İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İlk Yapay Sinir Ağları. Dr. Hidayet Takçı"

Transkript

1 İlk Yapay Sinir Ağları Dr. Hidayet

2 Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2

3 Perseptron eptronlar Basit bir perseptron Yapı: Eşik fonksiyonu tabanlı çalışır. w i,(i = 1 n) ağırlıkları ile n tane giriş düğümü Sınıflandırma problemlerinin çözümünde kullanılır çıkış değerinin 0 veya 1 değeri alıp almamasına bağlı olarak Örnek: giriş örüntüleri: (x 1, x 2 ) Giriş örüntülerinin iki grubu (0, 0) (0, 1) (1, 0) (-1, -1) (2.1, 0) (0, -2.5) (1.6, -1.6) x 1 -x 2 = 2şartı sağlanmak üzere (x 1, x 2 ) düzlemi bir çizgi ile ayrılabilir w 1 = 1, w 2 = -1, threshold = 2 (w 0 =-2) ile bir perseptron tarafından sınıflandırma yapılabilir. 3

4 Perseptron eptronlar (-1, -1) (1.6, - 1.6) Bir x 0 düğümü, eşiğin yerine getirilmesi için kullanılıyor Sabit çıktı 1 (Yapay sinir ağı tasarımında genel bir pratik) w 0 ağırlığı = - threshold 4

5 Perseptron eptronlar Doğrusal ayrılabilirlik Eğer (x 1, x 2 ) düzleminde bir hat varsa iki sınıfa ait iki boyutlu örüntülerin (x 1, x 2 ) bir kümesi doğrusal olarak ayrılabilir. w 0 + w 1 x 1 + w 2 x 2 = 0 Bir sınıftan diğerine bütün örüntüleri ayır Bir perceptron; Ağırlıkları (w 0, w 1, w 2 ) ve girişleri (x 0 = 1, x 1, x 2 ) olan üç girişi ile inşa edilebilir. n boyutlu örüntüler (x 1,, x n ) Düzlem w 0 + w 1 x 1 + w 2 x w n x n = 0 uzayı iki parçaya bölüyor Örnek örüntülerin bir kümesinden ağırlıkları elde edebilir miyiz? Eğer problem doğrusal olarak ayrılabilir ise o zaman EVET (perceptron öğrenimi ile) 5

6 6 Doğrusal olarak ayrılabilir sınıfların örnekleri - Mantıksal AND fonksiyonu örüntüler (bipolar) karar sınırı x1 x2 output w1 = w2 = w0 = x1 + x2 = 0 - Mantıksal OR fonksiyonu örüntüler (bipolar) karar sınırı x1 x2 output w1 = w2 = w0 = x1 + x2 = 0 o o x o x:class I (output =1) o:class II (output=-1) x o x: class I (output = 1) o: class II (output = -1) x x

7 Perceptron Yapısı x1 x2 xn Bias=1 y w1 wn Gövde Çıktı (Soma) Vektörü [Sinaps] Wn =Wn + LR*Xn*E Tek katmanlı perceptronlar sadece doğrusal problemlerde kullanılır Ağırlık Vektörü = W Hard-Lim aktivasyon foksiyonu Her girişin ağırlıkları atanıyor g()=đf Σ(wi.xi)>0 then 1 else 0 Çıktı Vektörü başka katmanları besleyebilir

8 Perceptron Nerelerde Kullanılır? Perceptron doğrusal bir fonksiyonla ayrılabilen bütün fonksiyonlarda kullanılabilir. 8

9 Terimler Epoch : Olası girdiler için ağırlıkların güncellenme sayısıdır. Error: Ölçülen çıktı değeriyle beklenen değer arasındaki farktır. Örneğin, eğer biz çıktı olarak 0 bekleyip de 1 aldığımızda hata (error) değeri -1 dir. 9

10 Terimler Target Value, T :Perceptrondan öğrenmesini beklediğimiz değerdir. Örneğin, eğer AND fonksiyonuna [1,1] girdisini verirsek bekleyeceğimiz sonuç 1 dir. Output, O : Perceptron un verdiği çıktıdır. Xi : Neuron a verilen girdi Wi :Xi inci girdinin ağırlık değeri 10 LR : Learning rate. Bir perceptron un hedefe varması için gereken adım büyüklüğü.

11 Perseptron Öğrenmesi Epoch hata ürettiği sürece { Girdilere göre çıktıyı hesapla Error = T O If Error > 0 then Wi = Wi + LR * Xi Else Wi = Wi - LR * Xi End If } 11

12 ADALINE/MADALINE Perseptronlar gibi tek katmanlı algılayıcıdır. Ondan tek farkı öğrenim kuralıdır Perseptronlar perseptron öğrenme kuralını kullanırken ADALINE ağı Delta öğrenim kuralını kulanır. 12

13 ADALINE/MADALINE ADALINE üniteleri birleşerek MADALINE ünitesini meydana getirir. MADALINE, ADALINE ünitelerinden gelen değerleri mantıksal bir sonuç ünitesinden geçirerek değer elde eder. AND, OR gibi üniteler kullanılır. 13

14 ADALINE Öğrenmesi Epoch hata ürettiği sürece { Girdilere göre çıktıyı hesapla Error = T O If Error <> 0 then Wi = Wi + LR * Xi*Error End If } 14

15 XOR Problemi 2 ) 1 0, ,5 1 1,5 15

16 XOR? Đkinci Girdi kümesi için hatalı 16

17 Çözülemeyen XOR Problemi Tek katmanlı Algılayıcılar XOR problemi gibi doğrusal olarak sınıflandırılamayan problemleri çözümünde başarısızdır.? 17

18 Çözüm Çok Katmanlı Algılayıcı (ÇKA) 18

19 Önemli Not Ders notlarının hazırlanmasında; başta Internet olmak üzere çeşitli kaynaklardan faydalanılmış ve bize ait bir son ürün ortaya konmuştur. Faydalandığımız kaynaklar için herkese teşekkürler. Bu kaynağı değiştirmeden kullanacakların ise referans göstererek çalışmamızı kullanmalarında bir sakınca yoktur. Dr. Hidayet GYTE Bilgisayar Müh. Böl. Öğretim Elemanı 19

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Çok Katmanlı Algılayıcı (Multilayer Perceptron) DOÇ. DR. ERSAN KABALCI

Çok Katmanlı Algılayıcı (Multilayer Perceptron) DOÇ. DR. ERSAN KABALCI Çok Katmanlı Algılayıcı (Multilayer Perceptron) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Perceptron Rosenblatt (1962): İlk

Detaylı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı Yapay Sinir Ağlarına Giriş Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Giriş Neden Yapay Sinir Ağları (YSA) Bazı işler insanlar tarafından kolaylıkla yerine getirilirken mevcut bilgisayarlar

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı Çok Katmanlı Algılayıcılar Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Perceptron Sınıflandırması Perceptronlar sadece doğrusal sınıflandırma yapabilir. 2 Yapay Sinir Ağları ve Uygulamaları

Detaylı

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants) BSM-767 MAKİNE ÖĞRENMESİ Doğrusal Ayırıcılar (Linear Discriminants) Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Perceptron Perceptron, bir giriş kümesinin ağırlıklandırılmış

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

Analitik Geometri (MATH172) Ders Detayları

Analitik Geometri (MATH172) Ders Detayları Analitik Geometri (MATH172) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Analitik Geometri MATH172 Bahar 2 2 0 3 4 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ Ahmet Cumhur KINACI Bilgisayar Mühendisliği

Detaylı

Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları

Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları Ece Akıllı Université de Genève 12 Eylül 2016 CERN TR E. Akıllı (UNIGE) Yapay Sinir Ağları 12.09.2016 1 / 18 Akış 1 Makine Ogrenimi 2 Yapay Sinir

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI),

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI), Yapay Zeka ya giris Yapay sinir aglari ve bulanik mantik Uzay CETIN Université Pierre Marie Curie (Paris VI), Master 2 Recherche, Agents Intelligents, Apprentissage et Décision (AIAD) November 11, 2008

Detaylı

Otomatik Doküman Sınıflandırma

Otomatik Doküman Sınıflandırma Otomatik Doküman Sınıflandırma Rumeysa YILMAZ, Rıfat AŞLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Aydın rumeysa2903@gmailcom, rasliyan@aduedutr, kgunel@aduedutr

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

TC. GAZİ ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI ÜRETİM YÖNETİMİ BİLİM DALI

TC. GAZİ ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI ÜRETİM YÖNETİMİ BİLİM DALI TC. GAZİ ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI ÜRETİM YÖNETİMİ BİLİM DALI YAPAY SİNİR AĞLARI VE BEKLEME SÜRESİNİN TAHMİNİNDE KULLANILMASI YÜKSEK LİSANS TEZİ Hazırlayan Muhammet DEVECİ

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

MATLAB. Fen ve Mühendislik Uygulamaları ile. Prof. Dr. M. Akif CEVİZ. M-Dosyaları, Şart İfadeleri

MATLAB. Fen ve Mühendislik Uygulamaları ile. Prof. Dr. M. Akif CEVİZ. M-Dosyaları, Şart İfadeleri Fen ve Mühendislik Uygulamaları ile MATLAB Prof. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Fen ve Mühendislik Uygulamaları ile MATLAB

Fen ve Mühendislik Uygulamaları ile MATLAB Fen ve Mühendislik Uygulamaları ile MATLAB Doç. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

6. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr

6. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr 6. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II Öğr.Gör. Hakan YILMAZ hakanyilmaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler For Each... Next... 3 Döngüyü

Detaylı

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ADAPAZARI KENTSEL ATIKSU ARITMA TESĐSĐ ÇIKIŞ SUYU PARAMETRELERĐ VE VERĐM DEĞERLERĐNĐN

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

YÜKSEK LĐSANS TEZĐ Hale Hilal DODURGALI

YÜKSEK LĐSANS TEZĐ Hale Hilal DODURGALI ĐSTANBUL TEKNĐK ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ KARINCA KOLONĐSĐ OPTĐMĐZASYONU ĐLE EĞĐTĐLMĐŞ ÇOK KATMANLI YAPAY SĐNĐR AĞI ĐLE SINIFLANDIRMA YÜKSEK LĐSANS TEZĐ Hale Hilal DODURGALI Anabilim Dalı :

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

SÜREKLİ DOĞAL GERİLİM VERİLERİNİN YAPAY SİNİR AĞLARI İLE DEĞERLENDİRİLMESİ, DEPREM ve YAĞIŞLARLA İLİŞKİSİ

SÜREKLİ DOĞAL GERİLİM VERİLERİNİN YAPAY SİNİR AĞLARI İLE DEĞERLENDİRİLMESİ, DEPREM ve YAĞIŞLARLA İLİŞKİSİ SÜREKLİ DOĞAL GERİLİM VERİLERİNİN YAPAY SİNİR AĞLARI İLE DEĞERLENDİRİLMESİ, DEPREM ve YAĞIŞLARLA İLİŞKİSİ ÖZET: Petek SINDIRGI 1 ve İlknur KAFTAN 2 1 Yardımcı Doçent Dr. Jeofizik Müh. Bölümü, Dokuz Eylül

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

AOSB 2017 EĞİTİM PROGRAMI

AOSB 2017 EĞİTİM PROGRAMI Eğitimin Konusu : Makro Excel Eğitim Tarihi : 04-05-10-11-12 Mayıs 2017 Eğitim Hedef Kitlesi : Excel kulllanıcıları arasında pratiklik ve hız kazanmış, Excel fonksiyonları, Veri Analizi araçlarını kullanma

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Osteoporoz riskinin yapay sinir ağları yöntemi ile saptanması Determination of osteoporosis risk using by neural networks method

Osteoporoz riskinin yapay sinir ağları yöntemi ile saptanması Determination of osteoporosis risk using by neural networks method Dicle Tıp Dergisi, 2009 Cilt: 36, Sayı: 2 Dicle Tıp Dergisi, 2009 Cilt: 36, Sayı: 2, (91-97) ARAŞTIRMA YAZISI / ORIGINAL ARTICLE Osteoporoz riskinin yapay sinir ağları yöntemi ile saptanması Determination

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ YAPAY SĐNĐR AĞLARININ ĐNCELENMESĐ VE SIRT AĞRISI OLAN BĐREYLER ÜZERĐNDE BĐR UYGULAMASI Burcu KARAKAYA BĐYOĐSTATĐSTĐK ANABĐLĐM DALI YÜKSEK

Detaylı

ELE 371 SİNYALLER VE SİSTEMLER PROJE 1 - RAPOR

ELE 371 SİNYALLER VE SİSTEMLER PROJE 1 - RAPOR ELE 371 SİNYALLER VE SİSTEMLER PROJE 1 - RAPOR Konuşma Kaydında Bulunan Bir Yankıyı Yok Etmek Ali Burak PARIM 101201010 Bölüm 1 : (a) İstenildiği gibi yankı sisteminin dürtü yanıtı hesaplanmış ve çizdirilmiştir.

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN YÜKSEK LİSANS TEZİ 2011 BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

Temel Matematik II (MATH 108) Ders Detayları

Temel Matematik II (MATH 108) Ders Detayları Temel Matematik II (MATH 108) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Temel Matematik II MATH 108 Bahar 2 0 0 2 2 Ön Koşul Ders(ler)i MATH 107 Dersin

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

Makine Öğrenmesine Giriş (Machine Learning ML)

Makine Öğrenmesine Giriş (Machine Learning ML) Makine Öğrenmesine Giriş (Machine Learning ML) Doç.Dr.Banu Diri Doğal Dil Đşlemede Eğilimler Önce : Yapay Zeka Tabanlı, Tam olarak anlama Şimdi : Külliyat(Corpus)-tabanlı, Đstatistiki, Makine Öğrenmesi

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

YAPAY SİNİR AĞLARI Prof.Dr. Ercan ÖZTEMEL PAPATYA YAYINCILIK

YAPAY SİNİR AĞLARI Prof.Dr. Ercan ÖZTEMEL PAPATYA YAYINCILIK YAPAY SİNİR AĞLARI Prof.Dr. Ercan ÖZTEMEL PAPATYA YAYINCILIK İstanbul, Ankara, İzmir, Adana Papatya Yayıncılık Eğitim PAPATYA YAYINCILIK EĞİTİM BİLGİSAYAR SİS. SAN. VE TİC. A.Ş. Ankara Cad. Prof. F. Kerim

Detaylı

5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr

5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr 5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II Öğr.Gör. Hakan YILMAZ hakanyilmaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler STRING FONKSİYONU... 3 SPLIT FONKSİYONU...

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

İç Mimariye Giriş (ICM 121) Ders Detayları

İç Mimariye Giriş (ICM 121) Ders Detayları İç Mimariye Giriş (ICM 121) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İç Mimariye Giriş ICM 121 Güz 3 0 0 3 3 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

YAPAY SINIR AGI ILE ELEKTROT VE IZOLATÖR BIÇIM OPTIMIZASYONU YÜKSEK LISANS TEZI. Müh. Suna BOLAT ( )

YAPAY SINIR AGI ILE ELEKTROT VE IZOLATÖR BIÇIM OPTIMIZASYONU YÜKSEK LISANS TEZI. Müh. Suna BOLAT ( ) ISTANBUL TEKNIK ÜNIVERSITESI FEN BILIMLERI ENSTITÜSÜ YAPAY SINIR AGI ILE ELEKTROT VE IZOLATÖR BIÇIM OPTIMIZASYONU YÜKSEK LISANS TEZI Müh. Suna BOLAT (504011041) Tezin Enstitüye Verildigi Tarih : 5 Mayis

Detaylı

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Bilgisayar Mühendisliği Anabilim Dalı Hüseyin ÖZÇINAR Danışman: Yard.

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

LAZER SENSÖRLERLE BİR ROBOTUN DOĞAL FREKANSLARININ VE STATİK ÇÖKMELERİNİN ÖLÇÜMÜ

LAZER SENSÖRLERLE BİR ROBOTUN DOĞAL FREKANSLARININ VE STATİK ÇÖKMELERİNİN ÖLÇÜMÜ 327 LAZER SENSÖRLERLE BİR ROBOTUN DOĞAL FREKANSLARININ VE STATİK ÇÖKMELERİNİN ÖLÇÜMÜ Zeki KIRAL Murat AKDAĞ Levent MALGACA Hira KARAGÜLLE ÖZET Robotlar, farklı konumlarda farklı direngenliğe ve farklı

Detaylı

Artistik Anatomi (SGT 120) Ders Detayları

Artistik Anatomi (SGT 120) Ders Detayları Artistik Anatomi (SGT 120) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Artistik Anatomi SGT 120 Seçmeli 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili Görsel Algı II Türkçe Dersin Verildiği Düzey Ön Lisans (X) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim( )

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Makine Öğrenmesi 8. hafta

Makine Öğrenmesi 8. hafta Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Perspektif Ders No : 069017006 Teorik : 2 Pratik : 1 Kredi : 2.5 ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

Form İnşa (GRT114 ) Ders Detayları

Form İnşa (GRT114 ) Ders Detayları Form İnşa (GRT114 ) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Form İnşa GRT114 Bahar 1 2 0 2 4 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin Seviyesi

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR YAPAY SĐNĐR AĞLARI BĐYOLOJĐK SĐNĐR SĐSTEMĐ Biyolojik sinir sistemi, merkezinde sürekli olarak bilgiyi alan, yorumlayan ve uygun bir karar üreten beynin (merkezi sinir ağı) bulunduğu 3 katmanlı bir sistem

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6 ix Yazılım Nedir? 2 Yazılımın Tarihçesi 3 Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5 Yazılımın Önemi 6 Yazılımcı (Programcı) Kimdir? 8 Yazılımcı Olmak 9 Adım Adım Yazılımcılık 9 Uzman

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Sınır Eleman Yöntemi (MFGE 508) Ders Detayları

Sınır Eleman Yöntemi (MFGE 508) Ders Detayları Sınır Eleman Yöntemi (MFGE 508) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sınır Eleman Yöntemi MFGE 508 Her İkisi 2 2 0 3 7.5 Ön Koşul Ders(ler)i Dersin

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

Bilgisayar Destekli Çizim I (ICM 213) Ders Detayları

Bilgisayar Destekli Çizim I (ICM 213) Ders Detayları Bilgisayar Destekli Çizim I (ICM 213) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Bilgisayar Destekli Çizim I ICM 213 Güz 1 2 0 2 3 Ön Koşul Ders(ler)i

Detaylı

DERS TANITIM BİLGİLERİ (TÜRKÇE) (Saat/Hafta) (Saat/hafta) Kredi Endüstri Ürünleri Tasarımı I

DERS TANITIM BİLGİLERİ (TÜRKÇE) (Saat/Hafta) (Saat/hafta) Kredi Endüstri Ürünleri Tasarımı I 1 DERS TANITIM BİLGİLERİ (TÜRKÇE) Ders Bilgileri Dersin Adı Kodu Yarıyılı Teori Uygulama Laboratuar Yerel AKTS (Saat/Hafta) (Saat/hafta) Kredi Endüstri Ürünleri Tasarımı I EUT201 Güz 4 6-7 12 Önkoşul(lar)-

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir.

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir. DSP DONANIMI Pek çok DSP için temel elemanlar aşağıdaki gibidir. Çarpıcı yada çarpıcı- toplayıcı (MPY/MAC) Aritmetik lojik birim (ALU) Öteleyici (SHIFTER) Adres üreteci (AG) Komut yada program sıralayıcı

Detaylı

T.C. MARDİN ARTUKLU ÜNİVERSİTESİ MİDYAT MESLEK YÜKSEKOKULU BİLGİSAYAR PROGRAMCILIĞI (UZAKTAN ÖĞRETİM) ÖNLİSANS PROGRAMI Eğitim Öğretim Yılı

T.C. MARDİN ARTUKLU ÜNİVERSİTESİ MİDYAT MESLEK YÜKSEKOKULU BİLGİSAYAR PROGRAMCILIĞI (UZAKTAN ÖĞRETİM) ÖNLİSANS PROGRAMI Eğitim Öğretim Yılı T.C. MARDİN ARTUKLU ÜNİVERSİTESİ MİDYAT MESLEK YÜKSEKOKULU BİLGİSAYAR PROGRAMCILIĞI (UZAKTAN ÖĞRETİM) ÖNLİSANS PROGRAMI 2017-2018 Eğitim Öğretim Yılı ALGORİTMA VE PROGRAMLAMAYA GİRİŞ BPU101 5 AKTS 1. yıl/1.yarıyıl

Detaylı

Grafik Tasarımında Desen I (GRT111 ) Ders Detayları

Grafik Tasarımında Desen I (GRT111 ) Ders Detayları Grafik Tasarımında Desen I (GRT111 ) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Grafik Tasarımında Desen I GRT111 Güz 2 2 0 3 7 Ön Koşul Ders(ler)i Dersin

Detaylı

YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ (1)

YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ (1) Beykoz Akademi Dergisi, 2016; 4(1), 1-32 Gönderim tarihi: 10.10.2015 Kabul tarihi: 22.04.2016 DOI: 10.14514/BYK.m.21478082.2016.4/1.1-32 OLGU SUNUMU YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ 1

YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ 1 YAPAY SİNİR AĞLARI YÖNTEMİ İLE ARALIKLI TALEP TAHMİNİ 1 DERYA SAATÇIOĞLU 2, NECDET ÖZÇAKAR 3 ÖZ Talep tahmini ve doğruluğunun bir işletmenin başarısına ve müşteri memnuniyetine doğrudan etkisi bulunmaktadır.

Detaylı

MEH535 Örüntü Tanıma. Karar Teorisi

MEH535 Örüntü Tanıma. Karar Teorisi MEH535 Örüntü Tanıma 2. Karar Teorisi Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Karar Teorisi

Detaylı

Makine Öğrenmesi (COMPE 565) Ders Detayları

Makine Öğrenmesi (COMPE 565) Ders Detayları Makine Öğrenmesi (COMPE 565) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Makine Öğrenmesi COMPE 565 Her İkisi 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı