Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18"

Transkript

1 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30 kişiyle yapılan anket çalışması sonucunda aşağıdaki sonuç tablosu elde edilmiş. CİNSİYET Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 Kızlarla erkekler arasında kurumun kendileri için prestik kaynağı olup olmaması arasında bir fark var mıdır, %95 güven aralığında SPSS programı ile test ediniz. ÇÖZÜM: Gruplar bağımsız ve 3 varsayım da (ölçek oran ölçeği, dağılım normal ve varyanslar homojen), karşılandığından, bağımsız t testi yapılır. Açılan pencerede, test değişkeni olarak yorum seçilir. Grup değişkeni ise cinsiyettir.

2 2 Daha sonra "define groups" a basılarak, gruplar tanımlanır. grup 1: 1 (Kızlar) ve grup 2: 2 (Erkekler). Böylece, gruplar tanımlanmış olur. OK'e basıldıktan sonra çıkan çözüm penceresinde, yukarıdaki tabloda Sig. (2-tailed) kolonu değerine bakılır. Bu değer 0'dan küçükse, Ho reddedilir. Burada ; Ho, "İki grubun ortalamaları arasında fark yoktur( birbirine eşittir)" olduğundan, Ho reddedilir ve iki grup arasında (kızlar ve erkekler), çalıştıkları kurumların bir prestij kaynağı olma görüşleri arasında bir fark vardır denilir. *BAĞIMLI 2 ÖRNEK T TESTİ (Paired Samples t test) ÖRNEK: İİBF İktisat bölümü normal öğretim öğrencilerinin, istatistik 1 dersi vize ve final notları arasında bir fark olup olmadığı, başka bir ifade ile, vizeden sonra, sınıf not düzeyinin gelişip gelişmediği incelenmek istenmiştir. Her bir öğrencinin (toplam 159 öğrenci) vize ve final notları SPSS programına aşağıdaki gibi girilmiştir.

3 3 Gruplar bağımlı (aynı grup olduğundan), ve 1 ve 2. varsayımlar sağlandığından, bağımlı t testi yapılması doğrudur. Paired t test seçildikten sonra gelen ekranda, vize ve final seçilerek "paired variables" kutusuna atılır. OK tuşuna basıldıktan sonra, çıkan sonuç penceresinde aşağıdaki tablo yorumlanır. Paired Samples Test Pair 1 vize - final Paired Differences 95% Confidence Interval of the Std. Error Difference Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed) 9,780 31,262 2,479 4,883 14,677 3, ,000 Bu tabloda, Sig. (2 tailed) kolonu eğer 0,05'den küçükse, Ho reddedilir. Burada sig. değeri 0,000 olduğundan ve 0,05'den küçük olduğundan, Ho reddedilmiştir. Yani, öğrencilerin vize ve final notları arasında istatistiksel olarak anlamlı bir fark vardır. Kİ KARE TESTİ ÖRNEK: Sigara içenlerle içmeyenler arasında kanser görülme oranlarının farklı olup olmadığı araştırılmak istenmiştir. Sonuçlar, aşağıdaki tablodaki gibi çıkmıştır.

4 4 Sigara İçme Kanser Kanser Değil Sigara içiyor Sigara içmiyor 5 95 İlgili veriler, SPSS'de aşağıdaki gibi girilmiştir. Burada 1- sigara içern 2 - sigara içmeyen ve yine 1- kanser 2- kanser değil anlamına gelmektedir. Burada Ho hipotezi, sigara içen ve içmeyen grup arasında, kanser olma açısından bir fark yoktur'dur. Yani, "kanser olma, sigaraya bağlı değildir. sigarayla ilişkisi yoktur" demektedir. 2 grup olduğundan, ad ölçeğinde bir verimiz olduğundan ki kare testi uygundur. Bunun için "descriptive statistics --> Crosstabs" menüleri kullanılır.

5 5 Çıkan menüde ( yukarıdaki) rows kısmına sigara içme-içmeme durumu, columns kısmına da "kanser " değişkeni getirilir. Sonra altta yer alan "statistics" butonuna basılır. Çıkan pencerede, "Chi-Square" kısmı işaretlenir ve continue ye basılır. Sonra Statistics düğmesinin yanında yer alan "Cells" butonuna basılır. Çıkan pencerede (aşağıda) Row ve Column kısımları işaretlenir ve continue ye basılır. Daha sonra OK tuşuna basılarak test işlemi başlatılır. Aşağıda çıkan sonuç tablosu görülmektedir.

6 6 sigara * kanser Crosstabulation sigara Total sigara içiyor sigara içmiyor Count % within sigara % within kanser Count % within sigara % within kanser Count % within sigara % within kanser kanser Kanser kanser deðil Total ,0% 80,0% 100,0% 80,0% 45,7% 50,0% ,0% 95,0% 100,0% 20,0% 54,3% 50,0% ,5% 87,5% 100,0% 100,0% 100,0% 100,0% Bu çapraztablo, sigara içenlerin % 20'sinin kanser olduğunu ve kanser olanların ise, %80'inin sigara içtiğini bize söylemektedir. Benzer şekilde sigara içmeyenlerin sadece %5'inin kanser olduğunu, kanser olmayanların da %54,3'ünün sigara içmediğini söylemektedir. Fakat bu sonuçların istatistiksel olarak anlamlı olup olmadığını tesbit edebilmek için, Chi-Square tablosuna (aşağıda) bakmak gerekmektedir. Pearson Chi-Square Continuity Correction a Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases Chi-Square Tests Asymp. Sig. Value df (2-sided) 10,286 b 1,001 8,960 1,003 10,925 1,001 10,234 1, a. Computed only for a 2x2 table Exact Sig. (2-sided) Exact Sig. (1-sided),002,001 b. 0 cells (,0%) have expected count less than 5. The minimum expected count is 12,50. Teste ilişkin "Asymp. Sig (2 tailed) değerine bakılır (Pearson Chi-Square sütünuna denk gelen rakama). Şayet bu değer 0,05'den küçükse, Ho reddedilir. (diğer testlerde de olduğu gibi). Çıkan sonuçta elde edilen değer (0,001) 0,05'den küçük olduğundan, Ho reddedilir. Yani, sigara içme durumu ile kanser olma durumu arasında bir ilişki-fark vardır. VARYANS ANALİZİ (ANOVA) Temeli, varyansları karşılaştırmaya dayanır. ÖRNEK: Bir işyerinde, kişinin işyerindeki mevkisinin (işçi, ustabaşı, ), yaptığı işi sevip sevmemesi üzerinde etkili olup olmadığı araştırılmak istenmiştir. Bunu için, bu şirkette çalışan 40 kişiye mevkisi ve işi sevip sevmediği sorulmuş ve 1 ile 5 arasında işi sevip sevmediklerini değerlendirmeleri istenmiştir (1- hiç sevmiyorum, 5- çok seviyorum anlamındadır) ÇÖZÜM: Burada 3 grup oduğundan ve dağılım normal, ölçek aralıklı ve varyanslar eşit olduğundan (birazdan test edilecektir), ANOVA kullanılır. (2 grup olsaydı, t testi kullanılabilirdi). Bunun için veriler aşağıdaki şekilde girilir ve One Way ANOVA seçilir.

7 7 Açılan pencerede (yukarıda), bağımlı değişkene sahiplenme (sevip sevmeme), factor kısmına da mevki yazılır. Ve Post Hoc butonuna basılır. Açılan pencerede, Bonferroni ve Tukey işaretlenir. Bu tablo, şayet analiz sonucunda bir fark olduğu çıkarsa (Ho reddedilirse), hangi gruplar arsında farklılık olup olmadığını anlamak için kullanılacaktır. Sonra continue ye basılır. Daha sonra Post Hoc butonunun yanında yer alan Options butonuna basılır.

8 8 Options butonuna basılınca çıkan pencerede, Descriptive, Homogenetiy of variance test ve means plot kutucukları seçilir ve continue işaretlenir. OK tuşuna basılarak test tamamlanır. Test of homogenity of variances (aşağıdaki), varyansların eşit olup olmadığını test etmektedir ( 3. varsayım). Sig değeri şayet 0,05'den büyükse, varyansların eşit olduğu kabul edilir. (0,612 > 0,05 olduğundan, varyanslar eşittir) Test of Homogeneity of Variances sahiplenme Levene Statistic df1 df2 Sig., ,612 ANOVA sonuç tablosu (aşağıda) incelendiğinde, Sig. değeri < 0,05 olduğundan, Ho reddedilir. Yani, gruplar arasında, işyerini sevip sevmeme arasında bir fark vardır. ANOVA sahiplenme Between Groups Within Groups Total Sum of Squares df Mean Square F Sig. 27, ,751 18,255,000 27,872 37,753 55, Farkın hangi gruplar arasında olduğunu bulmak için ise multiple comparisons (çoklu karşılaştırma) tablosuna bakılır. (Aşağıda)

9 9 Multiple Comparisons Dependent Variable: sahiplenme Tukey HSD Bonferroni (I) mevki (J) mevki *. The mean difference is significant at the.05 level. Mean Difference 95% Confidence Interval (I-J) Std. Error Sig. Lower Bound Upper Bound -1,452*,323,000-2,24 -,66-1,939*,345,000-2,78-1,10 1,452*,323,000,66 2,24 -,487,350,355-1,34,37 1,939*,345,000 1,10 2,78,487,350,355 -,37 1,34-1,452*,323,000-2,26 -,64-1,939*,345,000-2,80-1,08 1,452*,323,000,64 2,26 -,487,350,516-1,36,39 1,939*,345,000 1,08 2,80,487,350,516 -,39 1,36 Bu tabloda, "Mean difference" kolonu önemlidir ve * işareti bulunan satırlar, gruplar arsında farklılığın bulunduğu gruplardır. Örneğin, işçiler ve ustabaşılar arasında sevip sevmeme arasında bir fark varken, ler ile ustabaşılar arasında bir fark yoktur. Bu kolonda yer alan rakamlar ise, aradaki farkın büyüklüğünü bize söylemektedir. Örneğin, ustabaşı, işçiye göre işyerini 1,452 puan kadar (5 üzerinden) daha fazla sevmekte, yine, işçiye göre işyerini 1,939 puan kadar daha çok sevmektedir. Bu sonuçlar, istatistiksel olarak da anlamlıdır. Diğer yandan, ile ustabaşı arasında, işyerini sevip sevmeme açısından bir fark olmadığı görülmektedir..

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA)

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

İSTATİSTİK PAKET PROGRAMLARI - SPSS

İSTATİSTİK PAKET PROGRAMLARI - SPSS BİLGİSAYAR DESTEKLİ İSTATİSTİK İstatistik, hayatın karışık olaylarını ve sorunlarını çözümlemeye çalışan bir bilim dalıdır. Son yıllara kadar oldukça karmaşık matematik işlemler bütünüymüş gibi görünen

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

Denetim Etkinliğini Artırmada Verinin Analizi

Denetim Etkinliğini Artırmada Verinin Analizi Denetim Etkinliğini Artırmada Verinin Analizi Benford Analizi Uygulama Mayıs, 2016 Antalya 1. Uygulama TANIMLAYICI İSTATİSTİKLER VE ÖRNEKLEM BAĞIMSIZLIK TESTLERİ Örneklemlerin Bağımsızlık Analizleri (Grupların

Detaylı

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş Araştırma Yöntemleri Çıkarımsal İstatistikler: Parametrik Testler I Giriş Bir önceki derste örneklem seçme mantığını işledik Evren ve örneklemden elde edilen değerleri tanımlamayı öğrendik Standart normal

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

Nicel Veri Analizi ve İstatistik Testler

Nicel Veri Analizi ve İstatistik Testler Nicel Veri Analizi ve İstatistik Testler Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/spring2009/bby208/ SLIDE 1 Nicel Analiz Olguları tanımlamak ve açıklamak için

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

Bağımsız örneklem t-testi tablo okuması

Bağımsız örneklem t-testi tablo okuması Bağımsız örneklem t-testi tablo okuması İki bağımsız grubu karşılaştırmada kullanılır; Normal dağılım (her bir grup için n>30) [Uygulamada daha küçük sayılar da kullanılmaktadır] Sürekli bağımlı değişken

Detaylı

Yrd. Doç. Dr. Sedat ŞEN 2

Yrd. Doç. Dr. Sedat ŞEN 2 3.SUNUM Önceki derste gördüğümüz gibi 2 grubu karşılaştırırken kullandığımız yöntem t-testi idi. Peki araştırmamızda 3 gruba (A,B ve C grupları) sahip isek bu 3 grup arasında nasıl karşılaştırma yaparız?

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

SİGARA BAĞIMLILIK ANKETİ

SİGARA BAĞIMLILIK ANKETİ Araştırma, Bilgi Sistemleri, Sağlığın Geliştirilmesi ve Halk Sağlığı Şubesi SİGARA BAĞIMLILIK ANKETİ Anketi Hazırlayan: Meryem TER İstatistik: Nurgül GİRGİN 1 Statistics TOPLAM CİNSİYETİ N Valid 123 123

Detaylı

4.SUNUM. Yrd. Doç. Dr. Sedat Şen

4.SUNUM. Yrd. Doç. Dr. Sedat Şen 4.SUNUM 1 Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık 2 SPSS te veri girişini veri görünümü kısmından elle ya da başka bir dosyanın SPSS içine file>open

Detaylı

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ Aslı AŞIK YAVUZ 1 İçindekiler 1. Küresel Cinsiyet Eşitsizliği Endeksi 2. Çalışmanın Amacı 3. Çalışmada

Detaylı

ERKEK VE KADIN VOLEYBOL SPORCULARININ RİSK ALGILARININ BELİRLENMESİ. İsmail ÇELİK Fatih PALA Dr. Pınar GÜZEL

ERKEK VE KADIN VOLEYBOL SPORCULARININ RİSK ALGILARININ BELİRLENMESİ. İsmail ÇELİK Fatih PALA Dr. Pınar GÜZEL ERKEK VE KADIN VOLEYBOL SPORCULARININ RİSK ALGILARININ BELİRLENMESİ İsmail ÇELİK Fatih PALA Dr. Pınar GÜZEL GİRİŞ Celal Bayar Üniversitesi Beden Eğitimi ve Spor Yüksekokulu/ Manisa fatihpala1@gmail.com

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

İstatistiksel İfadeyle... / Statistically Speaking...

İstatistiksel İfadeyle... / Statistically Speaking... İstatistiksel İfadeyle... / Statistically Speaking... DOI: 10.5455/jmood.20161230045344 Kovaryans Analizi Selim Kılıç 1 ÖZET: Kovaryans analizi Kovaryans analizi çalışmada incelenmek istenmeyen başka bir

Detaylı

BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER

BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER DÖNEM III Yrd.Doç.Dr. Ġsmail YILDIZ Biyoistatistik ve Tıbbi BiliĢim AD Öğretim üyesi 1 FRĠEDMAN ĠKĠ YÖNLÜ VARYANS ANALĠZĠ TESTĠ: Friedman testi, iki yönlü varyans analizinin

Detaylı

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU Şubat 10 2012 Yener YÜKSEL Mülkiye Başmüfettişi 0 İÇERİK Araştırmanın Amacı:... 3 Anket Ölçeklerinin Oluşturulması:... 3

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

ULUDAĞ ÜNİVERSİTESİ İİBF FAKÜLTESİ ÖĞRENCİLERİNİN BİLİŞİM TEKNOLOJİLERİ KULLANIM ARAŞTIRMASI. Danışman: Prof. Dr. Ayşe OĞUZLAR.

ULUDAĞ ÜNİVERSİTESİ İİBF FAKÜLTESİ ÖĞRENCİLERİNİN BİLİŞİM TEKNOLOJİLERİ KULLANIM ARAŞTIRMASI. Danışman: Prof. Dr. Ayşe OĞUZLAR. www. www. er.com er.com er.com www.zaferteber.com ULUDAĞ ÜNİVERSİTESİ İİBF FAKÜLTESİ ÖĞRENCİLERİNİN BİLİŞİM TEKNOLOJİLERİ KULLANIM ARAŞTIRMASI www.zaferteber.com Danışman: Prof. Dr. Ayşe OĞUZLAR www.zaferteber.com

Detaylı

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI GİRİŞ SPSS paket programı excel vb. paket programlar ile entegre çalışabilen bir analiz programıdır. SPSS programı Sosyal bilimler, sağlık bilimleri ve fen bilimleri

Detaylı

THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH

THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH THESIS SUBMITTED TO THE GRADUATE SCHOOL OF SOCIAL SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY OKTAY ASLAN IN PARTIAL FULFILLMENT

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

KĠMYAGER ADAYLARININ TEKNOLOJĠ TUTUMLARI CELAL BAYAR ÜNĠVERSĠTESĠ ÖRNEĞĠ. Öğr. Gör. Gülbin KIYICI Prof. Dr. Yüksel ABALI Arş.Gör.Dr.

KĠMYAGER ADAYLARININ TEKNOLOJĠ TUTUMLARI CELAL BAYAR ÜNĠVERSĠTESĠ ÖRNEĞĠ. Öğr. Gör. Gülbin KIYICI Prof. Dr. Yüksel ABALI Arş.Gör.Dr. KĠMYAGER ADAYLARININ TEKNOLOJĠ TUTUMLARI CELAL BAYAR ÜNĠVERSĠTESĠ ÖRNEĞĠ Öğr. Gör. Gülbin KIYICI Prof. Dr. Yüksel ABALI Arş.Gör.Dr. Nurcan KAHRAMAN Fen Bilimlerindeki ve teknoloji deki gelişmeler gün geçtikçe

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ GİRİŞ Önceki bölümlerde saha çalışmlarında toplanan verilerin analize hazır hale getirlmesi ve nicel analiz tekniklerinin sınıflandırılması üzerinde durulmuştu.

Detaylı

Yoğun Bakım Üniteleri Araştırması

Yoğun Bakım Üniteleri Araştırması Yoğun Bakım Üniteleri Araştırması 22 Temmuz 2015, ANKARA tkhk.istatistik@saglik.gov.tr İstatistik, Analiz ve Raporlama Daire Başkanlığı 1 Hazırlayanlar: H. Erkin SÜLEKLİ (Sağlık Uzman Yardımcısı) Aziz

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ. DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ

T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ. DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ ĠSTANBUL -2011 1 ĠÇĠNDEKĠLER 1. GĠRĠġ 3 1.1. DĠYABET NEDĠR?...3 1.2. AÇLIK

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

Murat KORKMAZ * * Güven Grup A.Ş. Finans Yönetmeni

Murat KORKMAZ * * Güven Grup A.Ş. Finans Yönetmeni MÜVEKKİL BEKLENTİ VE TATMİNİNİN AVUKAT TARAFINDAN KARŞILANMASININ UYGULAMALI OLARAK İNCELENMESİ AN APPLIED ANALYSIS OF CLIENT EXPECTATION AND MEETING THE SATISFACTION BY THE LAWYER Murat KORKMAZ * 1 Özet:

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

SLCM - Önkoşul Derslerin Bakımı

SLCM - Önkoşul Derslerin Bakımı 1. Yalnızca bir ön koşulu olan veya VE ilişkisi ile bağlı birden fazla ön koşulu olan dersler: 2. VEYA ilişkisi ile birden fazla ön koşulu olan dersler: 3. Sınıf Önkoşulu Eklenmesi: 4. Tek Yönlü (One-Way)

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 4.SUNUM Deney çalışmamızda manipüle ettiğimiz değişkenlerden olmayıp bağımlı değişken üzerinde etkisi olduğunu düşündüğümüz sürekli değişkenlere ortak değişken/kontrol değişkeni/etki karışımı değişkeni

Detaylı

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Regresyon Analizi Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Not: Sunuş slaytları G.A. Morgan, O.V. Griego ve G.W. Gloeckner in SPSS for

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EĞİTİM PROGRAMLARI VE ÖĞRETİM ABD TEZLİ YÜKSEK LİSANS PROGRAMI

YILDIZ TEKNİK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EĞİTİM PROGRAMLARI VE ÖĞRETİM ABD TEZLİ YÜKSEK LİSANS PROGRAMI YILDIZ TEKNİK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EĞİTİM PROGRAMLARI VE ÖĞRETİM ABD TEZLİ YÜKSEK LİSANS PROGRAMI EĞİTİMDE İSTATİSTİK VE UYGULAMALARI DERS NOTLARI ÖĞRETİM ÜYESİ İBRAHİM DEMİR OĞUZCAN

Detaylı

ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ

ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ 1 ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ Doç.Dr.Ayşegül Gözalan, Ankara Atatürk Eğitim ve Araştırma Hastanesi Tıbbi Mikrobiyoloji Prof. Dr. Yakut Akyön Yılmaz Hacettepe

Detaylı

Parametrik Olmayan Testler

Parametrik Olmayan Testler Araştırma Yöntemleri Parametrik Olmayan Testler Parametrik Olmayan Testler Verilerin normal dağılmış olması gerekmiyor Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak Ya da eşit aralıklı

Detaylı

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ Tanı Testlerinin Değerlendirilmesi ROC Analizi Prof.Dr. Rian DİŞÇİ İstanbul Üniversitesi, Onkoloji Enstitüsü Kanser Epidemiyolojisi Ve Biyoistatistik Bilim Dalı Tanı Testleri Klinik çalışmalarda, özellikle

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Çalışma Soruları 1 - Cevaplar

Çalışma Soruları 1 - Cevaplar Çalışma Soruları 1 - Cevaplar BBY252 Araştırma Yöntemleri 2015-2016 Bahar Dönemi Soru 1: Öğrencilerin geçme notlarının hesaplanmasında ara sınav %40, final sınavı %60 etkilidir. Bu bilgiye göre geçme notlarını

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

HUZUREVĠ ÇALIġANLARININ TUTUM VE STRES VERĠLERĠNĠN DEĞERLENDĠRMESĠ

HUZUREVĠ ÇALIġANLARININ TUTUM VE STRES VERĠLERĠNĠN DEĞERLENDĠRMESĠ HUZUREVĠ ÇALIġANLARININ TUTUM VE STRES VERĠLERĠNĠN DEĞERLENDĠRMESĠ SOS. YELDA ġġmġġr PSK. ÖZGE KUTAY PSK. PINAR ULUPINAR Ġzmir, 2014 1 HUZUREVĠ EĞĠTĠMĠ VERĠ DEĞERLENDĠRMELERĠ 2013 yılında İBB Kadın Danışma

Detaylı

Tahsin YOMRALIOĞLU Recep NİŞANCI - Bayram UZUN

Tahsin YOMRALIOĞLU Recep NİŞANCI - Bayram UZUN TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı 02 06 Nisan 2007, Ankara RASTER TABANLI NOMİNAL NAL DEĞERLEME ERLEME YÖNTEMY NTEMİNE NE DAYALI ARSA-ARAZ ARAZİ

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

The International New Issues In SOcial Sciences

The International New Issues In SOcial Sciences The International New Issues In SOcial Sciences Number: 1 pp: 117-142 Summer 2015 ÜNİVERSİTE ÖĞRENCİLERİNİN GSM OPERATÖRÜ TERCİH NEDENLERİNİN ARAŞTIRILMASI: BİR UYGULAMA Fatma ZANCO 1 Akif KAYA 2 Özet

Detaylı

ÜNİVERSİTE ÖĞRENCİLERİNİN EKONOMİK KALKINMA ALGILARININ ANALİZİ

ÜNİVERSİTE ÖĞRENCİLERİNİN EKONOMİK KALKINMA ALGILARININ ANALİZİ ÜNİVERSİTE ÖĞRENCİLERİNİN EKONOMİK KALKINMA ALGILARININ ANALİZİ 1 2 ÖZ: Ekonomik kalkınma tarih boyunca bütün toplumlarda önemli olmuştur. Kalkınma iktisadının gelişme süreci içerisinde ortaya çıkan kavramlar

Detaylı

Veri Analizi ve İstatistik Testler

Veri Analizi ve İstatistik Testler Veri Analizi ve İstatistik Testler Kodlama I Mesleğiniz nedir? Analizi kolaylaştırmak için gruplamak gerekli (işçi, memur, yönetici, vs.) Kod kategorileri hem tüm meslek gruplarını kapsamalı, hem de birbirini

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

KORELASYON VE REGRESYON UYGULAMASI

KORELASYON VE REGRESYON UYGULAMASI KORELASYON VE REGRESYON UYGULAMASI (BİLGİSAYARDA İSTATİSTİK ÇÖZÜMLEMELER) Yrd.Doç.Dr. İsmail YILDIZ Biyoistatistik AD Öğretim üyesi iyildiz@dicle.edu.tr 1 REGRESYON ve KORELASYON ANALİZİ Bağımlı değişkenin

Detaylı

İstatistikî İfadeyle... / Statistically Speaking...

İstatistikî İfadeyle... / Statistically Speaking... İstatistikî İfadeyle... / Statistically Speaking... DOI: 10.5455/jmood.20140707045407 Tıbbi Araştırmalarda İstatistik Teknik Seçimi Cengiz Han Açıkel 1, Selim Kılıç 1 ÖZET: Tıbbi araştırmalarda istatistik

Detaylı

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA )

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) 6.SUNUM 1 Tekrarlı Ölçümler ANOVA Repeated Measures Design: Yinelenmis Ölçüler Tasarımı ya da tekrarlanmış ölçüler tasarımı olarak adlandırılabilir. Repeated

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

Sjögren sendromu (SS) lakrimal bezler ve tükrük bezleri başta olmak üzere, tüm ekzokrin bezlerin lenfositik infiltrasyonu ile karakterize, kronik,

Sjögren sendromu (SS) lakrimal bezler ve tükrük bezleri başta olmak üzere, tüm ekzokrin bezlerin lenfositik infiltrasyonu ile karakterize, kronik, Sjögren Sendromu Açısından Araştırılan Hastalarda Minör Tükrük Bezi Biyopsisine Ait Histopatolojik Parametreler İle Laboratuar Ve Klinik Özelliklerin Analizi Betül Ünal*, Veli Yazısız**, Gülsüm Özlem Elpek*,

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

HDR (HIGH DYNAMIC RANGE) TEKNİĞİNİN FOTOĞRAF SANATINDA KULLANIM ALANLARI

HDR (HIGH DYNAMIC RANGE) TEKNİĞİNİN FOTOĞRAF SANATINDA KULLANIM ALANLARI HDR (HIGH DYNAMIC RANGE) TEKNİĞİNİN FOTOĞRAF SANATINDA KULLANIM ALANLARI Özgür YERLİ 1 HDR (High Dynamic Range) tekniği, fotoğraf çekilirken değil çekildikten sonra uygulanan bir tekniktir. Dolayısı ile

Detaylı

Multivariate ANOVA (MANOVA) 11.Sunum

Multivariate ANOVA (MANOVA) 11.Sunum Multivariate ANOVA (MANOVA) 11.Sunum MANOVA Daha önce bir tane bağımlı değişkenimiz olduğunda gruplar arası farkı incelemek için ANOVA kullanacağımızı göstermiştik. Araştırmamızda birden fazla bağımlı

Detaylı

Hukuk Müşavirliği Modülü Kullanım Kılavuzunu Giriş. E İçişleri Proje Ana Sayfasından kullanıcı adı ve şifresi girilerek giriş butonuna basılır.

Hukuk Müşavirliği Modülü Kullanım Kılavuzunu Giriş. E İçişleri Proje Ana Sayfasından kullanıcı adı ve şifresi girilerek giriş butonuna basılır. Hukuk Müşavirliği Modülü Kullanım Kılavuzunu Giriş Sisteme Giriş: E İçişleri Proje Ana Sayfasından kullanıcı adı ve şifresi girilerek giriş butonuna basılır. Sisteme giriş yapıldıktan sonra Hukuk Müşavirliği

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI ADAPTATION OF DECISION MAKING COLLABORATION SCALE TO TURKISH

İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI ADAPTATION OF DECISION MAKING COLLABORATION SCALE TO TURKISH İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI Derya Kıcı Boğaziçi Üniversitesi derya.kici@boun.edu.tr Özet Bireyler karar verme sürecinde başkaları ile işbirliği

Detaylı

MICROSOFT WORD 2002. Şekil 1 TABLO HAZIRLAMA : Word 2002/II TAB AYARLARI :

MICROSOFT WORD 2002. Şekil 1 TABLO HAZIRLAMA : Word 2002/II TAB AYARLARI : MICROSOFT WORD 2002 TAB AYARLARI : Yazımı belli bir sütundan başlatmak için kullanılır. Tab (durak) ayarı yapıldıktan sonra her Tab tuşuna basıldığında eklenti noktası yerleştirilen tab ayarlarına gelir.

Detaylı

CJ-CP1H-CP1L PLCLERĐNDE FONKSĐYON BLOĞU OLUŞTURMA

CJ-CP1H-CP1L PLCLERĐNDE FONKSĐYON BLOĞU OLUŞTURMA CJ-CP1H-CP1L PLCLERĐNDE FONKSĐYON BLOĞU OLUŞTURMA ĐÇĐNDEKĐLER Fonksiyon Bloğu Oluşturma Input ve Outputların Tanıtılması Programın Yazılması Programın Çalıştırılması Fonksiyon Bloğu Oluşturma Öncelikle

Detaylı

GÖRÜNTÜ SINIFLANDIRMA

GÖRÜNTÜ SINIFLANDIRMA GÖRÜNTÜ SINIFLANDIRMA 2- Açılan pencereden input Raster File yazan kısımdan sınıflandırma yapacağımız resmi seçeriz. 3-Output kısmından işlem sonunda verimizin kayıtedileceği alanı ve yeni adını gireriz

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

Parametrik İstatistiksel Yöntemler (t testi ve F testi)

Parametrik İstatistiksel Yöntemler (t testi ve F testi) Parametrik İstatistiksel Yöntemler (t testi ve F testi) Dr. Seher Yalçın 27.12.2016 1 İstatistiksel testler parametrik ve parametrik olmayan testler olmak üzere iki gruba ayrılır. Parametrik testler, ilgilenen

Detaylı

Yrd. Doç. Dr. Sedat ŞEN 2

Yrd. Doç. Dr. Sedat ŞEN 2 6.SUNUM ANOVA da bir bağımlı değişken ile grup değişkeni kullanarak gruplar arasında bağımlı değişken açısından farklılık olup olmadığını test etmiştik. Daha sonra ANCOVA da ANOVA ya sürekli bir değişkeni

Detaylı

T.C. MALİYE BAKANLIĞI (EBYS) ELEKTRONİK İMZA İLE EVRAK İMZALAMA KULLANICI KILAVUZU

T.C. MALİYE BAKANLIĞI (EBYS) ELEKTRONİK İMZA İLE EVRAK İMZALAMA KULLANICI KILAVUZU T.C. MALİYE BAKANLIĞI (EBYS) ELEKTRONİK İMZA İLE EVRAK İMZALAMA KULLANICI KILAVUZU 2015 ARALIK I 1. İçindekiler 1.1 Paraf Bekleyenler... - 1-1.2 İmza Bekleyenler... - 2-1.3 e-imzalama İşlemi... - 4-1.4

Detaylı

BANKA MÜŞTERİLERİNİN KONUT KREDİSİ AÇISINDAN TERCİH DÜZEYLERİNİN İNCELENMESİ 1

BANKA MÜŞTERİLERİNİN KONUT KREDİSİ AÇISINDAN TERCİH DÜZEYLERİNİN İNCELENMESİ 1 BANKA MÜŞTERİLERİNİN KONUT KREDİSİ AÇISINDAN TERCİH DÜZEYLERİNİN İNCELENMESİ 1 ANALYSIS OF PREFERENCE LEVELS OF BANK CUSTOMERS IN TERMS OF HOUSING LOAN Murat KORKMAZ 1, Sefer GÜMÜŞ 2, Nur DİLBAZ ALACAHAN

Detaylı

MEB e BAĞLI OKULLARDA YÖNETİCİ OLARAK ÇALIŞAN PERSONELİN ZAMAN YÖNETİMİ KAVRAM ALGILAMASININ UYGULAMALI OLARAK İNCELENMESİ

MEB e BAĞLI OKULLARDA YÖNETİCİ OLARAK ÇALIŞAN PERSONELİN ZAMAN YÖNETİMİ KAVRAM ALGILAMASININ UYGULAMALI OLARAK İNCELENMESİ MEB e BAĞLI OKULLARDA YÖNETİCİ OLARAK ÇALIŞAN PERSONELİN ZAMAN YÖNETİMİ KAVRAM ALGILAMASININ UYGULAMALI OLARAK İNCELENMESİ Murat Korkmaz Güven Grup A.Ş. Finans Müdürü hakanmuratkorkmaz34@gmail.com Nurhayat

Detaylı

Keywords: Hotel Establishments, Corporate Image, Public Relations

Keywords: Hotel Establishments, Corporate Image, Public Relations OTEL ĐŞLETMELERĐNDE ĐŞGÖRENLERDEN YANSIYAN KURUMSAL ĐMAJIN ANALĐZĐNE YÖNELĐK BĐR ARAŞTIRMA * ABSTRACT The aim of this study to identify the corporate image perception of employees in hotels, its connection

Detaylı