Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0"

Transkript

1 SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi ( ) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur. Trema (yer değiştiren parçalar) fratal oluşturuluren atılan parçalara denir. Bu şelin 12. yüzyılda bir ilisede süsleme olara çizili olduğu bilinmetedir. Şeil Sierpinsi Şapası Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşenar üçgenle başlayalım. Bu üçgene S 0 diyelim. Üçgenin enarlarının orta notalarını birleştirme suretiyle üçgeni birbirine eş faat daha üçü dört eşenar üçgene ayıralım.

2 Bu üçü üçgenlerin enar uzunluları 1 2 dir. Ortadai üçgen çıarılıp atılıyor (faat enarları alıyor). Geri alan cümleye S 1 derse, S1 S0 dır. Geri alan 3 üçgenin her biri enar uzunluları 1 4 olan eşenar üçgenlere ayrılır ve ortada alan parçalar atılır. Kalan ümeye S 2 denirse S2 S0 dır. Bu şeilde devam edilirse bir Sierpinsi Üçgenidir. Dizi azalandır yani, dır. Dolasıyla limit Araesitidir. S ümesi 3 S dizisi elde edilir. Bu S dizisinin limitine S derse bu limit S0 S1 S2... S N S tane birbirine eş eşenar üçgenden oluşur. Bu üçgenlerin her birinin enar uzunluğu 1 2 dır. Bu nedenle S nın toplam alanı olur. için S 0 dır. Bu demetir i Sierpinsi üçgeninin toplam alanı 0 dır. S da 3 tane üçgen vardır, bunlardan herbirinin üç enarı vardır ve bu enarların her birinin 1 uzunluğu da 2 dır. Bu nedenle S nin toplam uzunluğu en azından toplam uzunlu a gider. Yani S nin toplam uzunluğu dur.(yolaçan2008) O halde S nin ebatının ölçülmesinde toplam uzunlu da ço elverişli değildir. Uzunlu 1 boyutlu bir cümlenin ebadının ölçülmesinde elverişlidir. İçi ile birlite bir are, 2 boyutlu olup uzunluğa sahiptir, zira böyle bir are istediğiniz adar ayrı doğru parçası içerir. Benzer biçimde göreceğiz i Sierpinsi üçgeninin boyutu da 1 den büyütür. dır. 3 parçadan oluşan üçültme atsayısı (1/2) olan Sierpinsi üçgeninin boyutu;

3 olduğu görülür. log3 D 1 log 1/ 2 log3 log SİERPİNSKİ VE PASCAL Blaise Pascal ( ) büyü bir Fransız matematiçisidir. Henüz 20 yaşında ien modern bilgisayarlara öncülü eden, tamsayıların toplamı ile ilgili on meani maine urmuştur. Günümüzde Pascal Üçgeni olara bilinen aritmeti üçgen aslında onun buluşu değildir. Avrupa dai il aritmeti üçgen 1527 lerde görülmüştür. Pascal, aritmeti üçgenin, 1654 te Pierre de Format ile birlite şans oyunlarındai ihtimallerle ilgili bazı problemlerin çözümünde ullandı. Pascal ın ortaya oyduğu Pascal üçgeni ile Sierpinsi üçgeni arasında ilişi vardır. Pascal üçgeninin içinde Sierpinsi üçgeni bulunur.

4 Şeil Pascal Üçgeni Pascal üçgeni içindei te ve çift sayılar farlı renge boyanırsa Pascal üçgeninden Sierpinsi üçgeni elde edilmiş olur. Şeil Pascal Üçgeni ve Sierpinsi Üçgeni

5 1.4. KOCH KARTANESİ İsveçli matematiçi Helge von Koch, 1904 yılında Koch artanesini ortaya atmıştır. Koch artanesi ile düzgün olmayan süreli eğrilerden ve teğet çizgilerden bağımsız olan eğrilerin nasıl oluşturulabileceğine dair bir gösterim tasarlanmıştır. Teğet avramı diferansiyel ve doğru hesaplar için gerelidir. Bu bağlamda Koch artanesi matematisel bir çılgınlı, adeta uralları yıan bir şey olara sunulmuştur. Üçgenlere ayrılara bir afes biçiminde çizilmiş bir sayfa alalım. I. Adım: Geniş bir eşenar üçgen çizelim. II. Adım: Altı adet sivri öşesi olan bir yıldız elde etme için; 1. Üçgenin bir enarını üç eşit parçaya ayıralım ve ortadai parçayı alalım. 2. Boşta alan ii uca aldığımız bu parçadan birer tane bağlayalım ve uçlarını üçgenin dış tarafında birleştirelim. 3. Bu işi eşenar üçgenin diğer ii enarı üzerinde de yapalım. Böylece eşenar üçgenden altı öşeli bir yıldız elde etmiş oluruz. Ortaya çıan bu yıldızın sahip olduğu altı eşenar üçgenin her birinde II. Adım terarlanara iinci terardai şeli elde ederiz. Bu işe devam ederse çevre uzunluğu sonsuz olan bir grafi elde ederiz. Şu halde Koch Kartanesinin ilginç arateristiği onun çevresidir. Normalde, bir geometri şelin çevresini büyütürseniz alanını da büyütmüş olursunuz. Eğer çevresi ço uzun olan bir are alırsanız alanı da ço büyü olan bir are almış olursunuz. Şimdi burada ne olduğuna baalım: 1. Bir eşenar üçgenin bir enarını üç eşit parçaya böldü ve ortadaini çıardı.

6 2. Çıardığımız parça ile eşit uzunlulu ii parçayı bir V harfi gibi birleştirere üçgenin enarında boş alan ii ucu bağladı. 3. Bu işi üçgenin her enarı için de yaptı ve böylece devam etti. Şeil Koch Kartanesi Çevre uzunluğu 9 birim olan bir eşenar üçgen ile başlarsa elde ettiğimiz diğer şeillerin çevre uzunluları ne adar olur? Şeil Orijinal üçgenin çevresi 3x3=9 birimdir. İinci üçgenin her enarının uzunluğunun 4 birim olduğunu düşünürse çevresinin uzunluğu 4x3=12 birim olur.

7 bir atı mıdır? Burada bir algoritma var mıdır? Her şelin çevresi bir öncei şelin çevresinin Şimdi bu işi ço defa terarladığımızı düşünelim.çevrenin uzunluğu terarladıça büyüyecetir. Pei ya alan? Böylece diyebiliriz i sonsuz uzunlulu bir çevre sonlu bir alanı sınırlar. O halde, Koch Kartanesinde sonsuz uzunlulu bir çevre sonlu büyülüte bir alanı çevreler. Koch artanesinin çevresi her adımda büyüren çevrelediği alan sınırlı alır. Şimdi bu alanın hesabına baalım : Şeil Yuarıdai alana baalım. Sarı renli olara görülen esas üçgene il terarda elenen ırmızı renli üç üçü üçgen ve iinci terarda ortaya çıan onii mavi daha üçü üçgen artanesini oluşturmatadır. O zaman Koch Kartanesinin alanını hesaplama işi bir toplama işidir. Buna göre önce esas üçgenin alanını buluruz ve buna üç ırmızı üçgenlerin alanları toplamını eleriz ve bu sonucada onii mavi üçgenin alanları toplamını eleme yeterlidir. Alanın hesaplanmasında, üçgenlerin oluşturduğu afesin üçgenlerini ele alalım. Esas sarı üçgenin içinde yer alan üçgenlerin sayısı 81 dir. Dolayısıyla, sarı üçgenin alanı 81 üçgen

8 birimidir. Her bir ırmızı üçgenin alanıda 9 üçgen birimidir. Bunların toplamıda 3x9=27 üçgen birimi eder. Her bir mavi üçgenin alanı 1 üçgen birimi olduğuna göre onii mavi üçgenin alanları toplamı 12 üçgen birimi eder. Bütün bu bilgileri bir tabloda gösterelim. Terar no Bir üçgenin Elenen Elenen alanların Toplam alan alanı üçgenlerin sayısı mitarı üçgen birimi üçgen birimi 108 üçgen birimi üçgen birimi 120 üçgen birimi Buradan görüyoruz i, her bir üçgenin alanı bir öncei adımdainin 1/9 u dur. Elenen üçgenlerin sayısı bir öncei sayının 4 atıdır TERS KARTANESİ Ters artanesi fratalı Koch artanesi fratalının işginç bir değişimi olacatır. I. Adım: Büyü bir eşenar üçgen çizilir. II. Adım: Üçgenin bir enarı üç eşit parçaya bölünür ve ortadai parça atılır. Bu parçalardan bir tane daha bulunara V şelinde eleyip çıarılan yeni üçgenin içine doğru doldurulur, üçgenin geri alan ii enarına da aynı işlem uygulanır. Böylece bir fırılda şeli elde edilir.

9 III. Adım: Bu yöntem fırıldata yer alan yeni üçgenlerle terarlanır. (Hacısalihoğlu ve Yaz 2002). Ters artanesinin boyutu D = 1.26 dır. Bu durum belendi bir durumdur. Çünü bu fratalların formülleri aynıdır. Faat ters ar tanesinde üçgenler içe doğru oluşmatadır. Şeil 1.5. Ters artanesi

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

Cahit Arf Liseler Arası Matematik Yarışması 2008

Cahit Arf Liseler Arası Matematik Yarışması 2008 Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)

Detaylı

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve GEOMETRİK DİZİ Bir () dizisinin ardışık terimleri arasındaki oranı ayni sabit sayi ise, bu di zi ye geom etrik dizi denir. a n N +, n +1 =r ise, () ortak çarpanı r olan geom etrik dizi dir. Örnek...4 :

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Geometrik Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Geometrik Kombinasyon Mustafa YĞI w www.mustafayagci.com.tr, 0 ebir Notları Mustafa YĞI, yagcimustafa@yahoo.com Geometri Kombinasyon H er farlı ii notanın bir oğru belirttiğini biliyoruz. Pei hangi oğruyu belirtiyorları? O

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Türk Milleti bir ölür, bin dirilir

Türk Milleti bir ölür, bin dirilir Ne x t Le v e l A a d e mi Kaymaaml ı Sı navı nahazı r l ı Tür çeaçı Uçl usor u Banası Tür i ye de Bi ri l Necat i beycd.50.yı li şhanı Apt.no: 19/ 5 Çanaya/ ANKARA 03124189999 Sevgili Kaymaam Adayları,

Detaylı

Bütün parçalar eş olduğundan; 1 buluruz. 4. Boyalı parçalar sayısı 2 Tüm parça sayısı. Cevap: B. Verilen değerleri yerine koyalım.

Bütün parçalar eş olduğundan; 1 buluruz. 4. Boyalı parçalar sayısı 2 Tüm parça sayısı. Cevap: B. Verilen değerleri yerine koyalım. TYT 018 ÖRNEK SORULAR (ÖSYM-0.1.017) Köklü sayıları, bildiğimiz sayıların kareleri arasında ifade etmeye çalışalım. sayısı 1 ile 4 arasındadır. Yani 1 ve arası. 5 sayısı 4 ile 9 arasındadır. Yani ve arası.

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

Sevdi im Birkaç Soru

Sevdi im Birkaç Soru Sevdi im Birkaç Soru M atematikte öyle sorular vard r ki, yan t bulmak önce çok zor gibi gelebilir, sonradan -saatler, günler, aylar, hatta kimi zaman y llar sonra- yan t n çok basit oldu u anlafl l r.

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

doğru orantı doğru orantı örnek: örnek:

doğru orantı doğru orantı örnek: örnek: doğru orantı Kazanım :Doğru orantılı ii çolu arasındai ilişiyi tablo veya denlem olara ifade eder. Doğru orantılı ii çoluğa ait orantı sabitini belirler ve yorumlar. doğru orantı İi çolutan biri artaren

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Sözde kod, algoritmalar ve programlar oluşturulurken kullanılan, günlük konuşma diline benzer ve belli bir programlama dilinin detaylarından uzak

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

TEST. Üçgenler ve Yardımcı Elemanları

TEST. Üçgenler ve Yardımcı Elemanları Üçgenler ve Yardımcı Elemanları 8. ınıf atematik oru ankası E 22 1. I. s( ) = 50, s( ) =, s( ) = II. = 3 cm, =, = III. s( FE) = 40, s(e F) =, F = 2 cm inem ile Gizem yukarıdaki tabloda elemanları verilen,

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

Ders 10: Düzlemde cebirsel eğriler

Ders 10: Düzlemde cebirsel eğriler Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu

Detaylı

Olas l k Hesaplar (II)

Olas l k Hesaplar (II) Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) 1) Bir ABC dik üçgeninde B açısı diktir. AB kenarı üzerinde alınan bir D noktası için m( BCD) m( DCA) dır. BC kenarı üzerinde alınan bir E noktası için

Detaylı

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri) ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr BAĞIMLI İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

The University of Waterloo

The University of Waterloo The University of Waterloo Gauss Contest 2014 Puanlama:Yanlış cevaplarınız için herhangi bir ceza olmayacaktır. On soruya kadar boş bırakılan her soru için 2 puan alınacaktır. Bölüm A: Her doğru cevap

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

ÇEMBERDE AÇILAR. 5. O merkez. 9. AB çap, AE = ED = DC. 6. O merkez. 10. AB çap, DC//AB. 2. O merkez. 7. AB çap. 11. O merkez 3. O merkez 8.

ÇEMBERDE AÇILAR. 5. O merkez. 9. AB çap, AE = ED = DC. 6. O merkez. 10. AB çap, DC//AB. 2. O merkez. 7. AB çap. 11. O merkez 3. O merkez 8. ÇMR ÇILR. merkez. çap, = =. 0 0. merkez 0. çap, //. merkez 0 0. çap K. merkez. merkez 0 0 T 0 0. =. çap 00 0. P teğet, = 0 P . merkez. merkez, =. = = 0 0 0. çap, =. merkezli çeyrek çember. merkez, = 0.

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Ei Aralı Seviyesinde Denee Sınavı. Uzunluğu R/ olan bir zincirin ucu yarıçapı R olan pürüzsüz bir ürenin tepe notasına bağlıdır (şeildei ibi). Bilinen bir anda bu uç serbest bıraılıyor. )Uç serbest bıraıldığı

Detaylı

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇARAZLAMANIN SÖZDE RASSAL OULASYONLARA ETKİSİ ınar SANAÇ Ali KARCI Bilgisayar Mühendisliği Bölümü Mühendisli Faültesi Fırat Üniversitesi 239 Elazığ ÖZET Geneti

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Çemberde Açılar ve Yaylar

Çemberde Açılar ve Yaylar Çemberde Açılar ve Yaylar 13.12.2012 Akdeniz Üniversitesi/Antalya Bilgisayar-1 Dersi Projesi İçindekiler KONU HAKKINDA GENEL BİLGİ... 3 ÇEMBERLE İLGİLİ TEMEL KAVRAMLAR... 4 ÇEMBERDE YAYLAR... 5 ÇEMBERDE

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

Açıların Özellikleri ve Ölçü Birimleri

Açıların Özellikleri ve Ölçü Birimleri çıların Özellikleri ve Ölçü irimleri 1. ÜNİT ÇIRIN ÖZİRİ V ÖÇÜ İRİRİ çı; aynı başlangıç noktasından çıkan iki ışının oluşturduğu geometrik şekildir. [O ve [O ışınlarına açının kenarları denir. O noktası

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48 Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem

Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem Renkli Noktalar Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem önündeyiz. Baz noktalar maviye, baz noktalar k rm z - ya boyanm fl bir düzlem... Düzlemin sonsuz tane noktas n kim boyam flsa boyam

Detaylı

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2 . Mee, şeilei gibi puanlanmış heef ahasına 2 aış yapıyor. Poziif am sayıların oluğu her bölgeye iişer o, negaif am sayıların oluğu her bölgeye üçer o isabe eiriyor. Mee isabe eiriği her o için o bölgeei

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

26 Nisan 2009 Pazar,

26 Nisan 2009 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL MATEMATİK OLİMPİYATI - 2009 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 26 Nisan 2009 Pazar, 13.00-15.30

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde ÖABT LİSE KPSS 2016 Pegem Aademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 40'ın üzerinde soruyu olaylıla çözebildiğini açıladı. MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Eğitimde

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI Fraktal geometri, yaklaşık çeyrek asırdır bilim dünyasının gündeminde olan ve doğadaki karmaşık biçim ve süreçleri gittikçe daha iyi anlamamıza yardımcı olan özel bir

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

ÖABT İLKÖĞRETİM MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde

ÖABT İLKÖĞRETİM MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde ÖABT İLKÖĞRETİM KPSS 206 Pegem Aademi Sınav Komisyonu; 205 KPSS ye Pegem Yayınları ile hazırlanan adayların, 40'ın üzerinde soruyu olaylıla çözebildiğini açıladı. MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez?

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar Konu Testi MATEMATİK 8.Sınıf Test-01 1. Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar, bir şeklin orantılı olarak küçültülmesi ya da büyütülmesiyle elde edilir. Fraktalın, küçük

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ

ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ Doç. Dr. Alper Serdar ANLI 5.Hafta ALANLARIN ÖLÇÜLMESİ Genel bir deyişle herhangi bir arazi parçasının şeklini ve büyüklüğünü belirtecek planın çıkarılabilmesi için gereken

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

Gizli Duvarlar Ali Nesin

Gizli Duvarlar Ali Nesin Gizli Duvarlar Ali Nesin En az enerji harcama yasası doğanın en çok bilinen yasalarından biridir. Örneğin, A noktasından yayılan ışık B noktasına gitmek için sonsuz tane yol arasından en çabuk gidebileceği

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı