İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu"

Transkript

1 İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu

2 Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür ve pozitif/iki yönlü frekans spektrumu yardımı ile frekans spektrumu elde edilir. Periyodik işaretler sinüzoidal işaretlerin toplamına Fourier serilerinden yararlanarak dönüştürülebilir. Bu nedenle bu derste önce Fourier serileri, daha sonra da periyodik işaretlerin frekans spektrumlarının bulunması anlatılacaktır. Frekans spektrumunun bulunmasında iki yönlü spektrumu kullanılacağından, bundan sonraki kısımlarda, frekans spektrumu denildiğinde iki yönlü spektrum anlaşılmalıdır. İşaret ve Sistemler 2

3 Kompleks Fourier serisi Frekans spektrumunu bulmada trigonometrik Fourier serisine göre daha kolay çözüm vermektedir. Eğer m(t) periyodik işareti, açısal frekansı w0 ve periyodu T0 (w0=2 / T0=2 f0) ise kompleks Fourier serisi açılımı: İşaret ve Sistemler 3

4 Burada Cn, n. Fourier katsayısı (n. harmonik) olup genel olarak kompleks bir büyüklüktür ve formülü: Periyodik bir fonksiyonun önemli bir büyüklüğü, onun ortalama değeri dir. Periyodu T0 olan bir v(t) periyodik işaretinin zaman ortalaması veya ortalama değeri <v(t)> notasyonu ile gösterilir: İşaret ve Sistemler 4

5 Burada Cn, n. Fourier katsayısı (n. harmonik) olup genel olarak kompleks bir büyüklüktür ve formülü: Periyodik bir fonksiyonun önemli bir büyüklüğü, onun ortalama değeri dir. Periyodu T0 olan bir v(t) periyodik işaretinin zaman ortalaması veya ortalama değeri <v(t)> notasyonu ile gösterilir: İşaret ve Sistemler 5

6 Dirichlet koşulu nedir? Bu ortalama fonksiyonundan yararlanarak yeniden yazılırsa: Cn ifadesi Matematiksel olarak kompleks fourier serisi katsayılarının var olması için m(t) işaretinin Dirichlet koşulunu sağlaması gerekir. m(t) tek değerli bir fonksiyon olmalıdır. m(t) her yerde sonludur yada sonsuz değer alıyorsa türevi sonludur. m(t) nin bir periyodu içindeki süreksizlik sayısı sonludur. m(t) nin bir periyodu içinde sonlu sayıda maksimum ve minimum olmalıdır. İşaret ve Sistemler 6

7 Kompleks fourier serisi ifadesinden çıkarılan önemli bir sonuç şu olmaktadır. Periyodik bir işaretin frekans spektrumu, yalnız f0=1/t0 temel frekansı ve buna harmonik olarak bağımlı frekans bileşenlerinden oluşur. Cn nin özellikleri: İşaret ve Sistemler 7

8 Kompleks fourier serisi ifadesinden çıkarılan önemli bir sonuç şu olmaktadır. Periyodik bir işaretin frekans spektrumu, yalnız f0=1/t0 temel frekansı ve buna harmonik olarak bağımlı frekans bileşenlerinden oluşur. Cn nin özellikleri: İşaret ve Sistemler 8

9 -n ler için Cn ifadesi: n. harmonik ile n. harmoniklerin büyüklükleri: bu ifadeden çift simetri özelliği taşıdığı görülmektedir. İşaret ve Sistemler 9

10 n. harmonik ile n. harmoniklerin fazları ise bu ifadeden de fazın tek simetri özelliği gösterdiği görülür. İşaret ve Sistemler 10

11 iki yönlü frekans spektrumunda genlik çizgilerinin koordinat eksenine göre simetrik, çift simetrik, faz çizgilerinin ise orijine göre simetrik, tek simetrik, olduğu görülmektedir. Bu özellik fourier serisi katsayılarının özelliğinden ileri gelmektedir. İşaret ve Sistemler 11

12 m(t) periyodik işaretinin iki yönlü frekans spektrumu İşaret ve Sistemler 12

13 İki yönlü frekans spektrumundan, pozitif frekans spektrumuna geçmek için fourier serisi katsayıları özellikleri kullanılarak yazılabilir. m(t) nin iki yönlü frekans spektrumu ifadesi tekrar yazılırsa: İşaret ve Sistemler 13

14 İşaret ve Sistemler 14

15 İşaret ve Sistemler 15

16 Benzer şekilde, Bu sonuçlardan Fourier serisi katsayısı, yalnızca ɑn içerecektir. İşaret ve Sistemler 16

17 İşaret ve Sistemler 17

18 İşaret ve Sistemler 18

19 Bu sonuçlardan Fourier serisi katsayısı, yalnızca bn içerecektir. cn katsayıları imajiner olacaktır. İşaret ve Sistemler 19

20 İşaret ve Sistemler 20

21 Fourier Serisinin Özellikleri İşaret ve Sistemler 21

22 Fourier Serisinin Özellikleri İşaret ve Sistemler 22

23 Çalışma Sorusu işaretinin pozitif frekans spektrumunu ve fazör diyagramını çiziniz. İşaret ve Sistemler 23

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü Mekanik Titreşimler ve Kontrolü Makine Mühendisliği Bölümü s.selim@gtu.edu.tr 10.10.018 Titreşim sinyalinin özellikleri Daimi sinyal Daimi olmayan sinyal Herhangi bir sistemden elde edilen titreşim sinyalinin

Detaylı

DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ

DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ DENEY 3: DFT-Discrete Fourier Transform FOURIER SERİSİ Herhangi bir periyodik işaret sonsuz sayıda sinüzoidalin ağırlıklı toplamı olarak ifade edilebilir: 2 cosω sinω 1 Burada Ώ 0 birinci (temel) harmonik

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Bölüm 2. İşaretler ve Doğrusal Sistemler

Bölüm 2. İşaretler ve Doğrusal Sistemler Bölüm 2 İşaretler ve Doğrusal Sistemler 2.1 TEMEL KAVRAMLAR 2.1.1 İşaret Üzerinde Temel İşlemler 2.1.2.İşaretlerin Sınıflandırılması 2.1.3 Bazı Önemli İşaretler ve Özellikleri 2.1.4. Sistemlerin Sınıflandırılması

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

HAFTA 8: FOURIER SERİLERİ ÖZELLİKLERİ. İçindekiler

HAFTA 8: FOURIER SERİLERİ ÖZELLİKLERİ. İçindekiler HAFA 8: FOURIER SERİLERİ ÖZELLİKLERİ İçindekiler 4.4. Fourier serisinin özellikleri... 2 4.4.1 Doğrusallık özelliği (Linearity property)... 2 4.4.2 Zamanda tersine çevirme özelliği (ime Reversal Property)...

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ History in Pictures - On January 5th, 1940, Edwin H. Armstrong transmitted thefirstfmradiosignalfromyonkers, NY to Alpine, NJ to Meriden, CT to Paxton, MA to Mount Washington. 5 January is National FM

Detaylı

Enerji Sistemleri Mühendisliği Bölümü

Enerji Sistemleri Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:

Detaylı

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Sürekli-zaman İşaretlerin Ayrık İşlenmesi

Sürekli-zaman İşaretlerin Ayrık İşlenmesi Sürekli-zaman İşaretlerin Ayrık İşlenmesi Bir sürekli-zaman işaretin sayısal işlenmesi üç adımdan oluşmaktadır: 1. Sürekli-zaman işaretinin bir ayrık-zaman işaretine dönüştürülmesi 2. Ayrık-zaman işaretin

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU YAPI ZEMİN ETKİLEŞİMİ Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU Serbest Titreşim Dinamik yüklemenin pek çok çeşidi, zeminlerde ve yapılarda titreşimli hareket oluşturabilir. Zeminlerin ve yapıların dinamik

Detaylı

DENEY 3: Sürekli ve Ayrık İşaretlerin Fourier Analizi

DENEY 3: Sürekli ve Ayrık İşaretlerin Fourier Analizi DENEY 3: Sürekli ve Ayrık İşaretlerin Fourier Analizi AMAÇ: MATLAB ortamında bir işaretin Fourier analizinin yapılması, dönüşümler arasındaki temel farklılıkların görülmesi ve fft, ifft, fftshift gibi

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 5. Sunum: Kalıcı Durum Güç Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Bu bölümde AC devrelerde güç hesabı ele alınacakqr. Ayrıca güç

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

Leyla Yıldırım Bölüm BÖLÜM 2

Leyla Yıldırım Bölüm BÖLÜM 2 BÖLÜM 2 PERİYODİK HAREKETLERİN ÜSTÜSTE GELMESİ Birçok fiziksel durum, aynı sistemde iki veya daha fazla harmonik titreşimin aynı anda uygulanmasını gerektirir. Burada aşağıdaki temel kabule bağlı olarak

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

ELASTİK DALGA TEORİSİ

ELASTİK DALGA TEORİSİ ELASTİK DALGA TEORİSİ ( 06-5. ders ) Pro.Dr. Eşre YALÇINKAYA Geçtiğimiz hata; Dalga hareketi ve türleri Yayılan dalga Yayılan dalga enerjisi ve sönümlenme Bu derste; Süperpozisyon prensibi Fourier analizi

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 7 6 6.. Yönlü

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar.

Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar. GENLİK MODÜLASYONU Mesaj sinyali m(t) nin taşıyıcı sinyal olan c(t) nin genliğini modüle etmesine genlik modülasyonu (GM) denir. Çeşitli genlik modülasyonu türleri vardır, bunlar: Çift yan bant modülasyonu,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar 11. SINIF No Konular Kazanım Sayısı GEOMETRİ Ders Saati Ağırlık (%) 11.1. TRİGONOMETRİ 7 56 26 11.1.1. Yönlü Açılar 2 10 5 11.1.2. Trigonometrik Fonksiyonlar 5 46 21 11.2. ANALİTİK GEOMETRİ 4 24 11 11.2.1.

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. FEN LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 8 6 6.. Yönlü Açılar

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler

HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler HAFA 11: ÖRNEKLEME EOREMİ SAMPLING HEOREM İçindekiler 6.1 Bant sınırlı sürekli zaman sinyallerinin örneklenmesi... 2 6.2 Düzgün (uniform), periyodik örnekleme... 3 6.3 Bant sınırlı sürekli bir zaman sinyaline

Detaylı

A (B C) = {4, 5, 6} {2, 3, 4, 6, 7} = {4, 6} ; ve (A B) (A C) = {4, 6} {6} = {4, 6}. 6. Dağıtıcı yasayı Venn şeması yoluyla doğrulayınız.

A (B C) = {4, 5, 6} {2, 3, 4, 6, 7} = {4, 6} ; ve (A B) (A C) = {4, 6} {6} = {4, 6}. 6. Dağıtıcı yasayı Venn şeması yoluyla doğrulayınız. Bölüm 2 Soruları ve Cevapları Alıştırma 2.3. 1. Aşağıdakileri küme notasyonu (gösterimi) ile yazınız. (a) 34 ten büyük tüm reel sayılar kümesi Çözüm: {x x > 34} (b) 8 den büyük 65 ten küçük tüm reel sayılar

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

ELEKTROMANYETİK DALGALAR

ELEKTROMANYETİK DALGALAR ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 2 Merkezi Eğilim Ölçüleri Basit Seriler Elde edilecek ham verilerin küçükten büyüğe doğru sıralanması ile elde edilen serilere basit seri denir ÖRNEK:

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 9- Frekans Domeninde Sistem Analizi Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası Dikkat

Detaylı

RF MİKROELEKTRONİK TEMEL BİLGİLER

RF MİKROELEKTRONİK TEMEL BİLGİLER RF MİKROELEKTRONİK TEMEL BİLGİLER BİRİMLER terminalli bir devre için desibel cinsinden voltaj kazancı: V o A = V 0log db Vi GİRİŞ Güç kazancı: P o A = P 10log db Pi ÇIKIŞ BİRİMLER Girişteki kaynak direnci

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Zaman Uzayı Sonlu Farklar Yöntemi

Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI 1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

ANALOG HABERLEŞME (GM)

ANALOG HABERLEŞME (GM) ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)

Detaylı

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans FİZİKSEL MATEMATİK II 1 Ders Adi: FİZİKSEL MATEMATİK II 2 Ders Kodu: FZK2004 3 Ders Türü: Zorunlu 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 2 6 Dersin Verildiği Yarıyıl 4 7 Dersin AKTS Kredisi: 8.00

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

Asterosismoloji. Ders 3 : Asterosismolojide Veri Analizi

Asterosismoloji. Ders 3 : Asterosismolojide Veri Analizi 801.526 Asterosismoloji Ders 3 : Asterosismolojide Veri Analizi Asterosismik Verinin Zorluğu - I Yıldız salınımları bazı parametrelerin periyodik olarak değişmesine neden olur Bu fiziksel parametrelerin

Detaylı

Güç Spektral Yoğunluk (PSD) Fonksiyonu

Güç Spektral Yoğunluk (PSD) Fonksiyonu 1 Güç Spektral Yoğunluk (PSD) Fonksiyonu Otokorelasyon fonksiyonunun Fourier dönüşümü j f ( ) FR ((τ) ) = R ( (τ ) ) e j π f τ S f R R e d dτ S ( f ) = F j ( f )e j π f ( ) ( ) f τ R S f e df R (τ ) =

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı 6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı Deneyin Amacı: Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: Osiloskop Alternatif Akım Kaynağı Uyarı:

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

veri dosyadan okutulacak (1) - sinama verisi (2)-son(3) >

veri dosyadan okutulacak (1) - sinama verisi (2)-son(3) > ONUNCU HAFTA BİLGİSAYAR YAZILIMLARI VE UYGULAMALAR 9.7.1. İdeal Süzgeç Düzenleme için Bilgisayar Programları Zaman bölgesinde frekans seçici süzgeç düzenlenmesi için 7ideal.pro adlı PV-WAVE dilinde yazılmış

Detaylı

TRAKYA ÜNİVERSİTESİ Mühendislik Fakültesi / Makine Mühendisliği Bölümü. Basit Harmonik Hareket Deneyi Deney Föyü. Edirne

TRAKYA ÜNİVERSİTESİ Mühendislik Fakültesi / Makine Mühendisliği Bölümü. Basit Harmonik Hareket Deneyi Deney Föyü. Edirne TRAKYA ÜNİVERSİTESİ Mühendislik Fakültesi / Makine Mühendisliği Bölümü Basit Harmonik Hareket Deneyi Deney Föyü Edirne 2016 İçindekiler: 1.Deney Hakkında Teorik Bilgi 1 1.a) Yaylar ve Mekanik Özellikleri

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

birim daire üzerindeki z = e jω değerlerinde hesaplanması yöntemiyle bulunabiliri. Ancak, sayısal işaret işlemenin pratik uygulaması, sonsuz bir x(n)

birim daire üzerindeki z = e jω değerlerinde hesaplanması yöntemiyle bulunabiliri. Ancak, sayısal işaret işlemenin pratik uygulaması, sonsuz bir x(n) Bölüm 7 AYRIK-FOURİER DÖNÜŞÜMÜ 14 Bölüm 7. Ayrık-Fourier Dönüşümü 7.1 GİRİŞ Ayrık x(n) dizisinin Fourier dönüşümü, z-dönüşümü X(z) nin birim daire üzerindeki z = e jω değerlerinde hesaplanması yöntemiyle

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 017-018 Bahar Dr. Nurdan Bilgin EŞDEĞER ATALET MOMENTİ Geçen ders, hız ve ivme etki katsayılarını elde ederek; mekanizmanın hareketinin sadece bir bağımsız değişkene bağlı olarak

Detaylı

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15.

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15. HARMONİK DENKLEM Harmonik denklemin sağ tarafının sıfır olması haline Laplace, sağ tarafının sıfır olmaması haline de Possion denklemi adı verilir. Possion ve Laplace denklemi, kısaca harmonik denklem

Detaylı

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ AÇI MODÜLASYONU Frekans modülasyon (FM)sistemlerinde taşıyıcı frekans faz modülasyon (FzM veya PM) sistemlerinde mesaj işaretindeki değişimlere paralel olarak taşıyıcının fazı değiştirilir. Frekans ve

Detaylı

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler

Detaylı

12. SINIF. Ağırlık (%) SAYILAR VE CEBİR ÜSTEL VE LOGARİTMİK FONKSİYONLAR Üstel Fonksiyon 1 8 4

12. SINIF. Ağırlık (%) SAYILAR VE CEBİR ÜSTEL VE LOGARİTMİK FONKSİYONLAR Üstel Fonksiyon 1 8 4 12. SINIF No Konular Kazanım Sayısı Ders Saati Ağırlık (%) 12.1. ÜSTEL VE LOGARİTMİK FONKSİYONLAR 6 36 17 12.1.1. Üstel Fonksiyon 1 8 4 12.1.2. Logaritma Fonksiyonu 3 18 8 12.1.3 Üstel, Logaritmik Denklemler

Detaylı

ZAMAN VE FREKANS DOMENLERİNDE ÖRNEKLEME

ZAMAN VE FREKANS DOMENLERİNDE ÖRNEKLEME Bölüm 6 ZAMAN VE FREKANS DOMENLERİNDE ÖRNEKLEME VE ÖRTÜŞME 12 Bölüm 6. Zaman ve Frekans Domenlerinde Örnekleme ve Örtüşme 6.1 GİRİŞ Bu bölümün amacı, verilen bir işaretin zaman veya frekans domenlerinden

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

Kompleks Değişkenli Fonksiyonlar Teorisi

Kompleks Değişkenli Fonksiyonlar Teorisi Kompleks Değişkenli Fonksiyonlar Teorisi Ders Notları Dr. Serkan Aksoy 2016 http://www.gyte.edu.tr/dosya/102/~saksoy/ana.html 1 Gelecek önerileri için, lütfen Dr. Serkan Aksoy (saksoy@gyte.edu.tr) ile

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 2 PERİYODİK SİNYALLERDE SPEKTRAL ÇALIŞMASI 2.1 Amaçlar Periyodik sinyallerin frekans spektrumlarının, spektrum çözümleyicisi

Detaylı

BLGM321: BİLGİSAYAR MÜHENDİSLERİ İÇİN SİNYALLER VE SİSTEMLER. Bölüm 2: Temel Sinyal Fonksiyonları ve İşlenmeleri

BLGM321: BİLGİSAYAR MÜHENDİSLERİ İÇİN SİNYALLER VE SİSTEMLER. Bölüm 2: Temel Sinyal Fonksiyonları ve İşlenmeleri BLGM321: BİLGİSAYAR MÜHENDİSLERİ İÇİN SİNYALLER VE SİSTEMLER Bölüm 2: Temel Sinyal Fonksiyonları ve İşlenmeleri Temel olarak kullanılan sinyaller: 1. Birim adım sinyali 2. Birim dürtü sinyali 3. Kare dalga

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

BÖLÜM-2. Sabit katsayılı çizgisel homojen diferansiyel denklem örneği olarak

BÖLÜM-2. Sabit katsayılı çizgisel homojen diferansiyel denklem örneği olarak BÖLÜM-2 2.1 PERİYODİK TİTREŞİMLERİN ÜST ÜSTE GELMESİ (Süperpozisyon) Kütle-yay problemlerini geri çağırıcı kuvvetin sadece x ile orantılı olduğu durumlar için inceleyeceğiz, yani Hook yasasının ( ) geçerli

Detaylı

EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. ÜSTEL VE LOGARİTMİK FONKSİYONLAR

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman

Detaylı