KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması"

Transkript

1 KUTUPLANMA (Polarizasyon) Kutuplanma enine dalgaların bir özelliğidir. Ancak burada mekanik dalgaların kutuplanmasını ele almayacağız. Elektromanyetik dalgaların kutuplanmasını inceleyeceğiz. Elektromanyetik dalgalar enine dalgalardır. Elektrik alan ve manyetik alan vektörleri yayılma yönüne diktir. Ayrıca elektrik alan vektörü ile manyetik alan vektörünün de birbirine dik olduğunu biliyoruz. Şimdi bir düzlem elektromanyetik dalganın kutuplanmasını kısaca ele alacağız. Düzlem elektromanyetik dalgaların kutuplanması Bir elektromanyetik dalganın kutuplanma doğrultusu her zaman elektrik alan vektörü E 'nin yönünde (doğrultusunda demek daha doğru) alırız. Bunun nedeni, sıkça kullanılan birçok elektromanyetik dalga dedektörlerinin, malzemedeki elektronlar üzerindeki elektrik kuvvetine verdikleri tepkiyi kullanarak çalışmasıdır. Doğrusal (düzlemsel) kutuplu elektromanyetik dalgalar: E (x, t) = ȷ E 0 cos (kx wt) (1.a) B (x, t) = k B 0 cos (kx wt) (1.b) denklemleri ile tanımlanan elektromanyetik dalga y-ekseninde kutupludur (Elektrik alanın sadece y- bileşeni vardır). Bu dalgaya doğrusal kutuplanmıştır denir. Bazen buna düzlem kutupludur da denir. Elektrik alanın titreşim doğrultusu (bu örnekte x-ekseni) oluşturduğu düzleme kutuplanma düzlemi (bu örnekte xy-düzlemi) denir. Radyo vericisi tarafından yayınlanan elektromanyetik dalgalar genellikle doğrusal kutupludur. Radyo yayınları için kullanılan dik antenler, antenin etrafındaki yatay düzleme dik kutuplu dalgalar yayarlar. Bazı durumlarda bir düzlem dalganın E alanının verilen bir noktadaki yönü (doğrultusu) zamanla değişebilir. Dairesel ve eliptik kutuplu elektromanyetik dalgalar: İki doğrusal kutuplanmış dalganın üst üste bindirilmesini düşünelim. Biri y-doğrultusunda kutuplanmış diğeri z-doğrultusunda kutuplanmış ve zaman fazında π radyan gecikmeli olsun. Bu durumda bileşke elektrik alan vektörü E 'yi yazabiliriz. E (x, t) = ȷ E y (x, t) + k E z (x, t) = ȷ E 0y cos (kx wt) + k E 0z cos (kx wt + π ) Verilen bir noktada t değişirken E 'nin yön değişimini incelemek için x = 0 almak işimizi kolaylaştırır (Bunu yapmak şart değildir). Böyle x = 0 düzleminde E alanını E (0, t) = ȷ E 0y cos( wt) + k E 0z cos wt + π = ȷ E 0ycos wt + k E 0z cos (wt π ) 1

2 = ȷ E 0y cos wt + k E 0z sin wt (3) 3π şeklinde yazabiliriz. wt, 0'dan π, π ve 'ye artıp π 'de döngüyü tamamlarken E (0, t) vektörünün ucu saat yönünün tersinde eliptik bir yörünge çizecektir. (3) denklemini yeniden ȷ E 1 (0, t) + k E (0, t) = ȷ E 0y cos wt + k E 0z sinwt (4) yazabiliriz. Bunun olabilmesi için gerek ve yeter şart E 1 (0, t) = E 0y cos wt E (0, t) = E 0z sinwt (5a) (5b) veya cos wt = E 1 (0,t) E 0y sin wt = E (0,t) E 0z (6a) (6b) veya sin wt + cos wt = E (0,t) E 0z + E 1 (0,t) E 0y E (0,t) E 0z + E 1 (0,t) E 0y = 1 (7) Denklem-7 bir elips tanımlar. Böylece birbirine uzayda ve zamanda dik iki doğrusal kutuplanmış dalganın toplamı olan E, eğer E 0z E 0y ise ELİPTİK KUTUPLANMIŞTIR ve eğer E 0z = E 0y ise DAİRESEL KUTUPLANMIŞTIR. Eğer E (x) ve E 1 (x) uzayda dik ama zamanda eş fazlı ise E 'nin x = 0 'daki anlık ifadesi E (0, t) = ȷ E 0y + k E 0z coswt olur. E (0, t) vektörünün y-ekseni ile tan 1 E 0z E 0y açısı yapan doğru boyunca doğrusal kutuplanmış olduğunu söyleriz. Bu üç durum Şekil-1'de özetlenmiştir.

3 Şekil-1 Elektromanyetik dalganın kutuplanması(şematik) **(Bu şekillerde elektromanyetik dalganın sadece elektrik alanları çizilmiştir. Aksi taktirde şeklin görünümü çok karışık olurdu). Elektromanyetik dalga kutuplayıcıları, dalga boyuna bağlı olarak farklı şekilde yapılır. Bir kaç santimetrelik dalga boyuna sahip mikrodalgalar için genellikle birbirinden yalıtılmış birbirine paralel iletken tel dizini kullanılır (Laboratuvarda bunun deneyini yapacaksınız). Etrafı yalıtkan madde ile çevrilmiş bir tel ızgara düşünün. Gelen dalganın elektrik alanı tel doğrultusunda olduğunda, tellerin içindeki elektronlar, elektrik alanın etkisiyle tel boyunca serbest hareket ederler. Tellerde oluşan elektrik alanı I R ile orantılı ısı oluşturacağından enerji kaybına yol açar. Bu enerji dalganın enerjisidir ve ızgaradan geçen dalganın genliğinin azalmasına yol açar. Bu ise gelen dalganın tel doğrultusundaki bileşeninin tel tarafından soğurulduğu yani geçemediği anlamına gelir. Tellere dik elektrik alana sahip dalga ise, elektronlar teller arasındaki havadan hareket edemeyeceğinden dolayı elektrik alan enerjisini kaybetmez ve ızgaradan hemen hiç etkilenmezler. Bu nedenle böyle bir filtreden geçen dalgalar tellere dik doğrultuda kutuplanmış olur. 3

4 Görünür ışık için en sık kullanılan kutuplandırıcı filtre Polaroid markası ile bilinen ve güneş gözlüğü ve fotograf makinesi filtresi olarakta sıklıkla kullanılan malzemedir. Bu filtreler Amerikalı bilim adamı Edwin H. Land tarafından geliştirilmiştir. Polaroid malzemesi, Çift renkli denilen ve bir kutuplu ışığın diğer kutba göre çok daha fazla soğrulmasına neden olan yapılar içerir (Şekil-). Bir polaroid filtresi, kutuplaştırma ekseni denen filtre içinden belli bir eksene paralel kutuplu ışığın %80 ve fazlasını, bu eksene dik kutuplu ışığın ise sadece %1'ri geçirir. Başka tür bir Polaroid filtresinde de, uzun zincirli moleküller, eksenleri kutuplaştırma eksenine dik olacak şekilde yerleşmiştir. Bu moleküller, yukarıdaki iletken tel örneğinde olduğu gibi, sadece eksenlerine paralel kutuplu ışığı soğururlar (Laboratuvardaki deneylerde bu türden kutuplayıcılar kullanacaksınız). Şekil- YANSIMA İLE KUTUPLANMA Kutuplanmış ışıktan kutuplanmış ışık üretmenin diğer bir yolu ise yansımayı kullanmaktır. Işık dik açı dışında herhangi bir açıda metalik olmayan bir yüzeye çarptığında yansıyan demet tercihen yüzeye paralel düzlemde kutuplanır. Diğer bir deyişle, yüzeye dik düzlemdeki kutuplanmış bileşeni tercihen iletilir veya soğurulur. Yansıyan demetteki kutuplanma miktarı açıya bağlıdır; kutuplanmanın olmadığı dik geliş açısından %100 kutuplanmanın olduğu KUTUPLANMA AÇISI θ B 'na kadar değişir. Saydam bir ortamın yüzeyinde gelen ışığın sadece bir kesri yansıtılır. Bu yansıyan ışık %100 kutuplanmış olmakla (θ = θ B ise ) yeni ortama iletilen ışık sadece kısmen kutuplanmıştır. 4

5 Bu açı ortamların kırma indislerinin değerlerine aşağıdaki denklemle bağlıdır tanθ B = n n 1 (1a) burada n 1 demetin iletildiği ortamın kırma indisi ve n ise yansıma sınırının ötesindeki ortamın kırma indisidir. Eğer demet havada ilerliyorsa n 1 = 1 ve Denklem-1a tanθ B = n (1b) olur. Kutuplanma açısına (θ B ) aynı zamanda BREWESTER AÇISI ve Denklem-1a ve 1b'ye ise 181'de bunu deneysel olarak çalışan iskoçyalı fizikçi David Brewster'ın ( ) anısına Brewester yasası denir. Denklem-1 ışığın elektromanyetik dalga teorisinden türetilebilir (Bu ders kapsamında buna giremeyeceğiz). Brewester açısından yansıyan ışın ile iletilen (kırılan) ışının birbiriyle 90 0 açı yapması ilginçtir; yani θ p + θ r = 90 'dir Burada θ r kırılma açısıdır. n = n 1 tanθ B = n 1 cosθ B (Brewster Yasası) n 1 = n sinθ r n = n 1 sinθ r (Snell Yasası) n = n 1 cosθ B = n 1 sinθ r sinθ r = cosθ B sinθ r = cosθ B θ B + θ r = 90 5

6 MALUS YASASI X-ekseni doğrultusunda ilerleyen kutuplanmış bir ışık bir kutuplayıcı üstüne düşürülüyor. Elektrik alan vektörünün kutuplama ekseni üzerindeki izdüşümü boyunca, kutuplanmış ışık kutuplayıcıdan geçer, diğer doğrultudaki bileşenleri soğrulur. Kutuplayıcıdan geçen elektrik alan vektörünün genliği E 0 ile gösterilirse, ışık şiddeti: I 0 =< S > sabit E 0 Kutuplayıcının kutuplanma ekseni y-doğrultusunda seçildiği için polarize olmuş ışık y-doğrultusunda olacaktır. Polarize olmuş ışığın önüne yeni bir kutuplayıcı daha yerleştirelim (Buna Analizör denir). Analizörün kutuplayıcı ekseni ile kutuplanmış ışığın arasındaki açı θ olsun. Analizörden geçen ışığın elektrik alanı olacaktır. Dolayısıyla analizörden geçen ışığın şiddeti I = sabit (E 0 cosθ) = I 0 cos θ E 0 cosθ olacaktır. Bu bağıntıya MALUS YASASI denir. Laboratuvarda hem mikrodalga bölgesinde elektromanyetik dalgalar kullanarak bu bağıntıyı sınama şansına olacaktır. Özellikle mikrodalga önüne koyduğumuz ızgara ile bu deneyi rahatça yapacaksınız. 6

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ]

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

ELEKTROMANYETİK DALGALAR

ELEKTROMANYETİK DALGALAR ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

ifadesi ile verildiğini daha önce görmüştük. Bu modun ip üzerinde zıt yönde ilerleyen iki dalganın toplamından elde edilebileceğini de incelemiştik:

ifadesi ile verildiğini daha önce görmüştük. Bu modun ip üzerinde zıt yönde ilerleyen iki dalganın toplamından elde edilebileceğini de incelemiştik: BÖLÜM-8 8.1 SINIR ETKİLERİ Bundan önceki bölümde belli bir ortamda ilerleyen dalgaları inceledik. İlerleyen bir dalga farklı bir ortam ya da bir engele rastladığı zaman yansıma, kırılma, girişim, kırınım

Detaylı

OPTİK POLARİZASYON ÖLÇÜM SİSTEMİNİN DERİ YAPISININ İNCELENMESİNE YÖNELİK BİYOMEDİKAL UYGULAMASI

OPTİK POLARİZASYON ÖLÇÜM SİSTEMİNİN DERİ YAPISININ İNCELENMESİNE YÖNELİK BİYOMEDİKAL UYGULAMASI ÖZEL EGE LİSESİ OPTİK POLARİZASYON ÖLÇÜM SİSTEMİNİN DERİ YAPISININ İNCELENMESİNE YÖNELİK BİYOMEDİKAL UYGULAMASI HAZIRLAYAN ÖĞRENCİLER: Arda Tekeli Ege Güçlü Asan DANIŞMAN ÖĞRETMEN: A.Ruhşah Erduygun 2010

Detaylı

FİZİK LAB. 3 (OPTİK) ÇALIŞMA NOTLARI

FİZİK LAB. 3 (OPTİK) ÇALIŞMA NOTLARI FİZİK LAB. 3 (OPTİK) ÇALIŞMA NOTLARI İçindekiler 1. Dalgalar 1.1. Tanımlar 1.. İlerleyen Dalga 1.3. Kararlı (Durağan) Dalga 1.4. İki Ucu Sabit Bir Telde Kararlı Dalgalar. Işığın Doğası.1. Elektromanyetik

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Ünite 15 POLAROİD LENSLER

Ünite 15 POLAROİD LENSLER Ünite 15 POLAROİD LENSLER ÜNİTENİN AMAÇLARI Bu üniteyi çalıştıktan sonra Polaroid lenslerin özelliklerini, kullanım amaçlarını, polarizasyonunun nasıl işlev gördüğünü öğreneceksiniz. ÜNİTENİN İÇİNDEKİLER

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII Geçen Derste Verilen l kuantum sayılı açısal momentum Y lm (θ,φ) özdurumunun radyal denklemi 1B lu SD şeklinde etkin potansiyeli olacak şekilde yazılabilir, u(r) = rr(r) olarak tanımlayarak elde edilir.

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

SPEKTROSKOPİK ELİPSOMETRE

SPEKTROSKOPİK ELİPSOMETRE OPTİK MALZEMELER ARAŞTIRMA GRUBU SPEKTROSKOPİK ELİPSOMETRE Birhan UĞUZ 1 0 8 1 0 8 1 0 İçerik Elipsometre Nedir? Işığın Kutuplanması Işığın Maddeyle Doğrusal Etkileşmesi Elipsometre Bileşenleri Ortalama

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Faraday Yasası. 31. Bölüm

Faraday Yasası. 31. Bölüm Faraday Yasası 31. Bölüm 1. Faraday İndüksiyon Yasası Faraday ve Henri: Değişen manyetik alanlar da emk (dolayısıyla akım) oluşturur. Şekilde görüldüğü gibi akım ile değişen manyetik alan arasında bir

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

KUTUPLANMA(POLARİZASYON)

KUTUPLANMA(POLARİZASYON) POLARİMETRE KUTUPLANMA(POLARİZASYON) Bir elektromagnetik dalganın elektrik alan vektörünün doğrultusudur.polarize görüntü mozaiği ışık hareket eden bir dalga veya titreşimdir.yani ışık kendi doğrultusunda

Detaylı

Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü?

Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü? Q27.1 Yüklü bir parçacık manyetik alanfda hareket ediyorsa, parçacığa etki eden manyetik kuvvetin yönü? A. Manyetik Alan doğrultusunda. B. Manyetik Alan doğrultusuna zıt. C. Manyetik Alan doğrultusuna

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU FİZ201 DALGALAR LABORATUVARI Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU LASER (Light AmplificaLon by SLmulated Emission of RadiaLon) Özellikleri Koherens (eş fazlı ve aynı uzaysal yönelime sahip), monokromalk

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan IŞIK Görme olayı ışıkla gerçekleşir. Cisme gelen ışık, cisimden yansıyarak göze gelirse cisim görünür. Ama bu cisim bir ışık kaynağı ise, hangi ortamda olursa olsun, çevresine ışık verdiğinden karanlıkta

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt tabakalarını etkilemez. Yani su dalgaları yüzey dalgalarıdır.

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri)

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) FİZİK 102 Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) 1. Hafta: Elektrik Alanları (Bölüm 21) Elektrik Yükü: Pozitif ve negatif

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

SALINIMLAR ve DALGALAR LABORATUVARI

SALINIMLAR ve DALGALAR LABORATUVARI SALINIMLAR ve DALGALAR LABORATUVARI TRAKYA ÜNİVERSİTESİ, FEN FAKÜLTESİ, FİZİK BÖLÜMÜ SALINIMLAR ve DALGALAR LABORATUVARI DENEYLERİ FÖYÜ Düzenleyen: Uzm. Fahrettin DOLAŞTIR Edirne, 017 GİRİŞ HATA HESAPLARI,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Su Dalgaları Testlerinin Çözümleri. Test 1 in Çözümleri

Su Dalgaları Testlerinin Çözümleri. Test 1 in Çözümleri Test 1 in Çözümleri 1. 5 dalga tepesi arası 4λ eder.. Su Dalgaları Testlerinin Çözümleri 4λ = 0 cm 1 3 4 5 λ = 5 cm bulunur. Stroboskop saniyede 8 devir yaptığına göre frekansı 4 s 1 dir. Dalgaların frekansı;

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

FARADAY YASASI Dr. Ali ÖVGÜN

FARADAY YASASI Dr. Ali ÖVGÜN FİZK 104-202 Ders 9 FARADAY YASASI Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

10. SINIF KONU ANLATIMLI

10. SINIF KONU ANLATIMLI IŞIĞI IRII 0. IIF U TII 4. ÜİTE: PTİ 4. onu IŞIĞI IRII ETİİ ve TET ÇÖZÜERİ Ünite 4 ptik 4. Ünite 4. onu (Işığın ırılması) nın Çözümleri. Şekil incelenirse, ışığın hem n ortamından n ortamına geçerken hem

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

Yrd.Doç.Dr.Cengiz OKAY OPTİK VE GEOMETRİK OPTİK. Final Çalışma Soruları

Yrd.Doç.Dr.Cengiz OKAY OPTİK VE GEOMETRİK OPTİK. Final Çalışma Soruları OPTİK VE GEOMETRİK OPTİK Final Çalışma Soruları SORU: Kutuplanmamış ışıktan, kutuplanmış ışık elde etmek için kullanılan kaç tane fiziksel yöntem vardır, bunlar nelerdir, kısaca açıklayınız. Bir dalgayı

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU T.C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ ORTAÖĞRETİM FEN VE MATEMATİK ALANLARI EĞİTİMİ BÖLÜMÜ FİZİK EĞİTİMİ ANABİLİM DALI FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU TÇ 2007 & ҰǓ 2012 Öğrencinin Adı

Detaylı

9. MANYETİK ALAN AMAÇLAR

9. MANYETİK ALAN AMAÇLAR 9. MAYETİK ALA AMAÇLAR 1. arklı mıknatıslar tarafından oluşturulan manyetik alan çizgilerini gözlemek. 2. Manyetik alanın pusula iğnesi üzerindeki etkisini incelemek. 3. ir selenoidden geçen akıma uygulanan

Detaylı

SİSMİK DALGALAR. Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır.

SİSMİK DALGALAR. Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır. SİSMİK DALGALAR Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismik dalgalar Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır. Sismik dalgalar bir kaynaktan ortaya çıkarlar ve; hem

Detaylı

HUYGENS İLKESİ ve KIRINIM

HUYGENS İLKESİ ve KIRINIM HUYGENS İLKESİ ve KIRINIM İlk defa Hollandalı bilim adamı Christian Huygens 1629-1695 1778'de ifade edilen bu ilke, belirli bir zamanda bilinen bir dalga cephesini kullanarak daha ileri bir zamanda dalga

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ 1 ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ Fazör: Zamanla değişen gerilim ve akımın gösterildiği vektörlerdir. Vektör büyüklüğü maksimum değere eşit alınmayıp en çok kullanılan etkin değere eşit alınır.

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma)

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma) ENSTRÜMANTAL ANALİZ SPEKTROSKOPİ Spektroskopi Bir madde içerisindeki atom, molekül veya iyonların bir enerji seviyesinden diğerine geçişleri sırasında absorplanan veya yayılan ışınların ölçülmesi için

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 35 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 4. 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim rekansı ışık

Detaylı

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır.

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır. IŞIK VE SES Işık ve ışık kaynakları : Çevreyi görmemizi sağlayan enerji kaynağına ışık denir. Göze gelen ışık ya bir cisim tarafından oluşturuluyordur ya da bir cisim tarafından yansıtılıyordur. Göze gelen

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri. 4. Gözlemci kaynağa yaklaştığına göre; c bağıntısını yazabiliriz. f g

Elektromanyetik Dalgalar. Test 1 in Çözümleri. 4. Gözlemci kaynağa yaklaştığına göre; c bağıntısını yazabiliriz. f g 39 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim frekansı ışık

Detaylı

Final için sorular. Yrd.Doç.Dr.Cengiz OKAY

Final için sorular. Yrd.Doç.Dr.Cengiz OKAY Final için sorular SORU1) A düzleminde düşey x ekseni ile φ=45 derecelik açı yapan ve doğrusal olarak kutuplanmış ışık, tam dalga plakasından geçerek B düzlemine gelmektedir.b noktasında ışığın kutupluluk

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

32 Mercekler. Test 1 in Çözümleri

32 Mercekler. Test 1 in Çözümleri Mercekler Test in Çözümleri. Mercek gibi ışığı kırarak geçiren optik sistemlerinde hava ve su içindeki odak uzaklıkları arklıdır. Mercek suyun içine alındığında havaya göre odak uzaklığı büyür. Aynalarda

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ 2015-2016 YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis seyit.sis@balikesir.edu.tr, MMF 7. kat, ODA No: 3, Dahili: 5703 1 DERS İÇERİĞİNE GENEL BAKIŞ

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

13. ÜNİTE KUVVET VE VEKTÖRLER

13. ÜNİTE KUVVET VE VEKTÖRLER 13. ÜNİTE KUVVET VE VEKTÖRLER KONULAR 1. VEKTÖR 2. Skaler Büyüklükler 3. Vektörel Büyüklükler 4. Vektörün Yönü 5. Vektörün Doğrultusu 6. Bir Vektörün Negatifi 7. Vektörlerin Toplanması 8. Uç Uca Ekleme

Detaylı