34. Dörtgen plak örnek çözümleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "34. Dörtgen plak örnek çözümleri"

Transkript

1 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model için SEM2015 programı ile yapılacak, sonuçlar teorik çözüm ile karşılaştırılacaktır. Malzeme: =30 10,=0.30 Plak kalınlığı: =0.10 P=100 kn L=4 m Şekil 34.1: Dört kenarı ankastre kare plak(perspektif görünüş) Z Y X Plak X ve Y eksenlerine göre simetrik olduğundan dörtte biri modellenecektir. a L=4 m t=0.10 m Bu kenardaki noktalar X etrafında dönemez Bu kenardaki noktalar Y etrafında dönemez P=25 kn Z Dört kenarı ankastre kare plağın dörtte biri(perspektif görünüş) Y Bu kenarlardaki noktalar çökmez ve dönmez X Teorik çözüm: Plak merkezinde çökme: Timoshenko plak merkezindeki çökmeyi =0.3 için: = (( ) = olarak vermektedir. Buna göre = (!.% ) = dir. %!! &!.!.! "# a noktasında moment: Timoshenko plağın a noktasında birim boya yayılı mesnet momentini M a=m y=0.1257p (üst lifte çekme) olarak vermektedir. Buna göre M a=m y= =12.57 knm/m dir. a noktasındaki gerilme: ) * =) ++ =, -. - / (mukavemet) genel bağıntısından hesaplanabilir. I atalet momenti 1xt plak kesitinde hesaplanır: 0 1 =!. = z=+t/2=0.1/2=0.05 m dir (üst lif için). Buna göre ) * =) ++ =.35 :; 6.%%! =7547 olur. Bu gerilme değerini programın aynı noktada hesaplayacağı ) < ++ gerilmesi ile doğrudan karşılaştırabiliriz. Plağın dörtte birinin hesap modelleri 2x2=4 eleman ağı 4x4=16 eleman ağı 6x6=36 eleman ağı 8x8=64 eleman ağı Programın çıktıları yukarıdaki 4 farklı model için aşağıda kısmen verilmiş, plak merkezindeki çökme ve a noktasındaki moment ve gerilme teorik çözüm ile karşılaştırılmıştır. 1 Timoshenko, S., Plak ve kabuklar teorisi(tercüme M. İnan v.d.), İTÜ yayını, 1964, sayfa 220 Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 284

2 Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 285

3 Model Plak merkezinde A mm Örnek 34.1 sonuçları karşılaştırma: Hata % A noktasında moment M y knm/m Hata % a noktasında gerilme B CC kn/m 2 2x x x x Teorik Hata % Örnek 34.2: Teorik çözümü Timoshenko 1 tarafından verilen, dört tarafından ankastre ve p=6.25 kn/m 2 üniform yayılı yükü etkisindeki kare plağın(şekil 34.2) çözümü 3 farklı model için SEM2015 programı ile yapılacaktır. Malzeme: =30 10,=0.30 Plak kalınlığı: =0.10 Yük: p=6.25 kn/m 2 (tüm elemanlarda) t=0.10 m L=4 m Teorik çözüm: Plak merkezinde çökme: Timoshenko plak merkezindeki çökmeyi, =0.3 için, = =!.!%6 >#? olarak vermektedir. Buna göre = =!.!%6.3 4? %!! &!. = dir..a noktasında moment: Timoshenko plağın a noktasında birim boya yayılı mesnet momentini, =0.3 için, M a=m y= pl 2 (üst lifte çekme) olarak vermektedir. Buna göre M a=m y= =5.13 kn. m/m dir. 1 Timoshenko, S., Plak ve kabuklar teorisi(tercüme M. İnan v.d.), İTÜ yayını, 1964, sayfa 220 Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 286

4 a noktasındaki gerilme: ) * =) ++ =, -. - / (mukavemet) genel bağıntısından hesaplanabilir. I y atalet momenti 1xt plak kesitinde hesaplanır: 0 1 =!. = z=+t/2=0.1/2=0.05 m dir (üst lif için Buna göre ) * =) ++ =, - /=. - 3.%% :; 6.%%! = olur. Bu gerilme değerini programın aynı noktada hesaplayacağı ) < ++ gerilmesi ile doğrudan karşılaştırabiliriz. 2x2=4 eleman ağı 4x4=16 eleman ağı 8x8=64 eleman ağı Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 287

5 Plak merkezinde çökme mm Örnek 34.2 sonuçları karşılaştırma: Hata % A noktasında moment knm/m Hata % a noktasında gerilme kn/m 2 2x x x Teorik Hata % Örnek 34.3: Şekil 34.3 de görülen kare plak C30/37 betonu ile inşa edilecektir. Plağın merkezinde tabanı 2x ve yüksekliği 1.80 m olan su deposu vardır. Plak kendi yükü p plak=16.40 kn/m 2 dir. Plak ortasındaki çökme ve bazı elemanlardaki iç kuvvet ve gerilmeler 8x8 eleman ağı kullanarak hesaplanacaktır. t=0.15 m L=4 m Malzeme: =32 10,=0.20 Plak kalınlığı: =0.15 Yükler: p plak=16.40 kn/m 2 (tüm elemanlarda) E FG>H =I JK h JK =10 1.8=18.00 MN/ (sadece deponun oturduğu elemanlarda) Deponun oturduğu elemanlar 1 m 8x8=64 eleman ağı(plağın ¼ ü) Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 288

6 Örnek 34.4: Şekil 34.4 de görülen kare plak C30/37 betonu ile inşa edilecektir. Plağın merkezinde 2x boşluk vardır. Plak yükü 23.8 kn/m 2 dir. Eleman kuvvetleri ve yer değiştirmeleri hesaplanacak, sonuçlar kısmi olarak verilecektir. Boşluk L=4 m Boşluk 1 m 1 m Malzeme: =32 10,=0.20 (tüm elemanlarda) Plak kalınlığı: =0.001 (boşluktaki tüm elemanlarda) =0.15 (boşluk dışındaki tüm elemanlarda) Yükler: p plak=0 kn/m 2 (boşluktaki tüm elemanlarda) p plak=23.8 kn/m 2 (boşluk dışındaki tüm elemanlarda) Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 289

7 Boşluktaki elemanların modellenmesi: 1) Boşluk olan bölgede hiçbir eleman ve nokta tanımlanmaz. Bu gerçek modeldir. Ancak, düzenli numaralama yapılamadığı için veri hazırlamak zorlaşır(model a). 2) Düzenli numaralandırmayı bozmamak için boşluk bölgesinde de nokta ve elemanlar varmış gibi modelleme yapılabilir. Boşluktaki elemanların yükü=0, plak kalınlığı t çok küçük(örneğin t=0.001 m) seçilir(model b) 1. Bu model sonuçların biraz farklı çıkmasına neden olur. Her iki modelin kısmi sonuçları aşağıda verilmiştir. Karşılaştırılırsa hemen hemen aynı olduğu görülür. Boşluk Boşluktaki nokta ve elemanlar 1 m 1 m 1 m 1 m Model a eleman ağı(plağın ¼ ü) Model b eleman ağı(plağın ¼ ü) Model a nın kısmi sonuçları 1 Eleman kalınlığı t nin çok küçük seçilmesi elemanın çok esnek davranacağı anlamındadır. t nin aşırı küçük(örneğin t= m seçilmesi teorik olarak daha doğrudur, ancak bu nümerik soruna; yani süreklilik denklemlerinin tekil olmasına neden olabilir. Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 290

8 Model a nın kısmi sonuçları Model b nın kısmi sonuçları Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 291

9 Model b nın kısmi sonuçları Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 292

10 Örnek 34.5: Aşağıda görülen kare plak C30/37 betonu ile inşa edilecektir. Plak köşe noktasında 0.40x0.40 m kesitli kolonlara oturmaktadır. Plak kalınlığı 0.30 m, plak düzgün yayılı yükü kn/m 2 dir. Plak ortasındaki ve kenar ortasındaki çökme 10x10 eleman ağı kullanılarak hesaplanacaktır. Kolon 0.4 Kolon Malzeme: =32 10,=0.20 Plak kalınlığı: =0.30 Yük: kn/m 2 (tüm elemanlarda) Mesnet koşulları: 1, 2, 3,,11 noktaları X etrafında dönemez(simetri) 1, 12, 34, 45,, 111 noktaları Y etrafında dönemez(simetri) 97, 98, 99, 108, 109, 110, 119, 120, 121 noktaları çökemez ve dönemez(rijit kolon varsayımı) 10x10=100 eleman ağı(plağın ¼ ü) Plak ortasında kuvvetler Plak kenar ortasında kuvvetler Kolon köşesinde kuvvetler Plak ortasında çökme-dönme Plak kenar ortasında çökme-dönme Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 293

11 Örnek 34.6: Aşağıda görülen konsol plak C30/37 betonu ile inşa edilecektir.. Plak kalınlığı 0.17 m, plak düzgün yayılı yükü kn/m 2 dir. X=2, Y=0 noktasındaki çökmesi ve X=0, Y=0 noktasındaki P <GJQG mesnet momenti aşağıda görülen eleman ağı kullanılarak hesaplanacaktır 1. Plak X eksenine göre simetrik olduğundan yarısı modellenmiştir. Malzeme: =32 10,=0.20 Plak kalınlığı: =0.17 Yük: kn/m 2 (tüm elemanlarda) Mesnet koşulları: 1, 6, 16, 21 noktaları çekemez ve dönemez (ankastre) 2, 3, 4, 5 noktaları X etrafında dönemez (simetri) 4x0.5= 2x0.25 2x0.75 4x4=16 eleman ağı(plağın yarısı) P <GJQG : Mesnet ortasında moment : Konsol ucunda çökme 1 Analitik çözüme göre =0.0025, P <GJQG = MN/ dir. Bak: Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 294

12 Örnek 34.7: Aşağıda düşey kesiti görülen betonarme su deposu C30/37 betonu ile inşa edilecektir. Düşey panellerin hepsi de dört tarafı ankastre plak olarak çalışır. Plaklar, şiddeti derinlikle artan ve plak düzlemine dik etkiyen üçken yayılı su basıncı etkisindedir. Bir plağın çözümü yapılacak, en büyük mesnet ve açıklık momentleri belirlenecektir. 3.5 m 3.5 m 4 m 0.30 m 0.30 m 0.30 m 4 m su h su 4 m 4 m Betonarme su deposu düşey kesiti Plağın düşey doğrultuda simetri ekseni vardır, yarısı aşağıdaki gibi modellenebilir. Plak tabanındaki su basıncı I JK h JK = =35.00 MN/ dir. Plak yükü düzgün yayılı olmak zorunda olduğundan her elemanın ortalama düzgün yayılı yükü hesaplanarak şekilde gösterilmiştir. Y Bu kenardaki noktalar çökemez ve dönemez 4 m 8x0.5=4 m Bu kenardaki noktalar çökemez ve dönemez kn/m 2 Bu kenardaki noktalar çökemez dönemez X 4x0.5= Düşey plağın yarısının 4x8 modeli ve ortalama su basıncı Bu kenardaki noktalar Yetrafında dönemez(simetri) Malzeme: =32 10,=0.20 Plak kalınlığı: =0.30 Yük: 32.5 kn/m 2 (1, 2, 3, 4 nolu elemanlarda), 27.5 kn/m 2 (5, 6, 7, 8 nolu elemanlarda),, 2.5 kn/m 2 (25, 26, 27, 28 nolu elemanlarda), 0.00 kn/m 2 (29, 30, 31, 32 nolu elemanlarda) Mesnet koşulları: Şekil üzerinde gösterilmiştir Plağın alt kenarında X etrafında oluşan en büyük mesnet momenti Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 295

13 Plağın sol ve sağ(simetri) kenarında Y etrafında oluşan en büyük mesnet momenti X ve Y etrafında oluşan en büyük açıklık momentleri Plağın üst kenarında X etrafında oluşan en büyük mesnet momenti Y m knm/m knm/m X En büyük mesnet ve açıklık momentleri(sem işaret kuralına göre) Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, , Sayfa 296

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0 27. Uzay kafes örnek çözümleri Örnek 27.: Şekil 27. de verilen uzay kafes sistem çelik borulardan imal edilecektir. a noktasındaki dış yüklerden oluşan eleman kuvvetleri, reaksiyonlar, gerilmeler ve düğüm

Detaylı

(, ) = + + yönünde yer değiştirme fonksiyonu

(, ) = + + yönünde yer değiştirme fonksiyonu . Üçgen levha eleman, düzlem gerilme durumu. Üçgen levha eleman, düzlem gerilme durumu Çok katlı yapılardaki deprem perdeleri ve yüksek kirişler düzlem levha gibi davranır. Sağdaki şekilde bir levha sistem

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

25. SEM2015 programı ve kullanımı

25. SEM2015 programı ve kullanımı 25. SEM2015 programı ve kullanımı Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. 1 TEMEL HESABI Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. Uygulanacak olan standart sürekli temel kesiti aşağıda görülmektedir. 2 Burada temel kirişi

Detaylı

25. SEM2015 programı kullanımı

25. SEM2015 programı kullanımı 25. SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir.

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir. Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER İki doğrultuda çalışan plak (dikdörtgen) Dört tarafından kirişli plaklar aşırı yüklendiklerinde şekilde görülen kesik çizgiler boyunca kırılırlar. Yeter bir yaklaşıklıkla,

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli,

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD TAŞIMA GÜCÜ PROBLEM 1: Diğer bilgilerin şekilde verildiği durumda, a) Genişliği 1.9 m, uzunluğu 15 m şerit temel; b) Bir kenarı 1.9 m olan kare tekil temel; c) Çapı 1.9 m olan dairesel tekil temel; d)

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Zemin-Yapı Etkileşimi

Zemin-Yapı Etkileşimi Bina Tasarım Sistemi Zemin-Yapı Etkileşimi [ Probina Orion Bina Tasarım Sistemi, betonarme bina sistemlerinin analizini ve tasarımını gerçekleştirerek tüm detay çizimlerini otomatik olarak hazırlayan bütünleşik

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370 TEMELLER Temeller yapının en alt katındaki kolon veya perdelerin yükünü (normal kuvvet, moment, v.s.) yer yüzeyine (zemine) aktarırlar. Diğer bir deyişle, temeller yapının ayaklarıdır. Kolon veya perdeler

Detaylı

BETONARME-II ONUR ONAT HAFTA-4

BETONARME-II ONUR ONAT HAFTA-4 BETONARME-II ONUR ONAT HAFTA-4 DİŞLİ DÖŞEMELER Serbest açıklığı 700 mm yi geçmeyecek biçimde düzenlenmiş dişlerden ve ince bir tabakadan oluşmuş döşemelere dişli döşemeler denir. Geçilecek açıklık eğer

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Taşıyıcı Sistem İlkeleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu

Taşıyıcı Sistem İlkeleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu Taşıyıcı Sistem İlkeleri Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi TAŞIYICI SİSTEM ELEMANLARI YÜKLER YÜKLER ve MESNET TEPKİLERİ YÜKLER RÜZGAR YÜKLERİ BETONARME TAŞIYICI SİSTEM ELEMANLARI Rüzgar yönü

Detaylı

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR BETONARME YAPILAR İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR 1. Giriş 2. Beton 3. Çelik 4. Betonarme yapı elemanları 5. Değerlendirme Prof.Dr. Zekai Celep 10.11.2013 2 /43 1. Malzeme (Beton) (MPa) 60

Detaylı

BETONARME - II. Onur ONAT

BETONARME - II. Onur ONAT BETONARME - II Onur ONAT Konu Başlıkları Betonarme döşemelerin davranışları, özellikleri ve çeşitleri Bir doğrultuda çalışan kirişli döşemeler Bir doğrultuda çalışan kirişli döşemeler-uygulama İki doğrultuda

Detaylı

Temel sistemi seçimi;

Temel sistemi seçimi; 1 2 Temel sistemi seçimi; Tekil temellerden ve tek yönlü sürekli temellerden olabildiğince uzak durulmalıdır. Zorunlu hallerde ise tekil temellerde her iki doğrultuda rijit ve aktif bağ kirişleri kullanılmalıdır.

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

KİRİŞ YÜKLERİ HESABI

KİRİŞ YÜKLERİ HESABI 1 KİRİŞ YÜKLERİ HESABI Kirişin birim uzunluğuna (1 metre) gelen yük miktarına kiriş yükü denir. Kirişlerin taşıdığı yükler şunlardır: Kendi öz yükü (g kiriş ) Üzerindeki duvar yükü (var ise) (g duvar )

Detaylı

AAS& ATAY AAS - ATAY PREFABRĐKE YAPI SĐSTEMLERĐ TĐCARET LTD. ŞTĐ. www.aas-atay.com 1

AAS& ATAY AAS - ATAY PREFABRĐKE YAPI SĐSTEMLERĐ TĐCARET LTD. ŞTĐ. www.aas-atay.com 1 Şubat 01 Eğimli Çatı Kirişleri (Makaslar) için Sehim Hesabı. ta KULKSIZOĞLU Đnşaat Yüksek Mühendisi S&TY R-GE Departmanı 1. Giriş Ülkemizde prefabrike beton endüstri yapılarının büyük çoğunluğunda, çatı

Detaylı

YIĞMA YAPI TASARIMI DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK

YIĞMA YAPI TASARIMI DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK 11.04.2012 1 DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK 2 Genel Kurallar: Deprem yükleri : S(T1) = 2.5 ve R = 2.5 alınarak bulanacak duvar gerilmelerinin sınır değerleri aşmaması sağlanmalıdır.

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR HAFTA 01 YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR YAPI STATİĞİ Hafta 01 1 İçindekiler GİRİŞ... 2 YAPI SİSTEMLERİ... 3 YÜKLER... 6 1- ETKİME DURUMLARINA GÖRE YÜKLER... 6 2- ETKİME BİÇİMLERİNE GÖRE YÜKLER...

Detaylı

İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232. Döşemeler

İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232. Döşemeler İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Döşemeler 2015 Betonarme Döşemeler Giriş / Betonarme Döşemeler Kirişli plak döşemeler Dişli (nervürlü)

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II GENEL BİLGİLER Yapısal sistemler düşey yüklerin haricinde aşağıda sayılan yatay yüklerin etkisine maruz kalmaktadırlar. 1. Deprem 2. Rüzgar 3. Toprak itkisi 4.

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

36. Basit kuvvet metodu

36. Basit kuvvet metodu 36. Basit kuvvet metodu Basit kuvvet metodu hakkında çok kısa bilgi verilecektir. Basit kuvvet metodunda hiperstatik bilinmeyenlerinin hesaplanmasına, dolayısıyla buna ait denklem sisteminin kurulmasına

Detaylı

idecad Çelik 8 idecad Çelik Kullanılarak AISC ve Yeni Türk Çelik Yönetmeliği ile Kompozit Kirişlerin Tasarımı

idecad Çelik 8 idecad Çelik Kullanılarak AISC ve Yeni Türk Çelik Yönetmeliği ile Kompozit Kirişlerin Tasarımı idecad Çelik 8 idecad Çelik Kullanılarak AISC 360-10 ve Yeni Türk Çelik Yönetmeliği ile Kompozit Kirişlerin Tasarımı Hazırlayan: Oğuzcan HADİM www.idecad.com.tr idecad Çelik 8 Kullanılarak AISC 360-10

Detaylı

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı Ders 5: İÇTEN DESTEKLİ KAZILAR Prof.Dr. Mehmet BERİLGEN İçten Destekli Kazılar İçerik: Giriş Uygulamalar Tipler Basınç diagramları Tasarım Toprak Basıncı Diagramı

Detaylı

İNM 305 ZEMİN MEKANİĞİ

İNM 305 ZEMİN MEKANİĞİ İNM 305 ZEMİN MEKANİĞİ 2015-2016 GÜZ YARIYILI Prof. Dr. Zeki GÜNDÜZ 1 2 Zeminde gerilmeler 3 ana başlık altında toplanabilir : 1. Doğal Gerilmeler : Özağırlık, suyun etkisi, oluşum sırası ve sonrasında

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin noktalarında süreklilik koşulu : Her elemanın düğüm noktası aynı zamanda sistemin de düğüm noktası olduğundan, sistemin noktaları

Detaylı

Betonarme Çatı Çerçeve ve Kemerler

Betonarme Çatı Çerçeve ve Kemerler İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Betonarme Çatı Çerçeve ve Kemerler 2015 Betonarme Çatılar Görevi, belirli bir hacmi örtmek olan

Detaylı

Mukavemet. Betonarme Yapılar. İç Kuvvet Diyagramları. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. İç Kuvvet Diyagramları. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği KİRİŞ MESNETLENME TİPLERİ VE YÜKLER KİRİŞ MESNETLENME TİPLERİ VE YÜKLER (a) Basit kiriş (b) Sürekli kiriş (c) Konsol

Detaylı

Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler

Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler Kat Kalıp Planı Günay Özmen İstanbul Teknik Üniversitesi 1/4 2/4 1 Aksı Görünüşü B Aksı Görünüşü 3/4 4/4 SAP 2000 Uygulamalarında İdealleştirmeler

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ BÖLÜM II D ÖRNEK 1 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 1 İKİ KATLI YIĞMA OKUL BİNASININ DEĞERLENDİRMESİ VE GÜÇLENDİRİLMESİ 1.1. BİNANIN GENEL ÖZELLİKLERİ...II.1/

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR BİRİNCİ AŞAMA DEĞERLENDİRME YÖNTEMİ BİNANIN ÖZELLİKLERİ Binanın

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

q = 48 kn/m q = 54 kn/m 4 m 5 m 3 m 3 m

q = 48 kn/m q = 54 kn/m 4 m 5 m 3 m 3 m Soru 1) (50 Puan) şağıda verilen sistemin üzerine etkiyen yükler ve konumları şekil üzerinde belirtilmiştir. una ek olarak mesneti cm aşağı yönlü oturmuştur. Tüm kolon ve kirişlerin atalet momenti, elastik

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler TEORİ 1Yanal Toprak İtkisi 11 Aktif İtki Yöntemi 111 Coulomb Yöntemi 11 Rankine Yöntemi 1 Pasif İtki Yöntemi 11 Coulomb Yöntemi : 1 Rankine Yöntemi : 13 Sükunetteki İtki Danimarka Kodu 14 Dinamik Toprak

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ BETONARME HASTANE PROJESİ. Olca OLGUN

İSTANBUL TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ BETONARME HASTANE PROJESİ. Olca OLGUN İSTANBUL TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ BETONARME HASTANE PROJESİ Olca OLGUN Bölümü: İnşaat Mühendisliği Betonarme Yapılar Çalışma Gurubu ARALIK 2000 İSTANBUL TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ

Detaylı

Betonarme Bina Tasarımı Dersi Yapı Özellikleri

Betonarme Bina Tasarımı Dersi Yapı Özellikleri 2016-2017 Betonarme Bina Tasarımı Dersi Yapı Özellikleri Adı Soyadı Öğrenci No: L K J I H G F E D C B A A Malzeme Deprem Yerel Zemin Dolgu Duvar Dişli Döşeme Dolgu Bölgesi Sınıfı Cinsi Cinsi 0,2,4,6 C30/

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Proje Adı: İstinat Duvarı Sayfa 1. Analiz Yapı Tel:

Proje Adı: İstinat Duvarı Sayfa 1.  Analiz Yapı Tel: Proje Adı: İstinat Duvarı Sayfa 1 BETONARME KONSOL İSTİNAT DUVARI HESAP RAPORU GEOMETRİ BİLGİLERİ Duvarın zeminden itibaren yüksekliği H1 6 [m] Ön ampatman uç yüksekliği Ht2 0,4 [m] Ön ampatman dip yüksekliği

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun . Döşemeler TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun 07.3 ÇELİK YAPILAR Döşeme, Stabilite Kiriş ve kolonların düktilitesi tümüyle yada kısmi basınç etkisi altındaki elemanlarının genişlik/kalınlık

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

ihmal edilmeyecektir.

ihmal edilmeyecektir. q h q q h h q q q y z L 2 x L 1 L 1 L 2 Kolon Perde y x L 1 L 1 L 1 = 6.0 m L 2 = 4.0 m h= 3.0 m q= 50 kn (deprem) tüm kirişler üzerinde 8 kn/m lik düzgün yayılı yük (ölü), tüm döşemeler üzerinde 3 kn/m

Detaylı

Nlαlüminyum 5. αlüminyum

Nlαlüminyum 5. αlüminyum Soru 1. Bileşik bir çubuk iki rijit mesnet arasına erleştirilmiştir. Çubuğun sol kısmı bakır olup kesit alanı 60 cm, sağ kısmı da alüminum olup kesit alanı 40 cm dir. Sistem 7 C de gerilmesidir. Alüminum

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 6 Kirişlerde ve İnce Cidarlı Elemanlarda Kayma Gerilmeleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok,

Detaylı

) = 2.5 ve R a (T 1 1 2 2, 3 3 4 4

) = 2.5 ve R a (T 1 1 2 2, 3 3 4 4 BÖLÜM 5 YIĞMA BİNALAR İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 5.. KAPSAM Deprem bölgelerinde yapılacak olan, hem düşey hem yatay yükler için tüm taşıyıcı sistemi doğal veya yapay malzemeli taşıyıcı duvarlar

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

SAFE v7. Yazýlýmýn bir aylýk tam sürümlü CD-ROM unu ücretsiz isteyebilirsiniz. baser@comp-engineering.com http://www.comp-engineering.

SAFE v7. Yazýlýmýn bir aylýk tam sürümlü CD-ROM unu ücretsiz isteyebilirsiniz. baser@comp-engineering.com http://www.comp-engineering. Yazýlýmýn bir aylýk tam sürümlü CD-ROM unu ücretsiz isteyebilirsiniz. baser@comp-engineering.com http://www.comp-engineering.com Sonlu elemanlar yöntemiyle betonarme kiriþli ve mantar döþeme, plak sistemleri,

Detaylı

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1.

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Uzaydaki cisimlerin eksiksiz bir anlatımı için, ana boyutlarıyla birlikte parçanın bitmiş hallerinden ve üzerindeki işlemlerle birlikte diğer

Detaylı

Proje Adı: İstinat Duvarı Sayfa 1. Analiz Yapı Ltd. Şti. Tel:

Proje Adı: İstinat Duvarı Sayfa 1.  Analiz Yapı Ltd. Şti. Tel: Proje Adı: İstinat Duvarı Sayfa 1 BETONARME NERVÜRLÜ İSTİNAT DUVARI HESAP RAPORU GEOMETRİ BİLGİLERİ Duvarın zeminden itibaren yüksekliği H1 10 [m] Nervür Üst Genişliği N1 0,5 [m] Nervürün Alt Genişliği

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı