. Bir özdeğer kendisine karşı gelen kararlı durumun beklenti

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA ELEKTROSTATİK 1)COULOM KANUNU: İki yük arasındaki itme ya da çekme kuvveti yüklerin çarpımı ile doğru yükler arasındaki uzaklığın karesi ile ters orantılıdır. q1q 1 u kanun F k şeklinde

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

FİZK Ders 8 MANYETIK ALAN. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 8 MANYETIK ALAN. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-202 Ders 8 MANYETIK ALAN Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı