ON THE TRANSFORMATION OF THE GPS RESULTS

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ON THE TRANSFORMATION OF THE GPS RESULTS"

Transkript

1 Niğde Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 6 Sayı -, (00), 7- GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Meti SOYCAN* Yıldız Tekik Üiversitesi, İşaat Fakültesi, Jeodezi Ve Fotogrametri Mühedisliği Bölümü Beşiktaş-İstabul ÖZET GPS i referas sistemi olarak, WGS-84(World Geodetic System 984) kullaılmaktadır GPS ölçüleri ile yeryüzüdeki oktaları koordiatları bu sistemde elde edilir Fakat jeodezik ve mühedislik çalışmalarıda geellikle ülke koordiat sistemi veya yerel koordiat sistemleri gibi farklı koordiat sistemleride çalışılır Bu bakımda bu sistemler arasıda döüşüm yapmak gerekmektedir Döüşüm modelii seçimi, GPS ağıı büyüklüğüe ve yapısıa bağlı olarak değişmektedir Aahtar Kelimeler: GPS, datum döüşümü,koordiat sistemleri ON THE TRANSFORMATION OF THE GPS RESULTS ABSTRACT As a referece frame of the GPS, WGS-84(World Geodetic System 984) is used Poit positio o the earth is obtaied by GPS observatio i this frame I geodetic ad egieerig applicatio, differet coordiate systems are used as local or atioal systems The WGS-84 coordiates must be trasformed to local or atioal system Selectio of the model of trasformatio depeds o the dimesio of the etwork ad the geometry of the statios Key Words: GPS, datum trasformatio, coordiate systems GİRİŞ So yıllarda GPS tekiğii sağlamış olduğu duyarlığı artması ile bu sistemde optimum olarak faydalaabilme çabaları büyük artış göstermektedir Özellikle yatay koumlama çalışmalarıda milimetre düzeyde koordiat bilgisi sua sistemi kullaımı artık rutileşmiştirgps souçlarıı değerledirilmeside e öemli adım souç koordiatları istee koordiat sistemide elde edilmesii sağlaya döüşüm işlemidir Döüşüm soucu, GPS ile elde edile WGS-84 koordiatlarıı doğrulukları, kullaıla model, ortak oktaları doğruluğua, dağılımıa ve sayısıa bağlı olarak döüşümde etkilemektedir Ayrıca, döüşüm modeli olarak iki veya üç boyutlu yaklaşımı seçilmesi de bir başka etkedir Özellikle, küçük bölgelerde yapıla mühedislik ölçmeleride, yükseklik bilgilerii yeterliliğie bağlı olarak iki boyutlu döüşüm yeterli olurke, büyük bölgelerde üç boyutlu modeller kullaılmaktadır Üç boyutlu modeli e öemli dezavatajı, yerel veya ülke sistemide koordiatları bilie oktaları elipsoidal yüksekliklerii de bilimesii gerektirmesidir[4] Bu yüzde, pratikte boyutlu döüşüm modeli uygulaırke h = h veya h = h =0 vb varsayımlar yapılmaktadır[] Bu çalışmada, iki ve üç boyutlu, bezerlik ve poliom döüşüm modelleri iceleerek, sumuş oldukları souçlar karşılaştırılmıştır Özellikle, bezerlik döüşümü uygu souçlar vermediği durumlarda alteratif olarak kullaılabile poliom döüşüm modeli ayrıtılı olarak irdelemiştir[] Bu amaçla, İstabul ili Avrupa yakasıda, ülke koordiat sistemide ve ITRF-94 sistemide koordiatları bilie 7 ortak okta kullaılarak bir uygulama yapılmış ve elde edile souçlar ve öeriler suulmuştur

2 Meti SOYCAN GPS TE KULLANILAN KOORDİNATLAR ARASINDAKİ İLİŞKİLER VE DÖNÜŞÜMLER WGS-84 Datumuda Elipsoidal Dik Koordiatlar X,Y,Z BOYUTLU DÖNÜŞÜM ED-50 Datumuda Elipsoidal Dik Koordiatlar X,Y,Z WGS-84 Datumuda Elipsoidal Eğri Koordiatlar ϕ, λ,h WGS-84 Datumuda Projeksiyo Koordiatları x, y BOYUTLU DÖNÜŞÜM 4 ED-50 Datumuda Elipsoidal Eğri Koordiatlar ϕ, λ,h ED-50 Datumuda Projeksiyo Koordiatları x, y Şekil GPS te koordiatlar, aralarıdaki ilişkiler ve döüşümler Yukarıda görüldüğü gibi, GPS koordiatlarıı arasıdaki ilişkiler ve döüşümler dört farklı işlem adımı ile taımlaabilir Bu işlemlerde ve koordiat sistemleri arasıdaki ilişkileri, ve 4 ise döüşümleri göstermektedir olu işlem, dik koordiatlarda eğri koordiatlara veya eğri koordiatlarda dik koordiatlara geçişi, olu işlem, eğri koordiatlarda projeksiyo koordiatlarıa veya projeksiyo koordiatlarıda eğri koordiatlara geçişi göstermektedir olu işlem, WGS-84 ile ED-50 sistemleri arasıdaki üç boyutlu datum döüşümü olarak ifade edilirke, 4 olu işlem WGS-84 ve ED-50 projeksiyo koordiatları arasıdaki koordiat döüşümüü ifade etmektedir[] İki Boyutlu Döüşüm İki Boyutlu Bezerlik Döüşümü WGS-84 sistemideki oktaları projeksiyo koordiatları (x, y ) ile ED-50 sistemideki oktaları projeksiyo koordiatları (x, y ) arasıdaki bezerlik döüşümü içi; x = c + µ Rx, c cos α siα c =, R = () c siα cos α eşitlikleri yazılabilir Burada; µ: Ölçek faktörü c: Öteleme parametreleri R:Döüklük matrisi α: Döüklük açısıdır İki öteleme, bir döüklük ve bir ölçek parametresi olmak üzere iki boyutlu döüşüm içi aşağıdaki eşitlikler yazılabilir 56

3 GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME x = c + µ x cos α µ y si α () y = c + µ x si α + µ y cos α () Bu eşitliklerde, bilie parametrelerle WGS-84 sistemideki bir oktaı projeksiyo koordiatları ED-50 sistemide projeksiyo koordiatları olarak elde edilebilmektedir Eğer döüşüm parametreleri bilimiyorsa; her iki sistemde de koordiatları bilie ortak oktalar kullaılarak, öcelikle döüşüm parametrelerii tespit edilmesi yolua gidilir Burada, parametre sayısı dört olduğua göre, döüşüm hesabıı yapılabilmesi içi, x ve y koordiatları bilie e az iki ortak okta gerekir Ortak okta sayısıı ikide fazla olması durumuda, çözüm e küçük karelerle degeleme ilkesie göre yapılır () ve () eşitliklerideki doğrusal olmaya parametreler içi; p = µ cos α ve q = µ si α yardımcı eşitlikleri kullaılarak, eşitlikler doğrusal hale getirilir Burada, ölçek faktörü ve döüklük açısı; x = c + px qy (4) y = c + qx + py (5) µ = p + q (6) p α = arctg (7) q olarak elde edilir Bu döüşüm modeli, geellikle küçük ağlarda, yükseklik farkı ve geoit yüksekliklerii çok fazla değişim göstermediği bölgelerde iyi souçlar vermektedir[4] İki Boyutlu Poliom Döüşüm Özellikle, bezerlik döüşümüü uygu souçlar vermediği yai büyük çakışma artıklarıa yol açtığı distorsiyolu ağlar içi alteratif olabilecek bir yötem poliom döüşümdür Poliom döüşümü erede ve asıl kullaılacağı, ağı yapısıa ve seçile poliomu derecesie bağlıdır İkici derecede bir poliom döüşüm modeli aşağıdaki gibi geelleştirilebilir xed 50 = a0 + ax + ay + ax + a4y + a5x y + (8) yed 50 = b0 + bx + by + bx + b4y + b5x y + (9) Buradaki, a 0,a,a,a,a 4,a 5,b 0,b,b,b,b 4,b 5 poliom katsayıları, her iki sistemde de koordiatları bilie ortak oktalar kullaılarak hesaplaabilir ED-50 koordiatları hesaplamak istee herhagi bir oktaı WGS-84 koordiatları ve poliom katsayıları kullaılarak çözüm yapılabilir Bir poliom döüşüm modelii kurulabilmesi içi, tüm katsayıları hesaplaması gerekir Bu bakımda, miimum ortak okta sayısı, birici derece poliomda 4, ikici derece poliomda 6, üçücü derece poliomda 0 olmalıdır Ortak okta sayısıı, sumuş olduğu eşitlik sayısıı poliom katsayılarıda fazla olması durumuda çözüm e küçük karelere göre yapılabilir sayıda ortak okta ile q derecede bir poliomla degelemeli çözüm aşağıdaki model kullaılarak yapılabilir 57

4 Meti SOYCAN x y x y x y WGS 84 x a 0 x y x y x y WGS 84 y b 0 x y x y x y WGS WGS x a y x y x y x y b A =, l =, x = (0) x a x y x y x y q y y q x y x y x y [ ] VV v = AX l, m 0 = u () Burada, v çakışma artıkları m 0 ortalama hata, ve u toplam poliom katsayısı sayısıdır Üç Boyutlu Döüşüm Üç Boyutlu Bezerlik Döüşümü İki farklı üç boyutlu koordiat sistemi arasıdaki bezerlik döüşüm modeli içi; X T = c+ µ R X c c = c c () R = R ( α ) R ( α ) R ( α ) cosα cosα = cosα si α si α cosα si α + si α si α si α cosα cosα si α si α si α si α cosα si α si α cosα si α cosα si α cosα + cosα si α si α cosα cosα eşitlikleri yazılabilir Burada; α,α,α koordiat ekseleri arasıdaki döüklük açılarıdır Bilie c, µ, R döüşüm parametreleri ile, WGS-84 sitemide X,Y,Z elipsoidal dik koordiatları bilie bir oktaı ED-50 sistemide X,Y,Z elipsoidal dik koordiatları buluabilir Eğer döüşüm parametreleri bilimiyorsa; her iki koordiat sistemide, X,Y,Z koordiatları bilie ortak oktalar aracılığıyla, öcelikle döüşüm parametreleri belirleip, döüşüm gerçekleştirilir Döüşüm işlemide, her okta koordiatı ile (X,Y,Z) eşitlik çözümü sağlar Toplam bilimeye parametre sayısı 7 olduğua göre, matematiksel çözüm içi miimum ortak okta gerekir oktada daha fazla ortak okta buluması durumuda, e küçük karelerle degeleme ilkesie göre çözüm yapılabilir 58

5 GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Üç Boyutlu Poliom Döüşüm Matematiksel modeli iki boyutlu poliom döüşüme bezer İki boyutlu poliom döüşümde (x, y ) ve (x, y ) projeksiyo koordiatları ile model kurulurke, üçücü boyut ele alıdığıda model (X,Y,Z) ve (X,Y,Z) arasıda aşağıdaki gibi kurulmaktadır X = A 0 + AX + A Y + A Z + A 4X + A 5Y + A 7 XY + A 8XZ + A 9ZY + + A 6Z Y = B0 + BX + BY + BZ + B 4X + B5Y + B6Z + B7 X Y + B8XZ + B9Z Y + () Z = C0 + CX + CY + CZ + C4X + C5Y + C7 X Y + C8XZ + C9Z Y + + C6Z Burada A 0,B 0,C 0,A,B,C poliom katsayıları olup, yeteri sayıda ortak okta ile e küçük karelere göre degelemeli göre kestirilir sayıda ortak okta ile q derecede bir poliomla degelemeli çözüm aşağıdaki model kullaılarak yapılabilir A = X X X X X X Y Y Y Y Y Y Z Z Z Z Z Z X X X X X X Y Y Y Y Y Y Z Z Z Z Z Z X X X X X X Y Y Y Y Y Y X X X X X X Z Z Z Z Z Z Z Z Z Z Z Z Y Y Y Y Y Y (4) T l = X Y Z X Y Z X Y Z (5) ED 50 T x A 0 B0 C0 A B C = A B C (6) [ ] q VV v = AX l, m0 = (7) u q q 59

6 Meti SOYCAN SAYISAL UYGULAMA İki Ve Üç Boyutlu Döüşüm Modellerii Karşılaştırılması Bu bölümde, yukarıda teorik esasları icelee döüşüm modelleri bir test bölgeside icelemiştir Çalışma alaı içerisideki seçile ortak oktalar, IGNA(İstabul GPS Niregi Ağı) projeside ITRF-94 koordiatları hesaplaa 7 oktadır Ortak oktaları koordiatları ise 986 yılıda yersel ölçülerle klasik olarak belirlemiş İstabul Niregi Ağı projeside bilimektedir Çalışma alaı yaklaşık 0 5km lik bir alaı kapsamaktadır Şekil Döüşümde kullaıla ortak oktalar Şekil de verile 7 ortak okta kullaılarak, ve boyutlu bezerlik ve poliom döüşüm modelleri irdelemiştir Döüşüm modellerii irdelemeside, hesap kolaylığı, uygulaabilirlik gibi kriterler göz öüe alımış, çakışma artıkları büyüklükleri, dağılımları ve ortalama hataları icelemiştir Tablo İki boyutlu bezerlik ve poliom döüşüm modellerie ait çakışma artıkları NNO Boyutlu Boyutlu Bezerlik Poliomal V y V x V y V x ,0 0,8-0,069 0, ,0 0,07-0,004 0, ,04-0,0 0,06-0, ,04-0,0 0,006 0, ,0 0,0 0,0 0, ,07 0,7-0,006-0, ,0 0,06-0,008 0, ,05-0, 0,009-0, , -0,06 0,048 0, ,0-0, -0,00 0, ,7 0,08-0,056-0, ,09 0,00-0,00 0, ,00-0,08 0,06 0, ,0 0,0 0,00-0, ,6-0,4-0,07-0, ,04-0,07-0,08-0, ,04 0,00 0,07-0,00 Çakışma Artıkları(m) 0,00 0,50 0,00 0,050 0,000-0,050-0,00-0,50-0, ORTAK NOKTALAR Bezerlik(Vy) Bezerlik(Vx) Poliom(Vy) Poliom(Vx) 60

7 GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Tablo İki boyutlu bezerlik ve poliom döüşüm modellerideki çakışma artıklarıı istatistiksel değerledirilmesi BOYUTLU BOYUTLU POLİNOM Çakışma Artıkları İstatistiksel Bilgiler V y(m) V x(m) V y(m) V x(m) Max=070 Mi=-0,60 Ort=0,000 RMS=0,077 Max=0,80 Mi=-0,40 Ort=-0,00 RMS=0,090 Max=0,06 Mi=-0,069 Ort=0,00 RMS=0,0 Max=0,009 Mi=-0,006 Ort=0,000 RMS=0,004 Tablo Üç boyutlu bezerlik ve poliom döüşüm modellerie ait çakışma artıkları NNO BOYUTLU BOYUTLU POLİNOM V X V Y V Z V X V Y V Z ,0-0,08 0,06-0,0 0,060-0, ,096-0,8 0,059 0,00 0,005-0, ,05 0,059 0,05 0,00-0,05-0, ,045-0,00 0,00-0,008-0,07 0, ,0-0,7 0,006 0,007-0,08 0, ,05-0, -0,086-0,0-0,00 0, ,0 0,57-0,07-0,0 0,08 0, ,7-0,9-0, 0,00-0,06 0, ,00 0,9-0,06 0,07-0,07-0, ,69 0,94 0,0 0,0 0,009-0, ,6 0,4 0,0-0,09 0,04 0, ,0-0,07-0,099 0,004 0,009-0, ,096 0,70-0,0-0,00-0,00 0, ,04 0,0 0,00 0,00-0,09-0, ,0-0,79-0,09-0,07 0,0 0,0 45 0,89 0,8 0,05-0,09 0,08 0, ,6 0,40 0,086 0,005-0,004-0,00 ÇAKIŞMA ARTIKLARI(m) 0,00 0,5 0,50 0,075 0,000-0,075-0,50-0,5-0, (VX) (VY) (VZ) POLİNOM(VX) POLİNOM(VY) POLİNOM(VZ) ORTAK NOKTALAR 6

8 Meti SOYCAN Tablo 4 Üç boyutlu bezerlik ve poliom döüşüm modellerideki çakışma artıklarıı istatistiksel değerledirilmesi BOYUTLU BOYUTLU POLİNOM Çakışma Artıkları İstatistiksel Bilgiler V X(m) V Y(m) V Z(m) V X(m) V Y(m) V Z(m) Max=0,69 Mi=-0,7 Ort=0,000 RMS=0,5 Max=0,4 Mi=-0,79 Ort=0,000 RMS=0,95 Max=0,086 Mi=-0, Ort=0,000 RMS=0,057 Max=0,07 Mi=-0,09 Ort=0,000 RMS=0,09 Max=0,060 Mi=-0,09 Ort=0,000 RMS=0,07 Max=0,07 Mi=-0,0 Ort=0,000 RMS=0,0 Döüşüm Modellerii Test Edilebilmesi İçi Duyarlı Koordiatları Bilie Noktalarda Yapıla GPS Ölçme Ve Değerledirmeleri Modelleri karşılaştırılmasıda, çakışma artıkları ve RMS değerlerii icelemesie ek olarak, çalışma bölgesi içeriside duyarlı koordiatları bilie 6 karşılaştırma oktası seçilmiş ve bu oktalarda yapıla GPS ölçmeleri soucu elde edile koordiatlar her bir döüşüm modeli kullaılarak sistemie döüştürülmüştür Döüştürülmüş koordiatları bilie eski duyarlı değerleri ile karşılaştırılmıştır Tablo 5 Karşılaştırma oktalarıı GPS ölçme plaı ve kofigürasyou GPS ÖLÇÜ PLANI GPS ÖLÇME KONFİGÜRASYONU (ISTA) ISTA sabit GPS oktasıa ek olarak adet jeodezik GPS alıcısı ile statik ölçü presibie göre, kapalı lup oluşturacak şekilde, - saatlik oturumlar yapıldı Kayıt aralığı 5s ve uydu yükseklik açısı 5 o olarak seçildi Değerledirme, Wiprism GPS değerledirme yazılımı ile yapıldı olu okta sabit alıarak, GPS ağı degeledi Stdart sapma(m) 0,05 Delta X Delta Y Delta Z Uzuluk 0,00 0,005 0, Delta X 0,0045 0, ,008 0,009 0,004 0,0078 0,0087 0,0084 0, ,00 Delta Y 0,0007 0,0098 0,007 0,00 0,0048 0,008 0, ,0084 0, ,0067 Delta Z 0,007 0,0004 0, ,0004 0,004 0,0084 0,008 0,0075 0,0086 0,0048 Uzuluk 0, ,006 0,0085 0,008 0,0058 0,0085 0,0 0,08 0,095 0,0057 Şekil GPS ile ölçüle baz vektörleri, uzuluk ve bileşelerii stadart sapmaları 6

9 GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Tablo 6 Karşılaştırma oktalarıı GPS ölçmeleri ile bulua koordiatları NNO ϕ σ ϕ(mm) λ σ λ(mm) h σ h(mm) Elem hatası(mm) Boylam hatası(mm) Elipsoidal Yükseklik hatası(mm) Şekil 4 GPS ölçmeleri soucu bulua okta koum hataları 6 karşılaştırma oktasıı, GPS ile bulua koordiatları, icelee tüm döüşüm modellerie göre sistemie döüştürülmüş ve döüştürüle bu koordiatlar, daha öcede bilie koordiatları ile karşılaştırılmıştır Elde edile souçlar tablo 7 de verilmiştir Tablo 7 Karşılaştırma oktalarıı bilie koordiatları ile GPS ölçmeleri soucu bulua koordiatlarıı döüştürülmesi ile bulua koordiatlarıı karşılaştırılması NO Bilie Değerler boyutlu bezerlik boyutlu poliom x y x y x-x y-y x y x-x y-y , , , ,650 0,6 0, , ,600 0,0-0, , , , ,770 0,076 0, , ,570-0,04-0, ,9 4558, , ,00 0,7 0, ,0 4558,00 0,00 0, , , , ,940 0,0-0, , ,90 0,04-0, , , , ,900 0,00 0, , ,890 0,00 0, , , , ,960-0,7 0, , ,840-0,0-0,09 boyutlu bezerlik boyutlu poliom x y x y x-x y-y x y x-x y-y , , , ,574 0,9-0, , ,68 0,08 0, , , , ,77-0,07 0, , ,79-0,05 0, ,9 4558, ,6 4558,857 0,4-0, , 4558,9 0,04-0, , , , ,960-0,0 0, , ,960 0,007 0, , , , ,946-0,057 0, 94864, ,886 0,005 0, , , , ,066 0,0 0, , ,88-0,05 0,0 6

10 Meti SOYCAN Tablo 8 Karşılaştırma oktalarıı bilie koordiatları ile GPS ölçmeleri soucu bulua koordiatlarıı döüştürülmesi ile bulua koordiatları arasıdaki farkları istatistiksel değerledirmesi 0,00 0,50 0,00 0,050 0,000-0,050-0,00-0,50-0,00 BOYUTLU BOYUTLU POLİNOM BOYUTLU BOYUTLU POLİNOM BOYUTLU ,6 0,076 0,7 0,0 0,0-0,7 0,0-0,04 0,00 0,04 0,0-0,0 0,9-0,07 0,4-0,0-0,057 0,0 0,08-0,05 0,04 0,007 0,005-0,05 0,50 0,00 0,50 0,00 0,050 0,000-0,050-0,00-0,50 BOYUTLU BOYUTLU POLİNOM BOYUTLU BOYUTLU POLİNOM ,09 0, 0,07-0,0 0,085 0,0-0,0-0,08 0,07-0,04 0,075-0,09-0,07 0,067-0,09 0,008 0, 0,07 0,07 0,079-0,06 0,008 0,07 0,0 FARKLARIN İSTASTİSTİKSEL OLARAK İNCELENMESİ y FARKLARI(m) x FARKLARI(m) BOYUTLU BOYUTLU BOYUTLU BOYUTLU BOYUTLU POLİNOM POLİNOM POLİNOM BOYUTLU BOYUTLU POLİNOM Max 0,7mm 0,00 0,4 0,08 Max 0,085 0,075 0,07 0,079 Mi -0,7-0,04-0,057-0,05 Mi -0,0-0,080-0,09-0,06 Ort 0,07 0,004 0,0 0,00 Ort 0,067-0,00 0,047 0,0 RMS 0,4 0,0 0,086 0,08 RMS 0,080 0,057 0, 0,046 4 SONUÇLAR Çalışmaı uygulama bölümüdeki souçlar irdelediğide; boyutlu bezerlik döüşümüde elde edile çakışma artıklarıı RMS değerleri, y yöüde 77mm, x yöüde 90mm dir(tablo ) koordiatları bilie 6 oktaı GPS ile belirlee ITRF94 koordiatlarıı iki boyutlu bezerlik döüşüm modeli kullaılarak elde edile döüştürülmüş koordiatları ile bilie koordiatları arasıdaki farkı RMS değeri ise y yöüde 4mm, x yöüde 80mm dir(tablo 7) h = h ITRF94 kabulüe dayaarak yapıla boyutlu bezerlik döüşümüde ise çakışma artıkları X,Y,Z yöüde sırasıyla 5mm, 95mm ve 57 mm dir(tablo ) boyutlu model kullaılarak 6 karşılaştırma oktası ye döüştürüldüğüde ise, oktaları bilie değerleri ile farklarıı y yöüde 86mm, x yöüde mm olduğu görülmektedir(tablo8) Yukarıdaki verilerde de alaşılacağı gibi, böyle bir ağda bezerlik döüşümü gibi doğrusal bir modeli sumuş olduğu doğruluk yeterli olmamaktadır Ortak oktaları özellikle eski koordiatlarıı zamala oluşa yerkabuğu hareketleri ve deformasyolarla distorsiyolu hale geldiği ve yüksek doğruluklu GPS ölçmeleri soucu bulua yei koordiat değerleri ile uyuşumsuz olduğu görülmektedir 64

11 GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Böyle durumlarda, bezerlik döüşümü yerie, söz kousu uyuşumsuzluğu miimize edebilecek bir model kullaılmalıdır Bu çalışmada ve boyutlu bezerlik döüşümüe alteratif olarak ve boyutlu poliom döüşüm modelleri ele alımıştır boyutlu poliom döüşümüde elde edile çakışma artıklarıı RMS değerleri, y yöüde mm, x yöüde 4mm dir(tablo ) koordiatları bilie 6 oktaı GPS ile belirlee ITRF94 koordiatlarıı iki boyutlu poliom döüşüm modeli kullaılarak elde edile döüştürülmüş koordiatları ile bilie koordiatları arasıdaki farkı RMS değeri, y yöüde mm, x yöüde 57mm dir(tablo 7) h = h ITRF94 kabulüe dayaarak yapıla boyutlu poliom döüşümüde ise çakışma artıkları X,Y,Z yöüde sırasıyla 9mm, 7mm ve mm dir(tablo ) boyutlu model kullaılarak 6 karşılaştırma oktası ye döüştürüldüğüde ise, oktaları bilie değerleri ile farklarıı y yöüde 8mm, x yöüde 46mm olduğu görülmektedir(tablo 8) Souç olarak, distorsiyolu ağlarda ve bezerlik döüşümüü uygu souçlar vermediği durumlarda, poliom döüşüm modelii kullaılması öerilebilir 5 KAYNAKLAR Aksoy, A, Aya, T ve Deiz R (998), Global Bölgesel ve Ülkesel Jeodezik Ağları Hakkıda, TMMOB Harita ve Kadastro Mühedisleri Odası Yayı Orgaı, 84:6-6 Baş, HG(99), Aalitik Fotogrametri Akabe Tekik Yayılar Serisi, İstabul Ersoy N(997) İstabul Niregi Çalışmalarıı Yersel Ve GPS Ölçüleri ile Değerledirilmesi ve Aalizi Doktora Tezi, YTÜ, İstabul 4 Hofma B-Wellehof, Lichteegger H, ad Collis J(997), GPS Theory ad Practice, New York 5 Soyca M, (990) GPS Tekiği Ve Matematiksel Modellerii İcelemesi,Yüksek Lisas Tezi,YTÜ, İstabul, 65

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

LOKAL ALANLARDA JEOİT ONDÜLASYONLARININ BELİRLENMESİNDE KULLANILAN ENTERPOLASYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI

LOKAL ALANLARDA JEOİT ONDÜLASYONLARININ BELİRLENMESİNDE KULLANILAN ENTERPOLASYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI Selçuk Üiversitesi Jeodezi ve Fotogrametri Mühedisliği Öğretimide 30. Yõl Sempozyumu,16-18 Ekim 2002, Koya SUNULMUŞ BİLDİRİ LOKAL ALANLARDA JEOİT ONDÜLASYONLARININ BELİRLENMESİNDE KULLANILAN ENTERPOLASYON

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm İki Boyutlu Koordinat sistemleri Arası Dönüşüm Amaç, bir koordinat sistemine göre elde edilmiş olan koordinatların, diğer bir koordinat sistemindeki koordinat değerlerini elde etmektir. İki haritanın koordinat

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

olmak üzere 4 ayrı kütükte toplanan günlük GPS ölçüleri, baz vektörlerinin hesabı için bilgisayara aktarılmıştır (Ersoy.97).

olmak üzere 4 ayrı kütükte toplanan günlük GPS ölçüleri, baz vektörlerinin hesabı için bilgisayara aktarılmıştır (Ersoy.97). 1-) GPS Ölçülerinin Yapılması Ölçülerin yapılacağı tarihlerde kısa bir süre gözlem yapılarak uydu efemerisi güncelleştirilmiştir. Bunun sonunda ölçü yapılacak bölgenin yaklaşık koordinatlarına göre, bir

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

JEODEZİK ÖLÇMELER DERSİ. Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE

JEODEZİK ÖLÇMELER DERSİ. Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE JEODEZİK ÖLÇMELER DERSİ Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM 1. Hafta Ders Notları REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM Referans (Koordinat)

Detaylı

20 (1), 109-115, 2008 20(1), 109-115, 2008. kakilli@marmara.edu.tr

20 (1), 109-115, 2008 20(1), 109-115, 2008. kakilli@marmara.edu.tr Fırat Üiv. Fe ve Müh. il. Dergisi Sciece ad Eg. J of Fırat Uiv. 0 (), 09-5, 008 0(), 09-5, 008 Harmoikleri Reaktif Güç Kompazasyo Sistemlerie Etkilerii İcelemesi ve Simülasyou da KKİİ, Koray TUNÇP ve Mehmet

Detaylı

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ Erka BEŞDOK Bilal KASAP Jeodei ve Fotogrametri Mühedisliği Bölümü Mühedislik Fakültesi ve Bilgisayar Müh. ABD, Fe

Detaylı

BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ

BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ KOORDİNAT DÖNÜŞÜMÜ, DATUM TRANSFORMASYONU Prof.Dr.RASİM DENİZ MAYS 2014 ZONGULDAK KOORDİNAT DÖNÜŞÜMÜ,DATUM TRANSFORMASYONU 1-Genel Bilgiler Aynı datumdaki koordinatların

Detaylı

EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU

EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU MAKALE Cüeyt Fetvacı EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU Cüeyt Fetvacı Doç.Dr., İstabul Üiversitesi, Mühedislik Fakültesi, Makie Mühedisliği Bölümü, İstabul fetvacic@istabul.edu.tr

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Dijital Fotogrametride Alana Dayalı Görüntü Eşleme Yöntemleri

Dijital Fotogrametride Alana Dayalı Görüntü Eşleme Yöntemleri Harita Tekolojileri Elektroik Dergisi Cilt:, No: 3, 9 (-33) Electroic Joural of Map Techologies Vol:, No: 3, 9 (-33) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:39-3983 Makale (Article)

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

GPS ağlarının dengelenmesinden önce ağın iç güvenirliğini artırmak ve hataları elimine etmek için aşağıda sıralanan analizler yapılır.

GPS ağlarının dengelenmesinden önce ağın iç güvenirliğini artırmak ve hataları elimine etmek için aşağıda sıralanan analizler yapılır. 13. GPS AĞLARININ DENGELENMESİ 13.1 GPS ÖLÇMELERİ GPS ( Global Positioning System ) alıcıları kullanılarak yer istasyonu ile uydu arasındaki uzunluklar ölçülür ve noktaların konumları belirlenir. GPS ile

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

GPŞ Sistemi İle Şehir Nirengi Ağlarının Analizi

GPŞ Sistemi İle Şehir Nirengi Ağlarının Analizi GPŞ Sistemi İle Şehir Nirengi Ağlarının Analizi Nihat ERSOY* ÖZET Şehir nirengi ağlarının değerlendirilmesinde, 1987 yılında klasik ölçme yöntemleri ile ülke nirengi ağına dayalı 3. derece bir yatay kontrol

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi Obje Tabalı Sııfladırma Yötemi ile Tokat İli Uydu Görütüleri Üzeride Yapısal Gelişimi İzlemesi İlker GÜNAY 1 Ahmet DELEN 2 Mahmut HEKİM 3 1 Gaziosmapaşa Üiversitesi, Mühedislik ve Doğa Bilimleri Fakültesi,

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması Robot Navigasyouda Potasiyel Ala Metodlarıı Karşılaştırılması ve Đç Ortamlarda Uygulaması Eyüp Çıar 1 Osma Parlaktua Ahmet Yazıcı 3 1, Elektrik-Elektroik Mühedisliği Bölümü, Eskişehir Osmagazi Üiversesi,

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:134-4141 Makie Tekolojileri Elektroik Dergisi 28 (3) 41-48 TEKNOLOJĐK ARAŞTIRMALAR Makale Düşük Sıcak Kayaklı Isı Pompaları Eerji Maliyet Aalizi Özet Murat KAYA Hitit

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri Politekik Dergisi Joural of Polytechic ilt: 9 Sayı: 4 s.63-69, 006 Vol: 9 No: 4 pp.63-69, 006 Elektrik Eerji Sistemleride Oluşa Harmoikleri Filtrelemeside Pasif Filtre ve Filtreli Kompazasyou Kullaımı

Detaylı

HALL ETKİLİ AKIM TRANSFORMATÖRÜNÜN SPEKTRAL VE İSTATİSTİKSEL ANALİZİ

HALL ETKİLİ AKIM TRANSFORMATÖRÜNÜN SPEKTRAL VE İSTATİSTİKSEL ANALİZİ ISSN:306-3 e-joural of New World Scieces Academy 2008, Volume: 3, Number: 2 Article Number: A0075 NATURAL AND APPLIED SCIENCES ELECTRIC AND ELECTRONIC ENGINEERING BİR Received: September 2007 Accepted:

Detaylı

TRABZON İLİ İÇİN JEOİD ONDÜLASYONLARI BELİRLEME AMACIYLA ENTERPOLASYON YÖNTEMLERİNİN UYGULANMASI

TRABZON İLİ İÇİN JEOİD ONDÜLASYONLARI BELİRLEME AMACIYLA ENTERPOLASYON YÖNTEMLERİNİN UYGULANMASI TMMOB Harita ve Kadastro Mühendisleri Odası, 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25 28 Mart 2015, Ankara. TRABZON İLİ İÇİN JEOİD ONDÜLASYONLARI BELİRLEME AMACIYLA ENTERPOLASYON YÖNTEMLERİNİN

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

hkm Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi 2005/2 Sayý 93 www.hkmo.org.tr Klasik Yöntemlerle Üretilmiþ Kontrol Noktalarýnýn (Poligon Noktalarýnýn) GPS Koordinatlarý ile Karþýlaþtýrýlmasýna Ýliþkin

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ T.C. İNÖNÜ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ YÜKSEK LİSANS TEZİ EMRE DİRİCAN

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Türkiye de Sivil Havacılık Eğitimleri

Türkiye de Sivil Havacılık Eğitimleri ANALİZ Türkiye de Sivil Havacılık Eğitimleri Bu makalede, ekoomi ile arasıda etkilee-etkileye ilişkisi edei ile kamuoyuu sürekli güdemide yer ala, küresel ve ulusal gelişim oraı edei ile so yıllarda daha

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

JEOİD ve JEOİD BELİRLEME

JEOİD ve JEOİD BELİRLEME JEOİD ve JEOİD BELİRLEME İÇİNDEKİLER GİRİŞ JEODEZİDE YÜKSEKLİK SİSTEMLERİ Jeopotansiyel Yükseklikler (C) Dinamik Yükseklikler (H D ) Normal Yükseklik (H N ) Elipsoidal Yükseklik Ortometrik Yükseklik Atmosferik

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

GPS/INS Destekli Havai Nirengi

GPS/INS Destekli Havai Nirengi GPS/INS Destekli Havai Nirengi GPS/INS (IMU) destekli hava nirengide izdüşüm merkezi koordinatları (WGS84) ve dönüklükler direk ölçülür. İzdüşüm merkezi koordinatları kinematik GPS ile ölçülür. GPS ile

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI TMMOB Harita ve Kadastro Mühedisleri Odası 0. Türkiye Harita Bilisel ve Tekik Kurultayı 8 Mart - Nisa 005, Akara İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN

Detaylı

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

Çanakkale İli Belediye Sınırları İçerisindeki Peyzaj Alanlarında Sulama Sistemlerinin Projelenmesi ve İşletilmesindeki Hatalar

Çanakkale İli Belediye Sınırları İçerisindeki Peyzaj Alanlarında Sulama Sistemlerinin Projelenmesi ve İşletilmesindeki Hatalar Atatürk Üiv. Ziraat Fak. Derg. 37 (1), 81-90, 2006 ISSN 1300-9036 Çaakkale İli Belediye Sıırları İçerisideki Peyzaj Alalarıda Sulama Sistemlerii Projelemesi ve İşletilmesideki Hatalar Kürşad DEMİREL Murat

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ

MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ Mustafa İNAM, Mehmet SİMAV, Ali TÜRKEZER, Serdar AKYOL, Ahmet DİRENÇ, A.İhsan KURT, Mustafa KURT Harita Genel Komutanlığı,

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. -2 Ekim 2005 FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA HASH FONKSİYONLARINA DAYANAN YENİ BİR SINIFLANDIRMA YÖNTEMİ (A NEW CLASSIFICATION METHOD

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh. 129-138 Ocak 2004 CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ (SOLUTION OF HOMEGENEOUS DIFFERANTIAL

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli CEV 361 CBS ve UA Koordinat ve Projeksiyon Sistemleri Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli 1 Yerin Şekli Ekvator çapı: 12756 km Kuzey kutuptan güney kutuba çap: 12714 km

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ T.C. DENİZ HARP OKULU DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ ELEKTRİK VE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI İLETİŞİM BİLİM DALI SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ

Detaylı

Kuzularda Büyümenin Çok Boyutlu Ölçekleme Yöntemi İle Değerlendirilmesi

Kuzularda Büyümenin Çok Boyutlu Ölçekleme Yöntemi İle Değerlendirilmesi 33 Uluag Uiv. J. Fac. Vet. Me. (003) --3: 33-37 Kuzulara Büyümei Çok Boyutlu Ölçekleme Yötemi İle Değerleirilmesi İsmet DOĞAN * Geliş Tarihi: 5.07.003 Kabul Tarihi: 09.09.003 Özet: Büyümeyi karakterize

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

EK-11 TUTGA Koordinat ve Hýzlarýnýn Jeodezik Amaçlý Çalýþmalarda Kullanýlmasýna Ýliþkin Örnek -235- -236- Büyük Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliði EK - 11 TUTGA KOORDÝNAT VE HIZLARININ

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI

İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI H. KURŞUN 1, Y. KALKAN 2 1 İstanbul Gaz Dağıtım Anonim Şirketi, Etüd Proje harita Müdürlüğü,İstanbul.

Detaylı

1. GLOBAL POSITONING SYSTEM HAKKINDA GENEL BİLGİLER

1. GLOBAL POSITONING SYSTEM HAKKINDA GENEL BİLGİLER 1. GLOBAL POSITONING SYSTEM HAKKINDA GENEL BİLGİLER Global Positioning System (GPS), A.B.D. Savunma Dairesi tarafından geliştirilen, konumlama ve navigasyon amaçlı kulanılan uydular kümesidir. Bu uydu

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ HARMONİK DİSORSİYONUNUN ÖLÇÜM NOKASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ Celal KOCAEPE Oktay ARIKAN Ömer Çağlar ONAR Mehmet UZUNOĞLU Yıldız ekik Üiversitesi Elektrik-Elektroik Fakültesi Elektrik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Elipsoid şeklindeki dünyanın bir düzlem üzerine indirilmesi ve koordinatlarının matematiksel dönüşümleridir. Harita üç şekilde projeksiyonu

Detaylı

Üç Boyutlu Bilgisayar Grafikleri

Üç Boyutlu Bilgisayar Grafikleri 1. Üç Boyutlu Nese Taımlama Yötemleri Bilgisayar grafikleride üç boyutlu eseleri taımlamak içi birçok yötem geliştirilmiştir. Hagi taımlama yötemi avatajlı olduğu üç boyutlu uygulamaı amaç ve gereksiimleri,

Detaylı

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1.

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1. KARMAŞIK SAYILAR ÇALIŞMA SORULARI.., +.,.,. +.,,. +, + Re( ) İm( ) +. olmak üere? olmak üere.. + )? (. 6 +.. 9 + 8 ( ) olduğua göre İm (Z) Re (Z)?. + + 9 + 6 +... + 89 6. 0 + + +... + 7. P(x) x 7 + x x

Detaylı

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ Sıra No Parametre 1 Kişisel Soluabilir Tozları Kosatrasyou 2 İşyeri Ortamı

Detaylı