LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
|
|
- Aylin Sağlık
- 10 ay önce
- İzleme sayısı:
Transkript
1 LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA
2 İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma Fonksionun Tüevi... 5 Üstel Fonksionun Tüevi... 9 Tüevde Zinci Kualı... Tes Fonksionun Tüevi... 7 Kapalı Fonksionun Tüevi... Paametik Fonksionun Tüevi... 5 Mutlak Değe Fonksionun Tüevi... 8 Yüksek Metebeden Tüev... 5 Logaitmik Tüev Alma... 5 Ve Belisizliği... 6 Tüevin Geometik Youmu Atan Ve Azalan Fonksionla Ekstemum Noktala Tüevin Geometik Youmu Ve Dönüm Noktalaı Tüev Ve. Tüev İle İlgili Gafik Soulaı... 9 Maksimum Ve Minimum Poblemlei... Tüevin Fiziksel Anlamı... 8 Asimptotla...
3 TÜREV f: A R e bi fonksion ve,! A olsun ' f ` j f ( )- f ( ) " - itinin değeine f fonksionunun ' noktasındaki tüevi deni ve f ` j şeklinde gösteili. VEYA A R f ( ): A " R fonksionu veilsin. Bağımsız değişken olan in değişim miktaı T, bağımlı değişken olan nin değişim miktaı T f`+ Tj - f ( ) olsun. T eel saı değeine f() T" T fonksionunun noktasındaki tüevi deni. d Tüev l, ( ), şeklinde göstei- d li. olsun iken, olu. f ( + ) -f( ) ( ) " elde edili. ÖRNEK f() fonksionunun noktasındaki tüevini bulunuz. f ( )- f( ) ( ) " ( ) " - ( - ) : ( + ) ( ) " - ( ) ( + ) 6 " ÖRNEK f() + olduğuna göe f ( + ) -f( ) " itinin değei ( + ) + - f( ) " " " ( + ) " ÖRNEK f() fonksionunun apsisli noktasındaki tüevi k di. f( - + ) -f(-) " olduğuna göe k f ( ) k veilmiş f ( -)-f(- ) : " Tü evin tan mndan ÖRNEK (- ) : (- ) k f ( )- f( ) 6 " - 6 k olduğuna göe f () Veilen ifadei düzenlee f ( )- f( ) : " f ( )- f( ) : 6 " - 8 Tüevin tanımından ' f ( ). 6 8 ' f ( ) 8 ÖRNEK 5 f() ( + )$( ) olduğuna göe f ı () f() fonksionunu f() fonksionuna dönüştüe. eine azalım. f() ( + )$( ) elde edili. ( -)-f( ) -- ( ) " - " - ( - ) : ( + ) ( ) ( + ) " - " ÖRNEK 6 f: R + j {} R f () olduğuna göe fu ( + ) -f( ) u" u itinin değei Tüevin tanımından fu ( + ) -f( ) u ( ) di. u" ( ) ( ) ÖRNEK 7 f: R + R f ( ) fonksionunun eangi bi değei için tüevini bulunuz. f ( + ) -f( ) ( ) " " ( + - ) : ` + + j " : ( + + ) + - " : ( + + " : ( + + ) " Tüevin Tanımı
4 . f ( ) *, >, olduğuna göe f () A) 6 B) 8 C) 6 C) 8 E) 5. Z + +, < ] f ( ) [ + ], \ olduğuna göe f () + f ( + ) f ( ) + f () işleminin sonucu A) B) 6 C) D) 6 E) 9. f ( ) -9 fonksionunun tüevli olduğu en geniş tanım aalığı nedi? A) (, ) B) [, ] C) R {, } D) R E) {, } +,. f ( ) * +, < olduğuna göe f () + f () A) B) C) 6 D) E). f ( ) * + k, > +, f() fonksionu noktasında tüevli olduğuna göe k A) B) C) 5 D) 6 E) a +, 6. f ( ) * b -, < fonksionu noktasında tüevli olduğuna göe a + b toplamı A) 7 B) C) D) 6 E) Z ] a, < ] 7. f ( ) [ a+ c, ] b -, > \ fonksionu noktasında tüevli olduğuna göe a + b + c toplamı. 5 f() Gafiği veilen f() fonksionunun tüevsiz olduğu noktalaın apsislei toplamı A) B) C) 5 D) 7 E) 6. f ( ) - -5 fonksionunun tüevsiz olduğu noktala kaç tanedi? A) B) C) D) E) A) B) C) D) - E).. f ( ) fonksionu veilio. Buna göe f() fonksionunun tüevsiz olduğu doğal saı değelei toplamı A) B) C) 5 D) 6 E) Z ] +, 8. g ( ) ] -, < [ ] + ], > \ fonksionunun kaç faklı değei için tüevi oktu? A) B) C) 5 D) E) 5 6 Gafiği veilen f() fonksionunun (, 6) aalığında tüevli olduğu kaç faklı tam saı değei vadı? A) B) C) 5 D) 6 E) 7 6. B. E. C. E 5. A 6. C 7. D 8. E 9. C. B. D. C
5 YÜKSEK MERTEBEDEN TÜREV f() fonksionunun tanımlı olduğu aalıkta tüevlei de tanımlı olmak üzee d ( ) d (. tüev) d l ( ) d (. tüev) d ll ( ) d (. tüev)... ÖRNEK f() 7 olduğuna göe f (5) () değei f ( ) 7 ( ) 7 : 6 l ( ) 7 : 6 : 5 ll ( ) 7 : 6 : 5 : ( 5) f ( ) 7 : 6 : 5 : g : ( 5) 7! f ( ) 7: 6: 5: g : : ÖRNEK olduğuna göe () () değei l 5 ( ) ll ( ) - lll ( ) -8 ( ) 6-8 ( ) ( ) ( ) -8 Yüksek Metebeden Tüev n ( n) d f ( ) n (n. tüev) d ÖRNEK f() e olduğuna göe f () () değei nedi? f ( ) e ( ) e l ( ) e ll ( ) e O âlde f () () $e ÖRNEK f ( ) ln olduğuna göe f () ( ) değei f ( ) ln ( ) l ( ) - f f! ll ( ) ( ) f ( 5) f ( ) ( ) 6! ( ) - -! ( ) 5 5 9! ( ) - (- ) -9! ÖRNEK f ( ) sin olduğuna göe f ( ) sin ( ) : cos l ( ) - : sin ll ( ) - : cos ( ) f ( ) : sin ( 6) 6 ( 6) f e o değei f ( ) - : sin O âlde ( ) f e o- : sin ÖRNEK 5 f ( ) e : cos olduğuna göe f () () in f() tüünden eşiti nedi? f ( ) e : cos ( ) e : cos-e : sin l ( ) -e : sin ll ( ) - e : ( sin+ cos ) ( ) f ( ) -e : cos O âlde f () () f() ÖRNEK 7 ft () cos t d f() t olduğuna göe nedi? dt ft () cos t df() t -cost: : sin t dt df() t -: sin 8t dt dft () - : cos 8t dt ÖRNEK 8 6 f ( ) a - + b + + ( ) - l (- ) -6 olduğuna göe a + b toplamı 5 ( ) 6a - + b + l ( ) a b ( ) 6a- + b + - l (- ) a- 6+ b -6 6a+ b - a+ b -6 (Denklemlein çözümünden) a ve b bulunu. a + b 5
6 . sin d olduğuna göe ifadesinin d için değei A) B) C) 8 D) E) 5. f ( ) ln olduğuna göe f () () değei A)! B) C)! D) E)! 9. f() m + n p + fonksionunun de üç katlı bi kökü olduğuna göe m + n + p toplamı A) B) 6 C) D) E) 6. P() + (a + ) + (b ). f() olduğuna göe f () () ifadesinin eşiti nedi? d ( - ) d 5 ifadesinin eşiti nedi? A) 5! B)! C) 5 D) E) polinomu ( + ) ile tam bölünebildiğine göe a A) B) C) D) E) A) B) C) D) E)!. e olduğuna göe () () değei A) 8 B) 7 C) 5 D) 7 E) 7. f ( ) : ln - olduğuna göe l ( ) + : ll ( ) ifadesinin eşiti nedi? A) - B) C) 6 D) E). P() polinom fonksiondu. Pll ( ) + Plll ( ) + P(), P( ) olduğuna göe P() polinomunun katsaıla toplamı A) B) C) 6 D) 7 E). f() ( ) fonksionu veilio. df df + e o 6 d d olduğuna göe değei kaç olabili? A) B) C) D) E) 8. f() 5 olduğuna göe f (5) () ifadesinin eşiti nedi? A) B) C) ln 5 D) 5 E) ( ln 5) 5. sin t cos t paametik fonksionlaı veilio. d Buna göe nin eşiti aşağıdakileden d angisidi? A) + tan t B) tan t C) cos t E) -sec t D) cosec t 5. B. E. A. C 5. E 6. A 7. B 8. E 9. C. A. B. E
7 TÜREVİN GEOMETRİK YORUMU f() fonksionunun noktasındaki tüevi; anı fonksiona (, f( )) noktasından çizilen teğetin eğimidi. Bi fonksionun eangi bi noktasında fonksiona sadece bi tane teğet çizilebiliosa fonksionun o noktada tüevi vadı. Teğet çizilemiosa a da biden fazla teğet çizilebiliosa fonksionun o noktada tüevi oktu. a f() m + n Teğet doğu E im m tan a ` j Teğet doğu denklemi - m ( - ) Nomal doğu Nomalin doğu denklemi - - ( ) m - ÖRNEK f ` j - 6+ eğisinin noktasındaki teğetinin eğimi m `j `j -6 `j 6 O âlde eğim m 6 dı. m `j - `j - 6+ k `j - + k - + k - k - ÖRNEK f ` j- + m+ paabolüne A(, ) noktasından çizilen teğeti ekseni ile pozitif önde 5 açı aptığına göe m değei E im `j tan 5 `j - + m `j - : + m, tan m m 7 ÖRNEK f ` j sin8-cos eğisinin noktasındaki teğet doğu denklemi nedi? Teğet doğu denklemi - m ` - j, f, m f ` j l` j fe o sine8 : o - cose : o fe o sin- cos ` j 8cos8+ : sin e o 8: cose8: o + : sine: o ÖRNEK eğisine noktasından çizilen nomalin denklemi nedi? F mt F l l, - ` j ` j Fl`j m T Veilen denklemde eine azdığımızda değeini buluuz. + - mt F, l` j Nomalin Denklemi - - m ` - j -`- j- `- j - ÖRNEK 6 T - f ` j ln`cos j eğisine noktasından çizilen teğetin denklemi nedi? - m ` - j, f`j, m `j ln`cos j ln sin `j - cos m `j Tüevin Geometik Youmu ÖRNEK f ` j - + k + 7 eğisine noktasından çizilen teğetin eğimi olduğuna göe k m e o 8-8e- o `- j 65
8 AÇIK UÇLU SORULAR. f ` j - 5+ paabolüne noktasından çizilen teğetin denklemi nedi? ( + ) 5. _, i f() 9. f ` j - + fonksionunun angi noktalaındaki teğetlei + + doğusuna dikti? (, ) ve (, 5). e sin fonksionunun noktasındaki nomalinin eğimi d n d Yukaıda veilen d doğusu f() fonksionuna noktasında teğetti. g ` j f `j olduğuna göe g() in noktasındaki teğetinin eğimi 6. tcos t tsin t _- i. f ` j m- k + eğisinin eksenine paalel olan teğetlein değme noktalaının apsislei toplamı d n. - m + paametik denklem ile veilen f() eğisine t noktasından çizilen teğetin denklemi nedi? d - + n. f() eğisine eksenini kestiği noktaladan çizilen teğetlein bibiine dik olması için m nin pozitif değei (9) 7. + eğisine noktasından çizilen teğet denklemi eksenini angi noktada kese? () g() g() doğusu f() fonksionuna noktasında teğetti. Buna göe (gof)() fonksionunun noktasındaki teğetinin eğimi d n 9. - m + n paabolünün noktasındaki teğetin denklemi olduğuna göe n () eğisinin + doğusuna en akın noktası nedi? (, ). f`+ j ` - jg`+ j + fonksionu veilio. g () olduğuna göe f() fonksionunun apsisli noktasındaki teğetinin eğimi ( ) 7
9 ÖRNEK f ( ) m + 8 eğisinin düşe asimptotunun olmaması için m nin alacağı tamsaı değelei ne olmalıdı? + m + 8 denkleminin eel kökü olmamalıdı. Yani T < dı. ÖRNEK f ( ) eğisinin ata asimptotunu bulunuz " olduğundan ata asimptottu. Yata asimptotun olabilmesi için b+ - a a b ve - olması geeki. Denklem çözülüse a ve b bulunu. O âlde a + b 8 di. Asimptotla m - : : 8 < m < 6-8 < m < 8 olmal d. O alde m nin alacağı tamsaı değelei; ( 7, 6,..., 5, 6, 7) YATAY ASİMPTOT Q ( ) f( ) P ( ) şeklindeki fonksionlada f () a ve f( ) b " " - a ve b eel saı oluosa a ve b doğulaına ata asimptot deni. a ÖRNEK " + eğisinin ata asimptotunu bulunuz " olduğundan eğinin ata asimptotu oktu. ÖRNEK 6 f() + eğisinin ata asimptotunu bulunuz. " " O âlde doğusu ( - ekseni) ata asimptottu. Bi fonksionun simeti mekezi asimptotlaın kesim noktasıdı. ÖRNEK fonksionunun simeti mekezi nedi? Düşe asimptot Yata asimptot d + 8 " - n O alde simeti mekezi (, ) ÖRNEK eğisinin simeti mekezi + k doğusu üzeinde olduğuna göe k b Şekilden göüleceği gibi ata asimptot eğii kesebili. ÖRNEK 7 f ( ) ( a- b) + b+ - eğisinin ata asimptotu olduğuna göe a + b toplamı (Pada eşitlesek) ( a- b) + (- a+ b+ ) -b f ( ) - elde edili. Düşe asimptot Yata asimptot + " - O alde simeti mekezi (, ) noktası + k doğusu üzeinde olduğuna göe $ + k k
10 m -. n + k eğisinin düşe ve ata asimptotlaı (, 6) olduğuna göe m k A) D) B) - C) E) - -. eğisi ile m + doğ- - usu H e, o noktasına göe simetik iki noktada kesişio. Buna göe m A) B) C) 9 D) E) 7. Yukaıdaki gafik aşağıdaki fonksionlaın angisile çizilebili? A) + B) C) D) - - E) +. Asimptotlaı, doğulaı olan ve eksenini noktasında kesen f() fonksionunu aşağıdakileden angisi olabili? + - A) B) C) D) E) - 5. a ve b sıfıdan faklı eel saıladı. + b - f ( ) tane o fonksionunun ata asimptotu doğusu- + a - du. Buna göe b nin a tüünden eşiti aşağıdakileden angisidi? A) a B) a C) a + D) a E) + a 8. f() 6 + k. f ( ) eğisinin simeti mekezi aşağıdakileden 8 - angisidi? A) (8, ) B) (8, ) C) (, ) D) (, ) E) (, ) fonksionu ile bu fonksionun ata asimptotu anı noktada kesişio. Buna göe kesiştiklei noktanın koodinatlaı toplamı A) B) D) - E) 5 C) Yukaıdaki gafik : ( ) ( a)( 8) f ( ) fonk- 6 sionuna ait olduğuna göe a A) B) D) 8 E) C). D. C. A. E 5. D 6. B 7. C 8. E
2013 2013 LYS LYS MATEMATİK Soruları
LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve
ÜNİVERSİTEYE GİRİŞ SINAV SORULARI
ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi
LYS MATEMATİK DENEME - 2
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
ÇEMBERİN ANALİTİK İNCELENMESİ
ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli
açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.
KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat
2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.
4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.
BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.
- TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken
7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56
, 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)
BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI
TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5
DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK
DÝFERANSÝYEL DENKLEMLER ( Genel Teka Testi-). Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) tü?. Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) ve
12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?
. SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)
İNTEGRAL ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT
İNTEGRAL ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Belili İntegal. Kazanım : Riemann toplamı adımıla integal kavamını açıkla.. Kazanım : Belili integalin özellikleini açıkla.. Kazanım : İntegal hesabının biinci
1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.
-A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi
r r r r
997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde
A A A A A A A A A A A
LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).
Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2
1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.
TÜREV VE UYGULAMALARI
TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun
Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol
Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise
İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...
İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5
A A A A A A A A A A A
LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +
LYS MATEMATİK KONU ANLATIM FASİKÜLÜ
Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun
2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?
MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden
SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ
SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)
LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -
TÜREVİN GEOMETRİK YORUMU
TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda
TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK
TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna
5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos
Basit Makineler. Test 1 in Çözümleri
Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı
TG 8 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi
LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular
LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu
Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir?
. BÖLÜM TÜREVİN GEOMETRİK YORUMU TEST TEST - 4 + 4=9 eğrisinin (, ) noktasındaki teğetinin denklemi nedir?. f()=( ). ( 5) fonksionun =4 noktasındaki teğetinin eğimi kaçtır? A) 4 B) C) D) E) 6. fonksionun.
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan
Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:
Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili
MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08
LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. a 9! 8!, 9! 8! OKEK (a, ) OBEB (a, ) ifadesinin değeri kaçtır?. a ve a ile arasındaki ağıntı nedir? a a a a a a a a. ( ). ( ). ( ) 8 nın insinden eşiti nedir?. z z z toplamı
8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin
. MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +
Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık.
Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme ugun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. MATEMATİK SORU BANKASI tamamıla Milli Eğitim Bakanlığı Talim ve Terbie Kurulu
TG 1 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi
6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)
6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen
5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte
Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =
LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI
LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..
Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY
FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye
Fonksiyonlar ve Grafikleri
Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,
ÖZEL TANIMLI FONKSİYONLAR
ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi
ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği
HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan
x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.
TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki
Katı Cismin Uç Boyutlu Hareketi
Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d
ASTRONOTİK DERS NOTLARI 2014
YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem
9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K
M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER
MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.
MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı
FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet
FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar
Fonksiyonlar ve Grafikleri
Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin
1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir?
99 ÖYS. Üç basamaklı bir doğal saısının 7 katı, iki basamaklı bir doğal saısına eşittir. Buna göre, doğal saısı en az kaç olabilir? A) B) C) 6. Bugünkü aşları 6 ve ile orantılı olan iki kardeşin 6 ıl sonraki
TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.
AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde
İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9
İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden
Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.
9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.
3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.
3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı
Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425
Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...
LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
.. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b
2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?
017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin
2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu
.SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade
Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye
Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya
Ekon 321 Ders Notları 2 Refah Ekonomisi
Ekon 321 Des Notlaı 2 Refah Ekonoisi Refah Ekonoisinin Biinci Teel Teoei: İdeal işleyen bi sebest piyasa ekanizası kaynaklaın en etkin (optiu) bi şekilde dağılasını sağla. Topla net fayda (Topla Fayda-
MATEMATÝK GEOMETRÝ DENEMELERÝ
NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti
Ortak Akıl MATEMATİK DENEME SINAVI
Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN
ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No:
LİSANS YERLEŞTİRME SINAVI - GEOMETRİ TESTİ ÖRNEK Ad Soyad : T.C. Kimlik No: Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının Metin Yayınları nın yazılı
İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...
İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi
VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.
. BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale
ANALİZ ÇÖZÜMLÜ SORU BANKASI
ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir
EŞİTSİZLİK SİSTEMLERİ Test -1
EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,
Örnek...1 : Örnek...3 : Örnek...2 :
FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise
1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)
77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En
Örnek...1 : Örnek...3 : Örnek...2 :
FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)
FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :
FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )
Chapter 1 İçindekiler
Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan
1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:
99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden
Çözüm Kitapçığı Deneme-7
KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ 7-9 MAT 7 Çözüm Kitapçığı Deneme-7 Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea
Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR, 2006
MC www.matematikclub.com, Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar TEST I. f() = + 4 + fonksionunun alabileceği en büük 8 9. f() = + + ifadesinin alabileceği en küçük 4 5.
ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :
MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden
PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y
ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol
Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV
Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm
Basit Makineler Çözümlü Sorular
Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x
f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2
Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki
ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV
- 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını
Nokta (Skaler) Çarpım
Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda
Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012
Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır
Örnek...1 : Örnek...3 : Örnek...2 :
FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta
MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI
MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin
DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI
DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1
Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ
Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci
MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI
MÜHENDİSLİK MEKNİĞİ DİNMİK DERS NOTLR Ya. Doç. D. Hüsein aıoğlu EKİM 00 İSTNUL İçindekile 1 İRİŞ EKTÖREL NLİZ.1 ektö fonksionu. ektö fonksionunun tüevi.3 ektö fonksionunun integali 3 EĞRİLERDE DİFERNSİYEL
BÖLÜM 2 GAUSS KANUNU
BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı