İSTATİSTİK VE OLASILIK SORULARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İSTATİSTİK VE OLASILIK SORULARI"

Transkript

1 İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının EVET deme olasılığı aşağıdaki seçeneklerden hangisinde verilmiştir? A) 0,0047 B) 0,087 C) 0,0333 D) 0,9953 E) 0,9667 CEVAP: D

2 SORU Türkiye deki araba kaza sayısı, X ve kazalar arasındaki süre, Y rassal değişkenleri için aşağıdaki dağılım bilgileri verilmiştir: Y Ortalaması µ olan Üstel, µ>0 X Y=y Poisson(y) Bu bilgiler ışığında Türkiye deki araba kaza sayılarının beklenen değeri aşağıdaki seçeneklerden hangisinde verilmiştir? A) 1/ B) y C) y D) E) y/ CEVAP: D

3 SORU 3 Çok nadir görülen bir bulaşıcı bir hastalık bir ülkede sadece bir kişide ortaya çıkmıştır. Bu kişinin hastalığı kimseye bulaştırmama olasılığı 1/3, 1 kişiye bulaştırma olasılığı 1/3 ve kişiye bulaştırma olasılığı ise 1/3 olarak belirlenmiştir. Hastalığın en fazla kişiye bulaştıktan sonra yok olma olasılığı aşağıdaki seçeneklerden hangisinde verilmiştir? A) 1/7 B) 14/7 C) 1/7 D) 9/7 E) 6/7 CEVAP: B

4 SORU 4 Hususi bir otomobil için ödenecek trafik sigortası miktarının, aracın yaptığı yol miktarı (km) ve sürücü deneyimi ile ilgili olduğu düşünülmektedir. Eğer, Y rassal değişkeni ödenecek trafik sigortası miktarını, X 1 araç ile yapılan yol miktarını (km), X poliçe sahibinin sürüş deneyimi (ay) ve sürücü deneyimine bağlı X 3 1, X 10 0, diğer durumlarda değişkenleri tanımlanmıştır. 65 hususi araç sürücüsünün bilgilerine dayanılarak oluşturulan doğrusal regresyon modeli aşağıdaki gibi belirlenmiştir: Yˆ.700 0,017X 1,3X 1,( X X 3) 700X 3 Bu modeli sonucuna göre, aşağıdaki seçeneklerden hangisi(leri) doğrudur? I. Diğer bütün açıklayıcı değişkenler sabit iken, Aracın yapmış olduğu yol arttıkça ödenecek trafik sigortası artar. II. Sürüş deneyimindeki bir aylık artış, ödenecek trafik sigortası miktarında,3tl bir azalışa neden olur. III. Sıfır km bir araca sahip 10 yıllık deneyimi olan bir sürücü.000tl trafik sigortası ödeyecektir. IV km de bir araca sahip 15 yıllık sürüş deneyimi olan sürücü TL trafik sigortası ödeyecektir. A) Yalnız I B) Yalnız II C) I ve II D) I, III ve IV E) I ve IV CEVAP: E

5 SORU 5 XY, sürekli rassal vektörünün olasılık yoğunluk fonksiyonu x y, 0 x 1, 0 y 1 f x, y 0, diğer durumlarda şeklinde verilimiştir. 1 Rassal değişken Y olduğu bilindiğine göre aşağıdaki seçeneklerden hangisinde verilmiştir? X olması olasılığı, ( Pr X Y 4 4 ) A) 9/10 B) 35/40 C) 4/5 D) 7/40 E) 3/8 CEVAP: D

6 SORU 6 Bir bölgede trafik sigortası yapan sigorta firmalarının bildirimlerine göre lüks araç sahiplerinin p 0 gibi bir olasılıkla kasko yaptırdığı iddia edilmektedir. Bu bölgeden rastgele n sayıda seçilen lüks araç sahiplerine yapılan anket sonucunca kasko yaptırma oranının (kasko yaptıran sayısının n sayısına oranı) ˆp bilgisi elde edilmiştir. H0 : p p0 & H s : p p0 hipotezini %95 güven düzeyinde test etmek için oluşturulan red bölgesi aşağıdaki seçeneklerden hangisinde verilmiştir? ( z a standart normal dağılımda olasılık değerine karşı gelen tablo değeridir) A) p 0 1 z B) n p 0 1 z C) n p 0 1 z 0.05 D) n p p 0 1 p 0 0 z E) n p p 0 1 p 0 0 z CEVAP: E

7 SORU 7 X ortalaması sıfır, varyansı 4, Y ortalaması -1 varyansı 3 olan birbirinden bağımsız iki rassal değişken olmak üzere tanımlanmıştır. Eğer Z X Y ise, Z ile X rastgele değişkeni arasındaki korelasyon katsayısı aşağıdaki seçeneklerden hangisinde verilmiştir? A) 1 3 B) 1 C) 0 D) 1 E) 1 3 CEVAP: B

8 SORU 8 X1, X,, X n birbirinden bağımsız ve aynı 1 F x 1, x 1 x dağılım fonksiyonuna sahip rassal değişkenleri, min 1,, n Y X X rassal değişkeni ise bu dizinin en küçük elemanını temsil etmektedir. Buna 1 göre, Pr Y olabilmesi için dizinin eleman sayısı (n) en fazla olması gereken değeri 8 aşağıdaki seçeneklerden hangisinde verilmiştir? A) 1 B) 8 C) 7 D) 3 E) CEVAP: C

9 SORU 9 A, B ve C isimli üç bankanın, yıl sonunda TL üzerinde konut kredisi verdiği müşterilerinin toplam sayılarına ait sıklık tablosu aşağıda verildiği gibidir: Banka Sıklık (Müşteri Sayısı) Birikimli Sıklık A ,45 B ,70 C 600 1,00 Bu bilgilere dayanarak, A ve B bankalarının sırası ile başarılı olarak planladığı konut kredisine ait sayılar aşağıdaki seçeneklerden hangisinde verilmiştir? A) 450; 700 B) 600; 600 C) 500; 600 D) 900; 500 E) 900; 1400 CEVAP: D

10 SORU 10 Hilesiz bir zarın atılışı deneyinde 3 sayısı gelinceye kadar yapılan denemelerin sayısı X rassal değişkeni ile gösterilmektedir. İlk 4 denemede başarı elde edilemediği bilindiğinde, X rassal değişkeninin beklenen değeri aşağıdaki seçeneklerden hangisinde verilmiştir? A) 1 B) 10 C) 8 D) 6 E) 5 CEVAP: B

11 SORU 11 Yedi (7) haneli telefon numaralarının ilk hanesinde 0 ın da olabileceğini ve aynı rakamların tekrarlanabileceği varsayımları altında (Örneğin, ), oluşturulabilecek farklı telefon numarasına ait değer aşağıdaki seçeneklerden hangisinde verilmiştir? A) 7 10 B) 7 9 C) 10 7 D) 9 7 E) 700 CEVAP: C

12 SORU 1 Bir sigorta şirketi, trafik kasko değerlerini planlamak için ödenen ortalama hasar miktarları açısından cinsiyetler arası fark olup olmadığını merak etmektedir. Bu şirketin yaptırdığı çalışmada 100 kadın ve 10 erkek bireyden veri toplanmış ve ortalamalar arasındaki fark için %95 lik bir güven aralığı hesaplanmıştır. Bu veriler doğrultusunda hesaplanan güven aralığı (-500 TL, 600 TL) olarak belirlenmiştir. Alternatif hipotezi iki cinsiyet arasındaki ödenen ortalama hasar miktarı farkı sıfırdan farklıdır ise hipotez testine ait aşağıdaki seçeneklerden hangisi söylenebilir? A) p-değeri < 0,05 dir. B) p-değeri > 0,05 dir. C) p-değeri = 0,05 dir. D) p-değeri < 0,05 dir. E) p-değeri > 0,05 dir. CEVAP: E

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

RISK TEORİSİ SINAV SORULARI WEB

RISK TEORİSİ SINAV SORULARI WEB MAYIS 2017 SORU 1: RISK TEORİSİ SINAV SORULARI WEB Bir sigorta şirketinin konut sigortasında uyguladığı iki tip poliçe (A ve B) bulunmaktadır. A tipi konut poliçesinde şirket en fazla 5.500 TL hasar ödemektedir.

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir.

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir. SORU 1 SİGORTA MATEMATİĞİ SINAV SORULARI WEB Şimdiki yaşı 56 olan Ahmet, Bireysel Emeklilik Sistemi (BES) ile biriktirmiş olduğu 250.000 TL yi yaşam süresi boyunca sabit ödemeli dönem başı yıllık maaş

Detaylı

2018 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 29 NİSAN 2018

2018 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 29 NİSAN 2018 2018 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır.

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017

SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017 SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017 SORU 1: Hasar rassal değişkenini tanımlayan rassal X aşağıdaki dağılıma sahiptir: 150 F ( x) = 1, 0. x 150 + x Simülasyon teknikleri kullanılarak bu dağılımdan

Detaylı

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla

Detaylı

HAYAT DIŞI SİGORTALARI SINAVI EKİM 2017

HAYAT DIŞI SİGORTALARI SINAVI EKİM 2017 HAYAT DIŞI SİGORTALARI SINAVI EKİM 2017 SORU 1: Hasar sıklığı dağılımının oranıyla possion dağılımına sahip olduğu, bireysel hasar tutarlarının ortalaması 20 olan bir üstel dağılım olduğu ve prim yüklemesinin

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI: SİGORTA MATEMATİĞİ. Soru 1

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI: SİGORTA MATEMATİĞİ. Soru 1 Soru Günde 8 saat çalışan bir bankanın müşterilerinin sayısı ile ilgili olarak şu bilgi verilmektedir: Müşteri sayısı, bankanın açıldığı an 9 müşteri ile başlayıp, her saat başı 9 oranı ile doğrusal artarak

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

2019 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 21 NİSAN 2019

2019 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 21 NİSAN 2019 2019 YILI İKİNCİ SEVİYE AKTÜERLİK SINAVLARI SİGORTA MATEMATİĞİ (HAYAT VE HAYATDIŞI) 21 NİSAN 2019 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır.

Detaylı

SAĞLIK SİGORTALARI SINAVI EKİM 2017_WEB. Özel Sağlık Sigortası sözleşmelerinin iptaline ilişkin aşağıdaki ifadelerden hangisi doğrudur?

SAĞLIK SİGORTALARI SINAVI EKİM 2017_WEB. Özel Sağlık Sigortası sözleşmelerinin iptaline ilişkin aşağıdaki ifadelerden hangisi doğrudur? Soru 1 SAĞLIK SİGORTALARI SINAVI EKİM 2017_WEB Özel Sağlık Sigortası sözleşmelerinin iptaline ilişkin aşağıdaki ifadelerden hangisi doğrudur? A) Sigorta ettiren ve sigortalı sözleşme tanzim tarihinden

Detaylı

CEVAPLAR. n = n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 = = 11 dir.

CEVAPLAR. n = n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 = = 11 dir. T C S D Ü M Ü H E N D İ S L İ K F A K Ü L T E S İ - M A K İ N A M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü MAK-307 OTM317 Müh. İstatistik İstatistiği ÖĞRENCİNİN: ADI - SOYADI ÖĞRETİMİ NOSU İMZASI 1.Ö 2.Ö A B

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI

SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI ÇÖZÜMLÜ SINAV SORULARI-WEB SORU-1: (i) P =0,06 x:n (ii) P x =0,03 (iii) P x + n=0,04 (iv) d =0,02 1 olarak veriliyor. Buna göre P x: n değeri aşağıdaki seçeneklerden

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Haziran 2013 İSTATİSTİKLER

Haziran 2013 İSTATİSTİKLER Haziran 2013 İSTATİSTİKLER *Ekli dosyadaki istatistiki veriler sigorta şirketlerinin SBM ye gönderdiği verilerden oluşturulmuştur. 1 1 İçindekiler: 1. SBM Eksper Raporu (EKSRAP) İstatistikleri(*)... 3

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR 1 2 3 4 5 6 1 7 8 9 10 10.1 11 10.2 2 12 13 14 15 16 17 3 18 19 20 21 22 23 4 24 25 26 27 28 5 29 30 31 32 33 34 6 35 36 37 37. 1 37. 2 37.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi: İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

SÜREKLİ DÜZGÜN DAĞILIM

SÜREKLİ DÜZGÜN DAĞILIM SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

Temmuz 2012 İSTATİSTİKLER

Temmuz 2012 İSTATİSTİKLER Temmuz 2012 İSTATİSTİKLER *Ekli dosyadaki istatistiki veriler sigorta şirketlerinin SBM ye gönderdiği verilerden oluşturulmuştur. Sigorta Suistimalleri Bilgi Sistemi Veri Tabanı (SİSBİS) İstatistikleri

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 5. HAFTA 2.7 M/M/1/ / sistemi için Bekleme zamanının dağılımı ( ) 1 T j rastgele değişkeni j. birimin

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

TEK BOYUTLU RASSAL DEĞİŞKENLER

TEK BOYUTLU RASSAL DEĞİŞKENLER TEK BOYUTLU RASSAL DEĞİŞKENLER Rassal değişken: S örnek uzayının her bir basit olayını yalnız bir gerçel değere dönüştüren fonksiyonuna rassal (tesadüfi) değişken denir. İki para birlikte atıldığında üste

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma Yöntemleri Güleda Doğan Ders içeriği Korelasyon

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Eylül 2012 İSTATİSTİKLER

Eylül 2012 İSTATİSTİKLER Eylül 2012 İSTATİSTİKLER *Ekli dosyadaki istatistiki veriler sigorta şirketlerinin SBM ye gönderdiği verilerden oluşturulmuştur. 1 1 İçindekiler: 1. SBM Eksper Raporu (EKSRAP) İstatistikleri(*)... 3 1.1

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

PARAMETRİK OLMAYAN TESTLER

PARAMETRİK OLMAYAN TESTLER PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin rassal seçilmesi varsayımına dayanmaktaydı ve parametrik testler kullanılmıştı. Parametrik olmayan testler

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

AKT201 Matematiksel İstatistik I Yrd. Doç. Dr. Könül Bayramoğlu Kavlak

AKT201 Matematiksel İstatistik I Yrd. Doç. Dr. Könül Bayramoğlu Kavlak AKT20 Matematiksel İstatistik I 207-208 Güz Dönemi AKT20 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 Son Teslim Tarihi: 29 Aralık 207 Cuma, Saat: 5:00 (Ödevlerinizi Arş. Gör. Ezgi NEVRUZ a elden teslim ediniz.) (SORU

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

2018 ÜÇÜNCÜ SEVİYE AKTÜERLİK SINAVLARI SAĞLIK SİGORTALARI 16 ARALIK 2018

2018 ÜÇÜNCÜ SEVİYE AKTÜERLİK SINAVLARI SAĞLIK SİGORTALARI 16 ARALIK 2018 2018 ÜÇÜNCÜ SEVİYE AKTÜERLİK SINAVLARI SAĞLIK SİGORTALARI 16 ARALIK 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa olsun,

Detaylı

Türkiye Sigorta ve Emeklilik Sektörü

Türkiye Sigorta ve Emeklilik Sektörü Türkiye Sigorta ve Emeklilik Sektörü Can Akın ÇAĞLAR Başkan 3 Ağustos 2017 1 I. Sektöre İlişkin Genel Bilgiler II. Gündemdeki Önemli Konular 1. Zorunlu Trafik Sigortası 2. Bireysel Emeklilik Sistemi ve

Detaylı

İSTATİSTİĞE GİRİŞ VE OLASILIK

İSTATİSTİĞE GİRİŞ VE OLASILIK 1. 52 iskambil kağıdı ile oynanan bir kağıt oyununda çekilen kart vale ya da kız ise 3$, papaz ya da as ise 5$ kazanılmaktadır. Başka herhangi bir kartın çekilmesi durumunda oyun kaybedilmektedir. Oyunun

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı