Transformatör Enerjilendirme Akımının Etkilerini Azaltıcı Yöntemlerin İncelenmesi Review on Elimination Methods of Transformer Inrush Current

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Transformatör Enerjilendirme Akımının Etkilerini Azaltıcı Yöntemlerin İncelenmesi Review on Elimination Methods of Transformer Inrush Current"

Transkript

1 Tranformatör Enerjilendirme Akımının Etkilerini Azaltıcı Yöntemlerin İncelenmei Review on Elimination Method of Tranformer Inruh Current Kerem YALÇIN 1, Ayşen BASA ARSOY 1 Fen Bilimleri Entitüü Elektrik Mühendiliği A.B.D. Kocaeli Üniveritei keremyalcin1@gmail.com Mühendilik Fakültei Elektrik Mühendiliği Bölümü Kocaeli Üniveritei aba@kocaeli.edu.tr Özet Tranformatörler, ilk devreye alınma enaında çok yükek akım çekerler. Bu enerjilendirme (inruh) akımının değeri bazı koşullarda öngörülen kıa devre akımı değerini bile aşabilir. Bu durum, koruma rölelerinde hatalı algılama ve itemdeki diğer ekipmanların zarar görmei gibi durumlara neden olabilir. Dolayııyla tranformatör enerjilendirme akımları, dikkatle incelenmei ve mutlaka önlem alınmaı gereken bir konudur. Bu çalışmada önce tranfomatör enerjilendirme akımını etkileyen faktörler belirlenmiş, onra da bu akımları azaltıcı yöntemler incelenerek, performan ve uygulanabilirlik açıından karşılaştırılmaı yapılmıştır. Abtract A Tranformer ha high tart-up current while energizing. Thi inruh current can be higher than hort circuit current, cauing dioperation of protection relay and damage to other ytem component. That why inruh current hould be tudied attentively and there mut be precaution for inruh current. In thi tudy, factor affecting tranformer inruh current are explored firt and then ome of the elimination method of inruh current are examined and compared in term of performance and application. 1. Giriş Tranformatör, elektrik güç iteminin en önemli elemanlarından biridir. Gerilim akım büyüklüklerini dönüştürerek gücün iletim ve dağıtım itemlerinde minimum kayıp ile iletilmeindeki payı büyüktür. Bu gerilim akım dönüşümünü uygun argı arımları ile ve manyetik devrei ayeinde ağlar. Tranformatörün manyetik devre içermei, işletmede bazı orunlara yol açabilir. Manyetik malzemelerin mıknatılanma (B H) grafiğinin belli bir noktadan onra lineerliğini kaybetmektedir. Çalışma noktaının bu lineer olmayan bölgeye doğru kaymaı tranformatörden itenen çevirme oranı ve diğer elektrikel parametrelerin ağlanamamaı anlama gelir. Bu olaya manyetik nüvenin doymaı denir. Doyma olayı, tranformatörün taarımı ıraında göz önünde bulundurulmaı gereken önemli parametrelerden biriidir. Tranformatörün enerjilendirilmei enaında nüvenin doyuma gitmeiyle, şebekeden yükek genlikli ve dalga şekli inüzoidal formdan uzak bir akım çekilir [1]. Sinüzoidal olmayan ve tranformatör anma akımının çok üzerinde olan bu enerjilendirme (inruh) akımı itenmeyen bir akımdır. Tranformatörlerin çok ık devreye alınıp devreden çıkarıldığı bazı uygulamalarda, enerjilendirme akımı hem tranformatör, hem de güç itemi açıından bazı akıncalara neden olabilmektedir. Örneğin bir kojenerayon antalinde generatör yükeltici tranformatörünün alçak gerilim tarafı ürekli enerjiliyken yükek gerilim tarafı, ada modundan şebekeyle paralel çalışmaya geçiş anında enerjilendirilmekte ve bu manevra bu tip antrallerde ıkça gerçekleşebilmektedir. Bu nedenle, enerjilendirme akımını azaltıcı yöntemlerin belirlenip doğru uygulanmaı, oluşabilecek haar/zararların önlenmei açıından önem taşımaktadır. Çalışmanın ilk bölümünde tranformatör enerjilendirme akımının tanımı, özellikleri ve heaplanmaı konularına değinilmiştir. Bu akımların azaltılmaı için literatürde geliştirilen yöntemlerin incelenmei ve detaylı karşılaştırmaı çalışmanın diğer bölümünü oluşturmuştur.. Tranformatör Enerjilendirme Akımı Tranformatörler devreden çıkarıldığında manyetik nüvenin karakteritiğinden dolayı nüvede argılar enerjili olmamaına rağmen bir miktar akı kalır. Buna artık akı denir. Tranformatörün tekrar devreye alınmaında (enerjilendirilmeinde) nüve üzerindeki artık akıdan dolayı tranformatör nüvei doyuma gider. Bu olaydan dolayı tranformatörün enerjilendirilen argıı, şebekeden yükek genlikli ve bol harmonik içeren bir akım çeker. Çekilen bu akıma tranformatör enerjilendirme (inruh) akımı denir. 41

2 Tranformatörlerin argıları, genellikle bir nüve üzerine arılmış ilindirik arımlar şeklindedir ve endüktan özelliği göterir. Endüktan özelliği göteren bir elemana gerilim uygulanıra, bu gerilime bağlı olarak bir manyetik akı endüklenir. Bu gerilim ile akı araındaki ilişki (1) numaralı denklem ile ifade edilmiştir. d v n (1) dt Bu denklemde n argının arım ayıını, φ manyetik akıyı ve v de gerilimi imgelemektedir. Alternatif gerilim inü fonkiyonu olduğundan manyetik akı da türev ilişkiinden dolayı yine bir inü fonkiyonu olacak, ancak gerilim ile araında 90 faz farkı olacaktır. Tranformatörün enerjilendirilmei anında argıların maruz kalacağı gerilimin endükleyeceği bir manyetik akı olacaktır. Bu akıya ürekli hal akıı denir ve şebeke geriliminden dolayı oluşan akıdır. Artık akı (φ0), ürekli hal akıı (φ) ve şebeke geriliminin (V) grafiği Şekil 1 de verilmiştir. de yukarıda özellikleri tanımlanan enerjilendirme akımının dalga şekli görülmektedir. Akım Şekil : Akı Akım Grafikleri Gerilim Sürekli hal akıı Nüve B-H eğrii Enerjilendirme akımı Nom. akım Bu akım, aşağıdaki problemlere ebebiyet verebilmektedir: Elektrikel yalıtımın bozulmaı Tranformatör argılarında mekanik haar Tranformatörün ömrünün azalmaı Bağlı olduğu güç itemi ile rezonana girme Koruma rölelerinde hatalı algılama Şekil 1: Akı Gerilim Grafikleri Artık akı, genellikle ürekli hal akıının %50 87 i araında bir değerde olur [1]. Nüvedeki artık akı miktarını belirleyen faktörler şunlardır: Nüve karakteritiği Sargı endüktanı Nüve geometrii Tranformatöre bağlı elemanların kapaitif etkii Tranformatör keiciinin açma (devreden çıkarma anı) Normal işletme koşullarında gerilim ile manyetik akı araındaki faz farkı 90 iken bu fark enerjilendirme anında 0 olur []. Aynı zamanda artık akı içeren bir nüvede ürekli hal akıı da akmaya çalışır. Bu durumda manyetik nüve üzerinden akan toplam akı çok büyük bir değer alır ve nüvenin doyuma gitmeine ebep olur. Bu ebepten dolayı tranformatörün enerjilendirilen argıı, şebekeden dengeiz, yükek genlikli, bol harmonik içeren ve geç önümlenen (5-10 periyot) bir akım, yani enerjilendirme akımı çeker. Akım akı ilişkiini göteren grafikler Şekil de verilmiştir. Bu grafikten enerjilendirme anındaki manyetik akının tranformatörün çalışma noktaını doyum bölgeine götürdüğü ve bu yüzden çekilen akımın yükeldiği görülmektedir. Sol alttaki grafikte Literatürde tranformatör enerjilendirme akımını heaplayan birçok matematikel ifade vardır. Bunlardan en yaygın olarak kullanılanı Holcomb eşitliğidir [3]. Hem akımın dalga şeklini karakterize ettiği, hem de doğru onuç verdiği için tercih edilmektedir. Holcomb eşitliği () numaralı denklem ile ifade edilmiştir. Holcomb eşitliğinde kullanılacak büyüklüklere ilişkin denklemler ie (3) ve (4) numaralı denklemler ile ifade edilmiştir. Denklemlerde kullanılan indilerin tanımları da Çizelge 1 de verilmiştir. i( t) k V R L hava in( t ) e R Lhava t in( ) Bm Br B arcco( ) Bm (3) Lhava arctan( ) R (4) Çizelge 1: Denklemlerde Kullanılan İndilerin Tanımı İndi Tanımı İndi Tanımı R Sargı direnci B m Nüvenin anma akıı L hava Sargının havaya göre endüktanı B Doyumun başladığı akı Nüvedeki artık akı Bu formülde nüvedeki artık mıknatılık için; makimum akım değerini heap etmek adına nüvede kalabilecek en fazla artık akı bulunduğu kabul edilir. B m ve B değerleri de nüve acının B r () 4

3 malzemeine ve taarım parametrelerine bağlı olarak belirlenen değerlerdir. 3. Azaltıcı Yöntemler 3.1. Tranformatöre Seri Empedan Bağlamak Uygulamadaki en yaygın yöntemlerden biriidir. Bu yöntem, elektrik devre teoriinde eri empedanın eşdeğer empedanı ınırlayıp akım ınırlama özelliği temeline dayanmaktadır. Sitemin eşdeğer empedanı, tranformatöre eri bir empedan bağlanmaıyla artar ve çekilen akım azalır. Aynı zamanda bu eri empedan, tranformatör terminalindeki gerilimi düşüreceğinden oluşacak ürekli hal akıı azalır. Bu akının azalmaı da tranformatörün daha düşük enerjilendirme akımı çekmeine katkı ağlar. Seri empedan olarak akım ınırlama direnci (af rezitif) veya akım ınırlama reaktörü (af endüktif) kullanılabilmektedir. Direnç uygulamaı reaktöre göre daha yaygın bir uygulamadır. Akım ınırlama dirençleri, tranformatör ürekli işletme koşuluna geçtikten onra genellikle kıa devre edilerek devreden çıkarılmaktadır. Eğer akım ınırlama reaktörü kullanılıyora ürekli işletmede de devrede kalabilmekte, ancak çok büyük güçlü tranformatörlerde kıa devre edilerek devreden çıkarılmaktadır. Akım ınırlama reaktörünün kullanımındaki akıncalardan birii de endüktif karakterli bir eleman olduğundan item ile rezonana girme olaılığıdır. 3.. Kontrollü Anahtarlama Kontrollü anahtarlama prenibinin başlangıcı 1990 lı yılların ortalarına dayanmaktadır. Tranformatörün her bir fazının ayrı ayrı veya tüm fazlarının aynı anda uygun bir anda anahtarlanmaı ve nüve geometriinden dolayı faz akıları araındaki ilişkinin kullanılmaı prenibine dayanır. Üçgen bağlı argılarda ve/veya 3 bacaklı nüvelerde dengeli gerilim altındaki her bir fazın akılarının toplamı ıfırdır. Uygun zamanda anahtalama; artık akı ve ürekli hal akıının değerlerinin birbirlerine göre en uygun zamanda anahtarlanmaı anlamındadır. Endüktif devrelerde oluşan manyetik akının, akı endükleyen unurun birden değişmei ile aynı oranda değişemeyeceği bilinmektedir [4]. Buna göre akılar açıından en uygun anahtarlama anı, artık akı ile o anki gerilim değerinden dolayı endüklenecek ürekli hal akıının birbirine eşit olduğu andır. Bu durum bir periyotta iki kez meydana gelmektedir. Böylece tranformatör nüvei daha az doyacak ve çekilen enerjilendirme akımı azalacaktır Seri Anahtarlama Fazların ıra ile ve çeyrek periyot içeriinde devreye alınmaı tratejiidir. Yukarıda da bahedildiği gibi artık akının o anki gerilim değerinin endükleyeceği ürekli hal akıına eşit olduğu anda keicinin kapanmaı durumudur. Seri anahtarlamadaki manyetik akıların zamana göre değişimi Şekil 3 te verilmiştir. Grafikteki A, B ve C anahtarlama anlarını götermektedir. Artık akılar (φ 0) Sürekli hal akıı (φ) Şekil 3: Seri Anahtarlamada Akı Zaman Grafiği Bu tratejinin uygulanabilmei için 3 fazı birbirinden bağımız kontrol edilebilen bir keici ve 3 fazın ürekli hal akı bilgiine ihtiyaç vardır Eş Zamanlı Anahtarlama Şekil 3 te anahtarlama anlarının birbirine çok yakın olduğu görülmektedir. A anahtarlama anında fazın biriinin ürekli hal akıı artık akıya eşitken diğer fazların ürekli hal akıı ile artık akı araında çok büyük bir fark yoktur. Buna göre 3 faz aynı anda A anında enerjilendirilebilir. Seri anahtarlamaya göre çekilen enerjilendirme akımı bir miktar fazla olacaktır. Bu trateji alçak gerilim itemleri için çok kullanışlıdır. Çünkü alçak gerilimde 3 fazı birbirinden bağımız kontrol edilebilen keiciler pek yaygın değildir. Eş zamanlı anahtarlamada akıların zamana göre değişimi Şekil 4 te verilmiştir. Ayrıca bu tratejinin uygulanabilmei için her fazı enkron kontrol edilen bir keici ve 3 fazın ürekli hal akı bilgiine ihtiyaç vardır. Kontrollü anahtarlama prenbinin performanını doğrudan etkileyen etkenler aşağıda ıralanmıştır. Eğer bu yöntem kullanılacaka bu etkenler göz önünde bulundurulmalıdır [5]. Keicinin kapamaı enaında kontaklar tam kapanmadan başlayan ark Keicinin kapama ürei Akı ölçümündeki hatalar Kontrollü anahtarlama prenibinde 3 çeşit trateji öngörülmektedir. 43

4 Artık akılar (φ 0) kontrollü anahtarlama yaparak arttırılabilir. Ancak uygun bir direnç değeri eçilmei durumunda kontrollü anahtarlama yapmaya gerek kalmaz [6]. Nötr noktaındaki direncin ürekli işletmede devrede kalmaında herhangi bir akınca yoktur. Tranformatörün faz gerilimleri dengeli olduğu ürece nötrdeki direnç üzerinden bir akım akmayacaktır. Yine de itenire bu direnç kıa devre edilerek devre dışı bırakılabilir. Yönteme ilişkin nötrdeki direnç değeri akım grafiği Şekil 6 da verilmiştir. Sürekli hal akıı Şekil 4: Eş Zamanlı Anahtarlamada Akı Zaman Grafiği Gecikmeli Anahtarlama Diğer iki tratejideki yaklaşımlar ile tranformatörün ilk fazı enerjilendiğinde, diğer fazdaki artık akı miktarı elimine edilip ihmal edilebilecek bir eviyeye düşebilir. Bu eliminayon birçok tandart tranformatör nüve geometriinde olabilmektedir. Buna göre ilk faz enerjilendirildiğinden birkaç periyot onra diğer iki faz enerjilendirildiğinde şebekeden çekilen enerjilendirme akımının daha düşük olmaı beklenir. Gecikmeli anahtarlamada akı zaman grafiği Şekil 5 te verilmiştir. B ve C fazının enerjilendirilmei A fazının enerjilendirilmei Şekil 5: Gecikmeli Anahtarlamada Akı Zaman Grafiği Bu tratejinin uygulanabilmei için 3 fazı birbirinden bağımız kontrol edilebilen bir keici ve yalnızca ilk fazın ürekli hal akı bilgiine ihtiyaç vardır Nötr Noktaına Direnç Bağlamak Bölüm 3. de anlatılan kontrollü anahtarlama prenibi, her bir fazın akılarının üçgen bağlı argılarda veya 3 bacaklı nüvelerde toplamının ıfır olmaıdır. Bu yüzden yıldız bağlı argılarda kontrollü anahtarlama yöntemi verimli olarak kullanılamamaktadır. Ancak enerjilendirme akımının dengeiz bir akım olmaı, tranformatör argıının nötrünün toprağa bağlı olmaı durumunda enerjilendirme akımının nötrden toprağa doğru da akmaı demektir. Bölüm 3.1 de anlatılan eri empedan bağlama prenibinden faydalanılarak nötr ile toprak araına direnç bağlanmaı benzer bir etki yaratacak ve çekilen enerjilendirme akımını azaltacaktır. Yöntemin performanı Enerjilendirme Akımı (A) Nötr Direnci (Ω) Nötr Direnci (ohm) Şekil 6: Enerjilendirme Akımı Nötr Direnci Grafiği 3.4. Enerjilendirmeden Önce Artık Akı Ayarı Yapmak Şebeke geriliminden kaynaklı ürekli hal akıını ve tranformatörün artık akıını ölçmek ve izlemek pratikte uygulanmaı zor bir işlemdir. Tranformatörün artık akıı, enerjilendirme önceinde bilinen bir eviyeye çekilire, kontrollü anahtarlama ile beraber tranformatör düşük enerjilendirme akımı çekerek devreye alınabilir [7]. Böylece herhangi bir akı ölçümüne gerek kalmaz. Burada tek gerekli olan tranformatör nüveinin artık akıını arttırabilecek bir düzenek ile kontrollü bir keicidir. Tranformatör nüvelerinin üzerinde tutabileceği artık akı miktarı manyetik malzemeinin karakteritiğine göre değişmektedir. Bu değer ık kullanılan nüve malzemeleri için 0,80 0,87 p.u. araındadır. Eğer tranformatörün artık akı eviyei; tranformatör enerji altında değilken bilinen bir polarite için (pozitif veya negatif) makimum eviyeine yükeltilebilire, tranformatörü devreye alacak keicinin anahtarlama anı otomatik olarak belirlenmiş olur ve bunun için yalnızca şebeke gerilim bilgii yeterlidir. Tranformatörün artık akıını makimum değere yükeltebilecek devre Şekil 7 de verilmiştir. Primer iletkene (şarj için) Toprağa 1. faz eneejilendirme. faz enerjilendirme 3. faz enerjilendirme Şekil 7: Artık Akı Ayar Düzeneği [7] 44

5 Şekil 7 de verilen cihaz, tranformatör enerji altında değilken tranformatörün enerjilendirilecek argıına bağlanarak tranformatör nüveindeki artık akı miktarını itenen polaritede makimum değerine getirir. Bu işlemden önce cihaz kondanatör içerdiği için şarj edilmei gerekir. Tranformatör devreye alınmadan önce cihaz itemden ayrılır ve tranformatör devredeyken itemde bulunmaına gerek yoktur. Tranformatör keicii, Bölüm 3. de de anlatıldığı gibi artık akının şebeke geriliminden dolayı endüklenecek ürekli hal akıına eşit olduğu an kapanacak şekilde anahtarlanır. Yalnız bu yöntem ile 3. deki yöntem araındaki fark burada artık akı ve şebeke ürekli hal akıı bilgiine ihtiyaç duyulmamaıdır. Gerilim akı araındaki matematikel ilişki bilindiğinden ve tranformatörün nüveindeki artık akı bilinen bir polarite için makimum değerde olduğundan anahtarlama anı bulunabilir. Örneğin bir tranformatörün nüveinin tutabileceği makimum artık akı miktarı 0,87 p.u. ie Şekil 7 deki cihazla artık akı pozitif olarak ayarlandıya keici 10 de; negatif olarak ayarlandıya 330 de kapanmalıdır. Yöntemin performanını incelenmek itenire Bölüm 3. deki grafikler bu yöntem için de geçerli olacaktır. 4. Yöntemlerin Karşılaştırılmaı Tranformatöre eri empedan bağlamak, en yaygın yöntemlerden biriidir. Uygulamaı baittir ve uygulama için karmaşık kontrol düzenekleri gerektirmez. Ancak akım ınırlama dirençleri ve reaktörleri pahalı ekipmanlardır. Özellikle bu ekipmanlar ürekli devrede kalacak biçimde dizayn ve imal edilire fiyatları çok daha fazla artmaktadır. Kontrollü anahtarlama, on zamanlarda yaygınlaşan bir yöntemdir ve doğru uygulandığında performanı yükektir. Aynı zamanda ek bir ekipmana ihtiyaç duymaz. Bunun yanında her iteme kolayca uygulanamamaı, hataız akı ölçümü yapılmaı gerekliliği ve karmaşık kontrol itemi gerekinimi uygulanmaını zorlaştıran unurlardır. Öte yandan yaygın olarak kullanılan AG keicilerinin 3 fazı ayrı ayrı kontrol edilememei; yöntemin AG tranformatör argılarında uygulanmaını zorlaştırmaktadır. Bu durum OG için genelde öz konuu olmadığından yöntem OG itemler için daha kullanışlıdır. Öte yandan bu yöntemin uygulanabilirliği tranformatör nüve geometrii ve argı bağlantı grubuna bağlı olduğundan kııtlanmıştır. Nötr noktaına direnç bağlamak, nüve geometrii ve/veya bağlantı grubundan dolayı kontrollü anahtarlamanın tek başına uygulanamadığı yıldız bağlı tranformatörlerde kolayca uygulanabilecek bir yöntemdir. Ek bir önleme gerek kalmayacak kadar enerjilendirme akımını azaltabilmektedir, ancak kontrollü anahtarlama ile beraber kullanılıra çok daha efektif bir onuç verebilmektedir. Optimum direnç değerinin eçimin, anahtarlama tratejiinin, yöntemle ilgili heaplamaların ve imülayonların daha detaylı incelenip üzerinde durulmaı gerekmektedir. karşılayabilecek özellikte olmaı gerekir. Bu yüzden bu yöntemin de özellikle güç tranformatörlerinde maliyet olarak uygulanabilirliği dikkatli incelenmelidir. 5. Sonuçlar Bu çalışmada tranformatör enerjilendirme akımının tanımı, özellikleri, heaplanmaı ve azaltıcı yöntemler hakkında bilgi verilmiş ve yöntemler karşılaştırılmıştır. Bölüm 3.1 de verilen yöntem en yaygın kullanılan yöntemdir ancak getirdiği fazla maliyet en büyük dezavantajıdır. Bölüm 3. de verilen yöntem; ek bir ekipmana ihtiyaç duymadığından uygulamaı baitmiş gibi görüne de detaylarındaki uygulama zorluklarının da göz önünde bulundurulmaı gerekir. Bölüm 3.3 te verilen yöntem bait bir efektif bir yöntemdir ancak performanı ve onuçları ile ilgili detaylı çalışmalar gerektirmektedir. Bölüm 3.4 te verilen yöntem, efektif onuçlar verebilen bait bir yöntemdir ancak tranformatör gücü büyüdükçe kullanılmaı gereken cihazın imal edilebilirliği ve maliyeti mutlaka göz önünde bulundurulmalıdır. 6. Kaynaklar [1] Brunke, J. H., & Fröhlich, K. J. (001). Elimination of Tranformer Inruh Current by Controlled Switching - PartI: Theoretical Conideration. IEEE Tranaction on Power Delivery, [] Jamali, M., Mirzaie, M., & Gholamian, S. A. (011). Calculation and Analyi of Tranformer Inruh Current Baed on Parameter of Tranformer and Operating Condition. Elektronika Ir Elektrotechnika, [3] Chiea, N. (010). Power Tranformer Modeling for Inruh Current Calculation (Doktora Tezi). Trondheim: Norwegian Univerity of Science and Technology. [4] Kulkarni, S. V., & Khaparde, S. A. (004). Tranformer Engineering (Deign and Practice). New York: Marcel Dekker, Inc. [5] Brunke, J. H., & Fröhlich, K. J. (001). Elimination of Tranformer Inruh Current by Controlled Switching - Part II: Application and Performance Conideration. IEEE Tranaction on Power Delivery, [6] Cui, Y., Abdulalam, S. G., Chen, S., & Xu, W. (005). A Sequental Phae Energization Technique for Tranformer Inruh Current Reduction - Part I: Simulation and Experimental Reult. IEEE Tranaction on Power Delivery, [7] Taylor, D. I., Law, J. D., Johnon, B. K., & Ficher, N. (01). Single-Phae Tranformer Inruh Current Reduction Uing Prefluxing. IEEE Tranaction on Power Delivery, Enerjilendirmeden önce artık akı ayarı yapmak, kontrollü anahtarlama ile aynı temele dayanmaktadır. Bu yöntemin en büyük avantajı akı ölçümü ve izlenmeine gerek duymamaıdır. Bu yöntemde ihtiyaç duyulan cihazda kullanılan ekipmanlar tranformatörün mıknatılanma akımını 45

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol Rüzgar ürbininde Kullanılan AC/DC Çeviricilerde Uzay ektörü Modülayonu Yöntemi ile Kontrol Cenk Cengiz Eyüp Akpınar Dokuz Eylül Üniveritei Elektrik ve Elektronik Mühenliği Bölümü Kaynaklar Yerleşkei, Buca-İzmir

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

TOPRAKLAMA AĞLARININ ÜÇ BOYUTLU TASARIMI

TOPRAKLAMA AĞLARININ ÜÇ BOYUTLU TASARIMI TOPRAKLAMA AĞLARININ ÜÇ BOYUTLU TASARIMI Fikri Barış UZUNLAR bari.uzunlar@tr.chneider-electric.com Özcan KALENDERLİ ozcan@elk.itu.edu.tr İtanbul Teknik Üniveritei, Elektrik-Elektronik Fakültei Elektrik

Detaylı

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu enetik Algoritma ile Kuru bir Trafonun Maliyet Optimizayonu Mehmed Çelebi 1 1 El-Elektronik Mühendiliği Bölümü Celal Bayar Üniveritei mehmed.celebi@bayar.edu.tr Özet Bu çalışmada daha önce analitik yöntemle

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir.

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. 9. Ölçme (Ölçü) Transformatörleri Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. Transformatörler, akım ve gerilim değerlerini frekansta değişiklik yapmadan ihtiyaca göre

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizayonu Mehmed Çelebi 1 1 El-Elektronik Mühendiliği Bölümü Celal Bayar Üniveritei mehmed.celebi@bayar.edu.tr Özet Bu çalışmada daha önce analitik yöntemle

Detaylı

Cilt:11 Sayı: 4 s , 2008 Vol: 11 No: 4 pp , Yılmaz KORKMAZ, Fatih KORKMAZ ÖZET

Cilt:11 Sayı: 4 s , 2008 Vol: 11 No: 4 pp , Yılmaz KORKMAZ, Fatih KORKMAZ ÖZET Politeknik Dergii Journal of Polytechnic Cilt: Sayı:.9-98, 8 Vol: No: pp.9-98, 8 Doğrudan Moment Denetimi Yöntemiyle Denetlenen Aenkron Motor e Sabit Mıknatılı Senkron Motorun Performanlarının Karşılaştırılmaı

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

FOTOVOLTAİK HÜCRENİN TEK DİYOT EŞDEĞER DEVRE PARAMETRELERİNİN ÇIKARILMASI VE MATLAB/SİMULİNK MODELİ

FOTOVOLTAİK HÜCRENİN TEK DİYOT EŞDEĞER DEVRE PARAMETRELERİNİN ÇIKARILMASI VE MATLAB/SİMULİNK MODELİ FOTOVOLTAİK HÜCRENİN TEK DİYOT EŞDEĞER DEVRE PARAMETRELERİNİN ÇIKARILMASI VE MATLAB/SİMULİNK MODELİ Murat ÜNLÜ Sabri ÇAMUR Birol ARİFOĞLU Kocaeli Üniveritei, Mühendilik Fakültei Elektrik Mühendiliği Bölümü

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02 İNÖNÜ ÜNİERSİTESİ MÜENDİSİK FKÜTESİ EEKTRİK-EEKTRONİK MÜ. BÖ. 325 EEKTRİK MKİNRI BORTURI I TEK-FZI TRNSFORMTÖRÜN PRMETREERİNİN BUUNMSI DENEY 325-02 1. MÇ: Tek fazlı tranformatörün çalışmaını incelemek

Detaylı

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi EEB 06 Elektrik-Elektronik ve Bilgiayar Sempozyumu, -3 Mayı 06, Tokat TÜRKİYE Haberleşme Gecikmeli Hibrid Enerji Üretim Siteminin Kararlılık Analizi Hakan GÜNDÜZ Şahin SÖNMEZ Saffet AYASUN Niğde Üniveritei,

Detaylı

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ 825 LPG DEPOLAMA TAKLARII GAZ VERME KAPASİTELERİİ İCELEMESİ Fehmi AKGÜ 1. ÖZET Sunulan çalışmada, LPG depolama tanklarının gaz verme kapaitelerinin belirlenmei amacına yönelik zamana bağlı ve ürekli rejim

Detaylı

GRID INDUCTANCE IN SUBSTATION GROUNDING GRID DESIGN BASED ON GENETIC ALGORITHMS

GRID INDUCTANCE IN SUBSTATION GROUNDING GRID DESIGN BASED ON GENETIC ALGORITHMS 5. Ululararaı İleri Teknolojiler Sempozyumu (IATS 9), 3-5 Mayı 29, Karabük, Türkiye GENETİK ALGORİTMALARA DAYALI İLETİM MERKEZİ TOPRAKLAMA AĞI TASARIMINDA AĞ İNDÜKTANSI GRID INDUCTANCE IN SUBSTATION GROUNDING

Detaylı

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI DENEY-4 TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI 4. Teorik Bilgi Yüklü çalışmada transformatörün sekonder sargısı bir tüketiciye paralel bağlanmış olduğundan sekonder akımının (I2)

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ Tanel YÜCELEN 1 Özgür KAYMAKÇI 2 Salman KURTULAN 3. 1,2,3 Elektrik Mühendiliği Bölümü Elektrik-Elektronik Fakültei İtanbul Teknik

Detaylı

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI Elektrik Mühendii İmail Ercan BUZCU FBE

Detaylı

DENEY 1 Laplace Dönüşümü

DENEY 1 Laplace Dönüşümü DENEY 1 Laplace Dönüşümü DENEYİN AMACI 1. Laplace dönüşümü uygulamaını anlamak.. Simulink yardımıyla Laplace dönüşüm çiftlerinin benzetimini yapmak. 3. ACS-1000 Analog Kontrol Sitemini kullanarak, Laplace

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME

ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME GALATASARAY SK nın 2009-2010 Sezonu 2 Dönemi için Forvet Seçim Problemi DERSİN SORUMLUSU: Yrd Doç

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım

Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım Hizmetleri TRANSFORMATÖR Elektrik enerjisinin gerilim ve akım

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON

KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON TMMOB Harita ve Kadatro Mühendileri Odaı 13. Türkiye Harita Bilimel ve Teknik Kurultayı 18 Nian 011, Ankara KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. HAFTA 1 İçindekiler Oto Trafo Üç Fazlı Transformatörler Ölçü Trafoları

Detaylı

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER İÇ AŞIRI GERİLİMLER n Sistemin kendi iç yapısındaki değişikliklerden kaynaklanır. n U < 220 kv : Dış aşırı gerilimler n U > 220kV : İç aşırı gerilimler enerji sistemi açısından önem taşırlar. 1. Senkron

Detaylı

3. DİNAMİK. bağıntısı ile hesaplanır. Birimi m/s ile ifade edilir.

3. DİNAMİK. bağıntısı ile hesaplanır. Birimi m/s ile ifade edilir. 3. DİNAMİK Dinamik konuu Kinematik ve Kinetik alt başlıklarında incelenecektir. Kinematik, hareket halindeki bir itemin konum (poziyon), hız ve ivmeini, bunların oluşmaını ağlayan kuvvet ya da moment etkiini

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 4.HAFTA 1 İçindekiler Transformatörlerde Eşdeğer Devreler Transformatör

Detaylı

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI DENEY-5 TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI TEORİK BİLGİ Yüklü çalışmada transformatörün sekonder sargısı bir tüketiciye paralel bağlanmış olduğundan sekonder akımının (I2)

Detaylı

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ T. C. GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK E FEN BİLİMLERİ ENSTİTÜSÜ DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ Ulaş EMİNOĞLU DOKTORA TEZİ ELEKTRONİK MÜHENDİSLİĞİ

Detaylı

Per-unit değerlerin avantajları

Per-unit değerlerin avantajları PER-UNİT DEĞERLER Per-unit değerlerin avantajları Elektriksel büyüklüklerin karşılaştırılmasında ve değerlendirilmesinde kolaylık sağlar. Trafoların per-unit eşdeğer empedansları primer ve sekonder taraf

Detaylı

BÖLÜM 5 KISA DEVRE HESAPLARI

BÖLÜM 5 KISA DEVRE HESAPLARI BÖLÜM 5 KISA DEVRE HESAPLARI Kısa Devre Nedir? (IEEE Std.100-1992): Bir devrede, genellikle farklı gerilimli iki ve ya daha fazla noktanın bağıl olarak düşük direnç veya empedans üzerinden kaza veya kasıt

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ

ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ Prof.Dr. C.Erdem İMRAK 1 ve Mak.Y.Müh. Özgür ŞENTÜRK 2 1 İTÜ. Makina Fakültei, Makina Mühendiliği Bölümü, İtanbul 2 Oyak- Renault, DITECH/DMM

Detaylı

Betonarme Kolonların Yanal Öngerme Metodu İle Depreme Karşı Güçlendirilmesi

Betonarme Kolonların Yanal Öngerme Metodu İle Depreme Karşı Güçlendirilmesi ECAS2002 Ululararaı Yaı ve Derem Mühendiliği Semozyumu, 14 Ekim 2002, Orta Doğu Teknik Üniveritei, Ankara, Türkiye Betonarme Kolonların Yanal Öngerme Metodu İle Dereme Karşı Güçlendirilmei M. Saatçioğlu

Detaylı

TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ

TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ DENEY-3 TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ 3. Teorik Bilgi 3.1 Transformatörler Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

ROBOT KOL DENETİM TASARIMI İÇİN DURUM DEĞİŞKENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YAKLAŞIMI

ROBOT KOL DENETİM TASARIMI İÇİN DURUM DEĞİŞKENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YAKLAŞIMI Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 9, No, 54, 4 Vol 9, No, 54, 4 ROBOT OL DENETİM TASARIMI İÇİN DURUM DEĞİŞENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YALAŞIMI Uğur CANER

Detaylı

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı:

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı: DENEY-2 TRANSFORMATÖRLERDE POLARİTE TAYİNİ MANYETİK DEVRELER Bir elektromanyetik devrede manyetik akı, nüveye sarılı sargıdan geçen akım tarafından üretilir. Bu olay elektrik devresinde gerilimin devreden

Detaylı

GERİLİM REGÜLATÖRLERİ DENEYİ

GERİLİM REGÜLATÖRLERİ DENEYİ GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine

Detaylı

SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI

SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ SERİ DEVRELER Birden fazla direncin,

Detaylı

BUHARLAŞTIRMALI SOĞUTUCULARDA SERPANTİN İLE SU PÜSKÜRTÜCÜLERİ ARASINDAKİ BÖLGEDE ISI VE KÜTLE TRANSFERİNİN DENEYSEL OLARAK İNCELENMESİ

BUHARLAŞTIRMALI SOĞUTUCULARDA SERPANTİN İLE SU PÜSKÜRTÜCÜLERİ ARASINDAKİ BÖLGEDE ISI VE KÜTLE TRANSFERİNİN DENEYSEL OLARAK İNCELENMESİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 22, No 3, 399-406, 2007 Vol 22, No 3, 399-406, 2007 BUHARLAŞTIRMALI SOĞUTUCULARDA SERPANTİN İLE SU PÜSKÜRTÜCÜLERİ ARASINDAKİ BÖLGEDE ISI

Detaylı

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi Akademik Bilişim 0 - XII. Akademik Bilişim Konferanı Bildirileri 0-2 Şubat 200 Muğla Üniveritei Uydu Kentlerin Taarımı için Bir Karar Detek Sitemi ve Bilişim Sitemi Modeli Önerii TC Beykent Üniveritei

Detaylı

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI M.Emin BAŞAK 1 Ayten KUNTMAN Hakan KUNTMAN 3 1, İtanbul Üniveritei,Mühendilik Fakültei, Elektrik&Elektronik

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

HİDROLİK SİSTEMLERDE ENERJİ KAYIPLARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ

HİDROLİK SİSTEMLERDE ENERJİ KAYIPLARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ 17 HİDROLİK SİSTEMLERDE ENERJİ KAYILARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ İmail OBUT ÖZET Hidrolik itemlerde ea olu itenen; yükü hareket ettirmek için kullanılan gücün, hidrolik omayı tahrik eden elektrik

Detaylı

AKÜ FEBİD 12 (2012) 025201 (1-5) AKU J. Sci. 12 (2012) 025201 (1-5)

AKÜ FEBİD 12 (2012) 025201 (1-5) AKU J. Sci. 12 (2012) 025201 (1-5) Afyon Kocatepe Üniveritei Fen Bilimleri Dergii Afyon Kocatepe Univerity Journal of Science AKÜ FEBİD 12 (212) 2521 (1-5) AKU J. Sci. 12 (212) 2521 (1-5) Farklı Yüzey Açılarındaki Işınım Şiddetlerinin Afyonkarahiar

Detaylı

AĞAÇTA ARTIM VE BÜYÜME

AĞAÇTA ARTIM VE BÜYÜME AĞAÇTA ARTIM VE BÜYÜME Ağaç ve ağaçlar topluluğu olan meşcere, canlı varlıklardır. Sürekli gelişerek, değişirler. Bu gün belirlenen meşcere hacmi, ilk vejetayon döneminde değişir. Yıllar geçtikten onra

Detaylı

Ankara ve Kastamonu yöneticilerinin Mesleki Eğilime Göre Yönlendirme ve Kariyer. Rehberliği Projesinin Değerlendirme Sonuçları

Ankara ve Kastamonu yöneticilerinin Mesleki Eğilime Göre Yönlendirme ve Kariyer. Rehberliği Projesinin Değerlendirme Sonuçları Ankara ve Katamonu Yöneticilerinin Meleki Eğilime Göre Yönlendirme ve Kariyer Rehberliği Projeinin Değerlendirme Sonuçları Ankara ve Katamonu yöneticilerinin Meleki Eğilime Göre Yönlendirme ve Kariyer

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

ÇİFT BESLEMELİ ASENKRON GENERATÖR İÇİN ETKİN BİR DENETLEYİCİ TASARIMI. Sertaç BAYHAN DOKTORA TEZİ ELEKTRİK EĞİTİMİ

ÇİFT BESLEMELİ ASENKRON GENERATÖR İÇİN ETKİN BİR DENETLEYİCİ TASARIMI. Sertaç BAYHAN DOKTORA TEZİ ELEKTRİK EĞİTİMİ ÇİFT BESLEMELİ ASENKRON GENERATÖR İÇİN ETKİN BİR DENETLEYİCİ TASARIMI Sertaç BAYHAN DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2012 ANKARA Sertaç BAYHAN tarafından hazırlanan

Detaylı

ALTYAPI SİSTEMLERİ İÇİN

ALTYAPI SİSTEMLERİ İÇİN HDPE 100 RC ÇOK KATMANLI BORU SİSTEMLERİ Kuma gömme öz konuu olmakızın ve boru döşenmeine ve boru hatlarının yenilenmeine yönelik olan PE 100 RC (Çatlağa Karşı Dirençli) borular MEGA-THERM PE 100 RC ÇOK

Detaylı

Üç Fazlı Sistemler ALIŞTIRMALAR

Üç Fazlı Sistemler ALIŞTIRMALAR Üç Fazlı istemler 477 11.10. ALŞMALA oru 11.1: Üç fazlı yıldız bağlı dengeli bir yükün faz-nötr gerilimi 150V dur. Yükün hat (=fazlar arası) gerilimini bulunuz. (Cevap : Hat 260V) oru 11.2: Üç fazlı üçgen

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ EEKTİK DEEEİ-2 ABOATUAI I. DENEY FÖYÜ ATENATİF AKIM ATINDA DEE ANAİİ Amaç: Alternatif akım altında seri devresinin analizi ve deneysel olarak incelenmesi Gerekli Ekipmanlar: Güç Kaynağı, Ampermetre, oltmetre,

Detaylı

Sıvı Sıkışabilirliği ve Sıvı Ortamı Dalga Yayılma Sınır Şartlarının Baraj Deprem Davranışına Etkisinin Euler Yaklaşımıyla İncelenmesi

Sıvı Sıkışabilirliği ve Sıvı Ortamı Dalga Yayılma Sınır Şartlarının Baraj Deprem Davranışına Etkisinin Euler Yaklaşımıyla İncelenmesi ECAS22 Ululararaı Yapı ve Deprem Mühendiliği Sempozyumu, 14 Ekim 22, Orta Doğu Teknik Üniveritei, Ankara, Türkiye Sıvı Sıkışabilirliği ve Sıvı Ortamı Dalga Yayılma Sınır Şartlarının Baraj Deprem Davranışına

Detaylı

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, PWM DOĞRULTUCULAR PWM Doğrultucular AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, - elektronik balastlarda, - akü şarj sistemlerinde, - motor sürücülerinde,

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

Kontrol Sistemleri Tasarımı. Kontrolcü Tasarımı Tanımlar ve İsterler

Kontrol Sistemleri Tasarımı. Kontrolcü Tasarımı Tanımlar ve İsterler ontrol Sitemleri Taarımı ontrolcü Taarımı Tanımlar ve İterler Prof. Dr. Bülent E. Platin ontrolcü Taarımı İterleri Birincil iterler: ararlılık alıcı rejim hataı Dinamik davranış İterlerin işlevel boyutu:

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

KCT Serisi. Akım Trafoları

KCT Serisi. Akım Trafoları KCT Serisi Akım Trafoları KLEMSAN alçak gerilim akım transformatörleri istenilen güç ve doğruluk değerlerinde 20 A den 5000 A e kadar olan primer akımlarını 1 A veya 5 A değerinde sekonder akıma dönüştürürler.

Detaylı

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Direnç (R) Alternatif gerilimin etkisi altındaki direnç, Ohm kanunun bilinen ifadesini korur. Denklemlerden elde edilen sonuç

Detaylı

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ İtanbul Ticaret Üniveritei Fen Bilimleri Dergii Yıl: 6 Sayı:12 Güz 2007/2. 67-79 GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ Deniz TÜRSEL ELİİYİ, Selma GÜRLER ÖZET Bu çalışmada, her

Detaylı

Programı : Savunma Teknolojileri

Programı : Savunma Teknolojileri İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNSANSIZ HAVA ARAÇLARINDA YEDEKLİ ÇALIŞMA YÜKSEK LİSANS TEZİ Müh. Hüeyin Fatih Lokumcu Programı : Savunma Teknolojileri TEMMUZ 2008 İSTANBUL TEKNİK

Detaylı

Çevrimsel yüklemeye maruz tabakalı kompozitlerin maksimum yorulma ömrü için optimum tasarımı

Çevrimsel yüklemeye maruz tabakalı kompozitlerin maksimum yorulma ömrü için optimum tasarımı Ululararaı Katılımlı 7. Makina Teorii Sempozyumu, İzmir, -7 Haziran 05 Çevrimel yüklemeye maruz tabakalı kompozitlerin makimum yorulma ömrü için optimum taarımı H. Arda Deveci * H. Seçil Artem İzmir Intitute

Detaylı

Arttıran tip DC kıyıcı çalışması (rezistif yükte);

Arttıran tip DC kıyıcı çalışması (rezistif yükte); NOT: Azaltan tip DC kıyıcı devresinde giriş gerilimi tamamen düzgün bir DC olmasına karsın yapılan anahtarlama sonucu oluşan çıkış gerilimi kare dalga formatındadır. Bu gerilimin düzgünleştirilmesi için

Detaylı

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya 6. Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi 04-06 Haziran 2015, Sakarya KÜÇÜK RÜZGAR TÜRBİNLERİ İÇİN ŞEBEKE BAĞLANTILI 3-FAZLI 3-SEVİYELİ T-TİPİ DÖNÜŞTÜRÜCÜ DENETİMİ İbrahim Günesen gunesen_81@hotmail.com

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

Sprott_94_A Kaotik Sisteminin Senkronizasyonu ve Bilgi Gizlemede Kullanılması

Sprott_94_A Kaotik Sisteminin Senkronizasyonu ve Bilgi Gizlemede Kullanılması Sprott_9_A Kaotik Siteminin Senkronizayonu ve Bilgi Gizlemede Kullanılmaı İhan Pehlivan, ılmaz Uyaroğlu, M. Ali alçın, Abdullah Ferikoğlu Özet Doğrual olmayan otonom Sprott_9_A kaotik denklem itemi matematikel

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VII. DENEY FÖYÜ ELEKTRİK DERELERİ-2 LABORATUARI II. DENEY FÖYÜ TRANSFORMATÖR ÖZELLİKLERİNİN BELİRLENMESİ Amaç: Transformatörün özelliklerini anlamak ve başlıca parametrelerini ölçmek. Gerekli Ekipmanlar: Ses Transformatörü,

Detaylı

ENDÜKTİF REAKTİF AKIM NEDİR?

ENDÜKTİF REAKTİF AKIM NEDİR? ENDÜKTİF REAKTİF AKIM NEDİR? Elektrodinamik sisteme göre çalışan transformatör, elektrik motorları gibi cihazlar şebekeden mıknatıslanma akımı çekerler. Mıknatıslanma akımı manyetik alan varken şebekeden

Detaylı

1 ELEKTROMANYETİK HIZ ALGILAYICILARI

1 ELEKTROMANYETİK HIZ ALGILAYICILARI HIZ VE İVME ÖLÇÜMÜ Hız bir cimin dinamik karakteritiğidir çünkü Newton un ikinci kanununa göre hız bir kuvvetin uygulanmaını gerektirir. Alında yer değişimi, hız ve ivme birbirleriyle ilişkilidir. Hız

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Kök Yer Eğrileri. Doç.Dr. Haluk Görgün. Kontrol Sistemleri Tasarımı. Doç.Dr. Haluk Görgün

Kök Yer Eğrileri. Doç.Dr. Haluk Görgün. Kontrol Sistemleri Tasarımı. Doç.Dr. Haluk Görgün Kök Yer Eğrileri Bir kontrol taarımcıı itemin kararlı olup olmadığını ve kararlılık dereceini bilmek, diferaniyel denklem çözmeden bir analiz ile item performaını tahmin etmek iter. Geribelemeli kontrol

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

GÜVENLĐ HABERLEŞME ĐÇĐN YENĐ BĐR KAOTĐK SĐSTEMĐN SENKRONĐZASYONU Bildiri Konusu ( 3. Đletişim Kuramı Ve Teknikleri, Kaotik Sistemler )

GÜVENLĐ HABERLEŞME ĐÇĐN YENĐ BĐR KAOTĐK SĐSTEMĐN SENKRONĐZASYONU Bildiri Konusu ( 3. Đletişim Kuramı Ve Teknikleri, Kaotik Sistemler ) GÜVENLĐ HABERLEŞME ĐÇĐN ENĐ BĐR KAOTĐK SĐSTEMĐN SENKRONĐASONU Bildiri Konuu (. Đletişim Kuramı Ve Teknikleri, Kaotik Sitemler ) ĐHSAN PEHLĐVAN Sakarya Üniveritei, Elektrik Elektronik Müh. Bölümü, Eentepe

Detaylı

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI TRANSFORMATÖRLER Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

Yarım Dalga Doğrultma

Yarım Dalga Doğrultma Elektronik Devreler 1. Diyot Uygulamaları 1.1 Doğrultma Devreleri 1.1.1 Yarım dalga Doğrultma 1.1.2 Tam Dalga Doğrultma İki Diyotlu Tam Dalga Doğrultma Dört Diyotlu Tam Dalga Doğrultma Konunun Özeti *

Detaylı

12.7 Örnekler PROBLEMLER

12.7 Örnekler PROBLEMLER 2. 2.2 2.3 2.4 Giriş Bir Kuvvetin ve Bir Momentin İşi Virtüel İş İlkei Genelleştirilmiş Koordinatlar Örnekler Potaniyel Enerji 2.5 Sürtünmeli Makinalar ve Mekanik Verim 2.6 Denge 2.7 Örnekler PROBLEMLER

Detaylı

BULANIK MANTIK DENETLEYİCİLİ GÜÇ SİSTEM UYGULAMASI

BULANIK MANTIK DENETLEYİCİLİ GÜÇ SİSTEM UYGULAMASI BUANIK MANTIK DENETEYİCİİ GÜÇ SİSTEM UYGUAMASI Emre ÖZKOP İmail Hakkı ATAŞ Adem Sefa AKPINAR 3,,3 Karadeniz Teknik Üniritei, Elektrik-Elektronik Mühendiliği Bölümü, Trabzon e-pota: eozkop@ktu.edu.tr e-pota:

Detaylı

3 FAZLI SİSTEMLER fazlı sistemler 1

3 FAZLI SİSTEMLER fazlı sistemler 1 3 FAL SİSTEMLER Çok lı sistemler, gerilimlerinin arasında farkı bulunan iki veya daha la tek lı sistemin birleştirilmiş halidir ve bu işlem simetrik bir şekilde yapılır. Tek lı sistemlerde güç dalgalı

Detaylı