6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN"

Transkript

1 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN

2 SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir ve eğim katsayısına eşittir: Ancak doğrusal fonksiyonlarda kullandığımız eğim tespit yöntemi, farklı iki noktalar arasında çizilen bir doğrunun eğiminin hesaplanması, doğrusal olmayan fonksiyonlarda sonuç vermeyecektir. Şekilde çizili eğrinin farklı noktalarındaki doğruların eğimlerinin aynı olmadığı açıktır. Ekonomide çoğu zaman eğrinin farklı noktalarında bağımsız değişkenin değişimine bağımlı değişkenin vereceği tepkiler ölçülmek istenir. Şimdi bu durumda bağımsız değişkenin her hangi bir noktasındaki çok küçük bir değişime bağımlı değişkenin vereceği tepkiyi ölçülmeye çalışalım. A.5.1. Bir Eğrinin Bir Noktasındaki Eğimi Doğrusal olmayan bir fonksiyon olarak fonksiyonunu ele alalım. Bu fonksiyonda noktasında bağımsız değişkenin çok küçük bir değişime bağımlı değişkenin vereceği tepkiyi ölçmeye çalışalım. Şu ana kadar doğrusal fonksiyonlarda geliştirdiğimiz eğim bulma denklemini kullanarak belli bir noktaya kadar eğimi bulalım: 2

3 SAN / İKTİSADİ MATEMATİK / 3 f(x) 1 B 0.36 C D 0.25 A E x Eğri üzerinde çizilen AB doğrusunun eğimini hesaplamaya çalışalım: Şimdi biraz daha A noktasına yaklaşarak bağımsız değişkendeki değişimi mümkün olduğu kadar küçültmeye çalışalım. AC doğrusunun eğimini hesapladığımızda aşağıdaki değeri elde ederiz: A noktasına daha da yaklaşarak AD doğrusunun eğimini hesaplayalım. D noktasında değerler şu şekildedir: Şekilde A noktasına en yakın nokta üzerinde çizilen yaklaşarak AE doğrusunun eğimini hesaplayalım. E noktasında değerler şu şekildedir: 3

4 SAN / İKTİSADİ MATEMATİK / 4 Dikkat edilirse doğrular A noktasına yaklaştıkça eğim katsayısı da 1 değerine yakınsamaktadır. Ancak bu şekilde sorumuza cevap bulmamız mümkün değildir. Zira eğri üzerindeki tek bir noktanın eğimini aramaktayız. Ancak bir eğri, sonsuz sayıda noktanın birleşiminden elde edildiğinden, tek bir noktanın eğimini bu şekilde tespit etmek imkânsızdır. Aslında şu ana kadar kullandığımız eğim denklemi, sekant doğrusunun 1 eğimini hesaplamaktadır. A noktasında sekant doğrusunun eğimi hesaplanabilir ancak bu değer tanımsız olacaktır: Bu durumda bir eğrinin üzerindeki bir noktayı görünür kılan yeni bir analize ihtiyacımız olacaktır. A.5.2. Türev: Bir Eğrinin Belirli Bir Noktasındaki Eğimin Tespit Edilmesi ifadesi, sekant doğrusunun eğimini tespit etmek için kullanılmaktadır. Tanjant doğrusu ise, bir eğriyi tek bir noktada kesen doğrunun adıdır. Böylece eğri üzerindeki bir nokta, görünür kılınmaktadır. Tanjant doğrusunun eğimi, 1 Sekant Doğrusu: Bir eğriyi iki noktada kesen doğruya verilen isimdir. 4

5 SAN / İKTİSADİ MATEMATİK / 5 ile temsil edilmektedir ve bir eğrinin her hangi noktasındaki eğimini veren denklemi ifade etmektedir. ifadesi türevi temsil ederken, bu denklemi bulma sürecine differentiation adı verilmektedir. Türevin Kuvvet (Üs) Kuralı Bu kuralı örnek olan fonksiyona uyguladığımızda aşağıdaki sonuç elde edilecektir: Bağımsız değişkenin değeri 0.5 olduğu noktada fonksiyonun eğimi 1 olarak bulunacaktır. Bu değer, sekant doğrusunun A noktasına yaklaştıkça yakınsadığı değerdir. edilebilir: Sekant doğrusunun eğimi ile türev denklemi arasındaki ilişki, aşağıdaki gibi ifade Yüksek Mertebeden Türevler : 1. Dereceden türev (y' veya ile temsil edilir) : 2. Dereceden türev (y'' veya ile temsil edilir) bulalım: : 3. Dereceden türev (y''' veya ile temsil edilir) Örnek olarak aşağıdaki fonksiyonu ele alalım ve 3. Dereceden türevine kadar 5

6 SAN / İKTİSADİ MATEMATİK / 6 Bir Fonksiyonun Artan veya Azalan Olduğunun Tespit Edilmesi Şayet bir fonksiyonunun birinci dereceden türevi pozitif bir değer alırsa, bu fonksiyon artandır: Şayet bir fonksiyonunun birinci dereceden türevi pozitif bir değer alırsa, bu fonksiyon artandır: İkinci Dereceden Türev ve Fonksiyonun Değişim Hızı fonksiyonunu ele alalım. Bu fonksiyonun birinci dereceden türev değerleri pozitifken, ikinci dereceden fonksiyon değerleri negatiftir. Diğer bir deyişle bu fonksiyon pozitif eğimlidir ancak azalarak artmaktadır. Tablo 3.1: Azalarak Artan Bir Fonksiyon 4 2 1/ / /12 6

7 SAN / İKTİSADİ MATEMATİK / 7 Veya fonksiyonunu ele alalım. Bu fonksiyonun birinci ve ikinci dereceden türev değerleri pozitiftir. Diğer bir deyişle bu fonksiyon pozitif eğimlidir ve artarak artmaktadır. Tablo 3.2: Artarak Artan Bir Fonksiyon A.6. Tek Değişkenli Fonksiyonlarda Optimizasyon Optimizasyondan kasıt, bir eğrisel fonksiyonunun maksimum veya minimum noktasının bulunmasıdır. Fonksiyonun maksimum veya minimum noktalarını tespit ederken aşağıdaki aşamalar takip edilir: 1. Adım Fonksiyonun birinci dereceden türevi alınır ve sıfıra eşitlenir: 2. Adım Fonksiyonun ikinci derecen türevinin negatif veya pozitif olduğu tespit edilir. Şayet ikinci dereceden türev negatifse, birinci dereceden türevde bulunan x değeri, 7

8 SAN / İKTİSADİ MATEMATİK / 8 fonksiyonunun maksimum noktasını göstermektedir. Veya ikinci türev pozitifse, birinci türev sonucunda bulunan x değeri, fonksiyonunun minimum noktasını göstermektedir. Birinci türevin çözümü olan x değeri, in minimum noktasını verir. Birinci türevin çözümü olan x değeri, in maksimum noktasını verir. 3. Adım İlk adımda elde edilen x değerine tekabül eden değeri bulunur ve fonksiyonun minimum veya maksimum noktası tespit edilmiş olur Aşağıdaki fonksiyonu ele alalım ve fonksiyonun minimum veya maksimum noktasını tespit etmeye çalışalım: 1. Adım 2. Adım Birinci türevin çözümü olan x değeri, in minimum noktasını verir. 3. Adım Fonksiyonun minimum noktasını veren değer elde edilmiş olur. 8

9 SAN / İKTİSADİ MATEMATİK / Başka bir örnek olarak aşağıdaki fonksiyonu ele alalım: 1. Adım 2. Adım Birinci türevin çözümü olan x değeri, in maksimum noktasını verir. 3. Adım Fonksiyonun maksimum noktasını veren değer elde edilmiş olur. 9

10 SAN / İKTİSADİ MATEMATİK / 10 A.6. Üretici Teorisi Üretim Fonksiyonu: Teknoloji düzeyi veri iken kullanılan emek ve sermaye miktarları ile elde edilecek çıktı miktarları arasındaki ilişkiyi verir. Piyasa Dönemi: Üretimde kullanılan girdilerin miktarları ve bileşimlerinin değiştirilemediği dönemi ifade eder. Kısa Dönem: Üretimde kullanılan girdilerden sadece emeğin değiştirilebildiği, sermayenin ise değiştirilemediği dönemi ifade eder. eder. Uzun Dönem: Üretimde kullanılan her iki girdinin de değiştirilebildiği dönemi ifade A.6.1. Kısa Dönem ve Azalan Verimler Kanunu Firmaların üretim sürecinde sadece bir girdiyi yani emeği değiştirebildiği, diğer girdi olan sermayenin sabit kabul edildiği dönemi ifade eden kısa dönemde, üretim faktörlerinin diğerlerini sabit tutup sadece birini arttırdığında arttırılan faktörün verimi, belirli bir üretim düzeyinden sonra azalmaya başlayacaktır. Buna Azalan Verimler Kanunu denilmektedir. Ayrıca azalan verimler kanunu ile firma, optimal girdi bileşimine karar verebilmektedir. Kısa dönemde firmanın amacı, üretimine maksimize edecek olan emek miktarını tespit etmektir. Toplam Ürün (TP veya Q): Sermaye miktarı sabitken kullanılan emek miktarının arttırılması ile elde edilen çıktı miktarıdır. TP L Q f ( L, K) Ortalama Ürün (AP L ): Elde edilen çıktı miktarının kullanılan emek miktarına bölünmesi ile elde edilir. Diğer bir deyişle, çalışan kişi başına düşen çıktı miktarıdır. AP L TPL ( Q) L Marjinal Ürün (Emeğin Marjinal Fiziki Ürünü) (MP L ): Kullanılan emek miktarındaki bir birim değişim sonucunda toplam çıktıda meydana gelen değişimi ifade eder. Diğer bir deyişle, istihdam edilen son birim emeğin toplam üretime katkısıdır. MP L Q( L) L TP L 10

11 SAN / İKTİSADİ MATEMATİK / 11 Örneğin elimizde bir çiftlik olsun ve bu çiftlikte 3 adet traktör bulunsun. Çiftçinin cevabını aradığı soru şu olacaktır: Acaba mevcut arsa büyüklüğü ve traktör sayısı ile ne kadar işçi istihdam edersem, elde ettiğim ürün miktarı en çok olacaktır? Sermaye (K) Emek (L) Toplam Ürün (Q) Ortalama Ürün (AP L ) Marjinal Ürün (MP L ) Dikkat edilirse 4. İşçiye kadar toplam ürün artarak artmakta ve ortalama ürün ile marjinal ürün de artmaktadır. Bu bölgede (Üretimin 1. Bölgesi) Artan verimler kanunu geçerlidir. 4. İşçiden itibaren toplam ürün azalarak artmakta, ortalama ürün ile marjinal ürün azalmaktadır (negatif eğimlidir). Bu bölgede Azalan verimler kanunu geçerlidir. TP TP MP AP 0 I. BÖLGE II. BÖLGE III. BÖLGE Değişim Faktörü Emek MP L>APL MP L<AP / L MP L<0<APL APL 0 L Şekil A 24: Toplam Ürün (TP) Ortalama Ürün (AP) ve Marjinal Ürün (MP) Gösterimi 11 MPL

12 SAN / İKTİSADİ MATEMATİK / 12 Şekil yardımı ile firmanın optimal emek girdi kullanım miktarı kararını ve çıktı miktar kararını belirlemeye çalışalım. 1. bölgede firma emek istihdamını durdurmaz. Zira emek miktarı arttıkça girdi artan miktarda artmaktadır (artan verimlilik). 3. bölgedeki emek istihdamı da firmayı ilgilendirmemektedir (negatif verimlilik). Bu bölgede ek bir emek istihdamı toplam çıktıda azalmaya neden olacaktır. Bu durumda firma, emek istihdam kararı için 2. bölgede hareket edecektir. 2. bölge içerisinde karar verirken firma, sabit faktör ve değişken faktörün görece maliyetlerine bakacaktır. Şayet değişken girdi daha pahalıysa 2. bölgenin başlangıç kısımlarına yakın yerde girdi istihdamına karar verecektir. Sabit girdi nispeten daha pahalıysa 2. bölgenin bitiş kısmına doğru istihdam kararını verecektir. A.6.2. Üretici Teorisinin Matematiksel İktisat Uygulamaları Aşağıdaki gibi bir üretim fonksiyonu verilmiş olsun: a) Ortalama ürün ve marjinal ürün fonksiyonlarını bulunuz. b) Ortalama ürün ve marjinal ürünün maksimum olduğu emek düzeylerini ve bu düzeylerdeki fonksiyon değerleri ile üretim miktarını bulunuz. Öncelikle ortalama ürünün maksimum düzeyini tespit edelim. 1. Adım 2. Adım Birinci türevin çözümü olan x değeri, in maksimum noktasını verir. 12

13 SAN / İKTİSADİ MATEMATİK / Adım Türev alındığında bulunan emek miktarı yerine yazılarak ortalama ürünün maksimum olduğu emek düzeyi tespit edilmiş olur. Ortalama ürünü maksimize eden emek miktarı, üretim fonksiyonunda yazılarak ortalama ürünün maksimum olduğu düzeydeki toplam üretim tespit edilmiş olur. Şimdi de marjinal ürünün maksimum noktasını tespit edelim. 1. Adım 2. Adım Birinci türevin çözümü olan x değeri, in maksimum noktasını verir. 3. Adım Marjinal ürünün türev alınarak sıfıra eşitlenmesi ile elde edilen emek miktarı yerine yazılarak marjinal ürünün maksimum olduğu emek düzeyi tespit edilmiş olur. Marjinal ürünü maksimize eden emek miktarı, üretim fonksiyonunda yazılarak marjinal ürünün maksimum olduğu düzeydeki toplam üretim tespit edilmiş olur. 13

14 SAN / İKTİSADİ MATEMATİK / 14 c) Toplam ürünün maksimum olduğu düzeydeki emek miktarını ve toplam üretimi tespit ediniz. Toplam ürünün maksimum olduğu düzeyi tespit edebilmek için üretim fonksiyonunun birinci dereceden türevi alınmalıdır. Bu fonksiyon, aynı zamanda marjinal ürün fonksiyonuna eşittir. Toplam ürünü maksimize eden emek miktarı, üretim fonksiyonunda yazılarak toplam üretimin maksimum düzeyi tespit edilmiş olur. 14

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

Ders içeriği (7. Hafta)

Ders içeriği (7. Hafta) Ders içeriği (7. Hafta) 7.Üretim Teorisi 7.1. Uzun dönem ve ölçeğe göre getiri (Ölçeğin verimi) 7.2. Üretim fonksiyonu 7.3. Azalan Verim Kanunu 7.4. Tek ve iki değişkenli üretim fonksiyonları Ek Kaynak:

Detaylı

meydana gelen değişmedir. d. Ek bir işçi çalıştırıldığında sabit maliyetlerde e. Üretim ek bir birim arttığında toplam

meydana gelen değişmedir. d. Ek bir işçi çalıştırıldığında sabit maliyetlerde e. Üretim ek bir birim arttığında toplam A 1. Aşağıda verilen ifadelerden hangisi eş-ürün eğrisi ile ilgili değildir? a. Girdilerin pozitif marjinal fiziki ürüne sahip olması b. Girdilerin azalan marjinal fiziki ürüne sahip olması c. Girdilerin

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 B.3.2. Taban Fiyat Uygulaması Devletin bir malın piyasasında oluşan denge fiyatına müdahalesi,

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

Mikro Final. ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI Saat: 10:45

Mikro Final. ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI Saat: 10:45 MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI 21.01.2011 Saat: 10:45 Mikro1 2010 Final Çoktan Seçmeli Sorular Sorunun yanıtı olan veya cümleyi

Detaylı

ÜRETİM VE MALİYETLER

ÜRETİM VE MALİYETLER ÜRETİM VE MALİYETLER FİRMALARIN TEMEL AMACI Mal ve hizmet üretimi firmalar tarafından gerçekleştirilir. Ekonomi teorisine göre, firmaların mal ve hizmet üretimindeki temel amacı kar maksimizasyonu (en

Detaylı

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ DERS NOTU 05 ÜRETİCİ TEORİSİ Bugünki dersin işleniş planı: 1. Kârını Maksimize Eden Firma Davranışı... 1 2. Üretim Fonksiyonu ve Üretici Dengesi... 5 3. Maliyeti Minimize Eden Denge Koşulu... 15 4. Eşürün

Detaylı

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil MALİYET TEORİSİ 2 Maliyet fonksiyonunun biçimi, üretim fonksiyonunun biçimine bağlıdır. Bir an için reçel üreticisinin, bir birim kavanoz ve bir birim meyve toplayıcısı ile bir birim çıktı elde ettiği

Detaylı

Bu Bölümde Neler Öğreneceğiz?

Bu Bölümde Neler Öğreneceğiz? 7. MALİYETLER 193 Bu Bölümde Neler Öğreneceğiz? 7.1. Kısa Dönem Firma Maliyetleri 7.1.1. Toplam Sabit Maliyetler 7.1.2. Değişken Maliyetler 7.1.3. Toplam Maliyetler (TC) 7.1.4. Marjinal Maliyet (MC) 7.1.5.

Detaylı

IKT Kasım, 2008 Gazi Üniversitesi, İktisat Bölümü. DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ

IKT Kasım, 2008 Gazi Üniversitesi, İktisat Bölümü. DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ Bugünkü ders planı: 1. Kârını Maksimize Eden Firma Davranışı...1 2. Üretim Fonksiyonu ve Üretici Dengesi...5 3. Maliyeti Minimize Eden Denge Koşulu...15 4. Maliyet

Detaylı

Mikroiktisat Final Sorularý

Mikroiktisat Final Sorularý Mikroiktisat Final Sorularý MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ MALĐYE VE ĐŞLETME BÖLÜMLERĐ MĐKROĐKTĐSAT FĐNAL SINAVI 10.01.2011 Saat: 13:00 Çoktan Seçmeli Sorular: Sorunun Yanıtı

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

İKT 207: Mikro iktisat. Faktör Piyasaları

İKT 207: Mikro iktisat. Faktör Piyasaları İKT 207: Mikro iktisat Faktör Piyasaları Tartışılacak Konular Tam Rekabetçi Faktör Piyasaları Tam Rekabetçi Faktör Piyasalarında Denge Monopson Gücünün Olduğu Faktör Piyasaları Monopol Gücünün Olduğu Faktör

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL 1. Monopolist için fiyat marjinal hasılanın üzerindedir. Çünkü, A) Ortalama ve marjinal hasıla eğrileri birbirine eşittir B) Azalan verimler kanunu geçerli

Detaylı

ÜRETİM ve MALİYETLER. Üretim Fonksiyonu 14.12.2011. Kısa Dönemde Üretim Fonksiyonu. Doç.Dr. Erdal Gümüş

ÜRETİM ve MALİYETLER. Üretim Fonksiyonu 14.12.2011. Kısa Dönemde Üretim Fonksiyonu. Doç.Dr. Erdal Gümüş .. Üretim Fonksiyonu ÜRETİM ve MALİYETLER Doç.Dr. Erdal Gümüş Üretim fonksiyonu: Üretim girdileri ile çıktı ilişkisini ifade eden bir fonksiyondur. Başka bir tanım: teknoloji veri iken belirli miktarlardaki

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Hüseyin AYDIN İÇİNDEKİLER HEDEFLER TÜREVİN İKTİSADİ UYGULAMALARI. Marjinal Maliyet Marjinal Gelir Marjinal Kâr

ÜNİTE. MATEMATİK-1 Prof.Dr.Hüseyin AYDIN İÇİNDEKİLER HEDEFLER TÜREVİN İKTİSADİ UYGULAMALARI. Marjinal Maliyet Marjinal Gelir Marjinal Kâr HEDEFLER İÇİNDEKİLER TÜREVİN İKTİSADİ UYGULAMALARI Marjinal Maliyet Marjinal Gelir Marjinal Kâr MATEMATİK-1 Prof.Dr.Hüseyin AYDIN Bu üniteyi çalıştıktan sonra; Türevle ekonomi problemlerini çözebilecek,

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir:

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: 2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: a) Bu malın arz ve talep denklemlerinin grafiklerini çiziniz (5 puan) (DÖÇ.1-).

Detaylı

1. Kısa Dönemde Maliyetler

1. Kısa Dönemde Maliyetler DERS NOTU 05 MALİYET TEORİSİ: KISA VE UZUN DÖNEM Bugünki dersin işleniş planı: 1. Kısa Dönemde Maliyetler... 1 2. Kâr Maksimizasyonu (Bütün Piyasalar İçin)... 9 3. Kâr Maksimizasyonu (Tam Rekabet Piyasası

Detaylı

Konu 5 Üretim Süreci ve Maliyetler

Konu 5 Üretim Süreci ve Maliyetler Konu 5 Üretim Süreci ve Maliyetler Hadi Yektaş Uluslararası Antalya Üniversitesi İşletme Tezsiz Yüksek Lisans Programı 1 / 92 Hadi Yektaş Üretim Süreci ve Maliyetler İçerik 1 Giriş 2 Kısa Dönem ve Uzun

Detaylı

2.BÖLÜM ÇOKTAN SEÇMELİ

2.BÖLÜM ÇOKTAN SEÇMELİ CEVAP ANAHTARI 1.BÖLÜM ÇOKTAN SEÇMELİ 1.(e) 2.(d) 3.(a) 4.(c) 5.(e) 6.(d) 7.(e) 8.(d) 9.(b) 10.(e) 11.(a) 12.(b) 13.(a) 14.(c) 15.(c) 16.(e) 17.(e) 18.(b) 19.(d) 20.(a) 1.BÖLÜM BOŞLUK DOLDURMA 1. gereksinme

Detaylı

2009 S 4200-1. Değeri zamanın belirli bir anında ölçülen değişkene ne ad verilir? ) Stok değişken B) içsel değişken C) kım değişken D) Dışsal değişken E) Fonksiyonel değişken iktist TEORisi 5. Yatay eksende

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Üretim Girdilerinin lması

Üretim Girdilerinin lması Üretim Girdilerinin Fiyatlandırılmas lması 2 Tam Rekabet Piyasasında Girdi Talebi Tek Değişken Girdi Durumu İlk olarak firmanın tek girdisinin işgücü () olduğu durumu inceleyelim. Değişken üretim girdisi

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

İKTİSADA GİRİŞ - 1. Ünite 4: Tüketici ve Üretici Tercihlerinin Temelleri.

İKTİSADA GİRİŞ - 1. Ünite 4: Tüketici ve Üretici Tercihlerinin Temelleri. Giriş Temel ekonomik birimler olan tüketici ve üretici için benzer kavram ve kurallar kullanılır. Tüketici için fayda ve fiyat kavramları önemli iken üretici için hasıla kâr ve maliyet kavramları önemlidir.

Detaylı

DERS NOTU 01 BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR

DERS NOTU 01 BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR DERS NOTU 01 BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR Bugünki dersin işleniş planı: 1. Temel Kavramlar... 1 a. Kıtlık... 1 b. Mal-Hizmet... 2 c. İktisat Bilimi... 2 d. Kaynaklar (Üretim Faktörleri)...

Detaylı

Tarım Ekonomisi ve İşletmeciliği

Tarım Ekonomisi ve İşletmeciliği Tarım Ekonomisi ve İşletmeciliği Doç.Dr.Tufan BAL 2.Bölüm Tarım Ekonomisi ve Politikası II Not: Bu sunuların hazırlanmasında büyük oranda Prof.Dr.İ.Hakkı İnan ın Tarım Ekonomisi ve İşletmeciliği Kitabından

Detaylı

A İKTİSAT KPSS-AB-PS / 2008 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli nedeni aşağıdakilerden

A İKTİSAT KPSS-AB-PS / 2008 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli nedeni aşağıdakilerden 1. Her arz kendi talebini yaratır. şeklindeki Say Yasasını aşağıdaki iktisatçılardan hangisi kabul etmiştir? A İKTİSAT 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

GRAFİK ÇİZİMİ VE UYGULAMALARI 2

GRAFİK ÇİZİMİ VE UYGULAMALARI 2 GRAFİK ÇİZİMİ VE UYGULAMALARI 2 1. Verinin Grafikle Gösterilmesi 2 1.1. İki Değişkenli Grafikler 3 1.1.1. Serpilme Diyagramı 4 1.1.2. Zaman Serisi Grafikleri 5 1.1.3. İktisadi Modellerde Kullanılan Grafikler

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL Problem 1 (KMS-2001) Bir endüstride iktisadi kârın varlığı, aşağıdakilerden hangisini gösterir? A)

Detaylı

GENEL EKONOMİ DERS NOTLARI

GENEL EKONOMİ DERS NOTLARI GENEL EKONOMİ DERS NOTLARI 3. BÖLÜM Öğr. Gör. Hakan ERYÜZLÜ Kıtlık, Tercih ve Fırsat Maliyeti Fırsat maliyeti, bir tercihi uygularken vazgeçilen başka bir tercihtir. Örneğin, bir lokantada mevcut iki menüden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Chapter 4 Spesifik faktörler ve Gelir Dağılımı

Chapter 4 Spesifik faktörler ve Gelir Dağılımı Chapter 4 Spesifik faktörler ve Gelir Dağılımı Chapter Organizasyonu Giriş Spesifik Faktör Modeli Spesifik Faktörler Modelinde Uluslararsı Ticaret Gelir Dağılımı ve the Ticaretin Kazanımları Ticaretin

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI 1. John Maynard Keynes e göre, konjonktürün daralma dönemlerinde görülen düşük gelir ve yüksek işsizliğin nedeni aşağıdakilerden

Detaylı

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR İÇİNDEKİLER Önsöz BİRİNCİ BÖLÜM İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR 1.1.İktisat Bilimi 1.2.İktisadi Kavramlar 1.2.1.İhtiyaçlar 1.2.2.Mal ve Hizmetler 1.2.3.Üretim 1.2.4.Fayda, Değer ve Fiyat

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3 Soru Seti 3 1) Q D = 100 2P talep denklemi ve Q S = P 20 arz denklemi verilmiştir. Üretici ve tüketici rantlarını hesaplayınız. Cevap: Öncelikle arz ve talep denklemlerini eşitleyerek denge fiyat ve miktarı

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-II Fonksiyonların Bükeyliği Maksimum - Minimum Problemleri Belirsiz Haller MATEMATİK-1 Doç.Dr.Murat SUBAŞI Bu üniteyi çalıştıktan sonra; Fonksiyonların grafiklerinin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir.

Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. 2014 Pegem Akademi Bu kitabın basım, yayın ve satış hakları Pegem Akademi

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ SORU 1: Tam rekabet ortamında faaliyet gösteren bir firmanın kısa dönem toplam maliyet fonksiyonu; STC = 5Q 2 + 5Q + 10 dur. Bu firma tarafından piyasaya sürülen ürünün

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SAY 203 MİKRO İKTİSAT

SAY 203 MİKRO İKTİSAT SAY 203 MİKRO İKTİSAT Esneklikler YRD. DOÇ. DR. EMRE ATILGAN SAY 203 MİKRO İKTİSAT - YRD. DOÇ. DR. EMRE ATILGAN 1 ESNEKLİKLER Talep Esneklikleri Talep esneklikleri: Bir malın talebinin talebi etkileyen

Detaylı

BÖLÜM 1 TARIM EKONOMİSİNE GİRİŞ

BÖLÜM 1 TARIM EKONOMİSİNE GİRİŞ İÇİNDEKİLER BÖLÜM 1 TARIM EKONOMİSİNE GİRİŞ 1.1. ANA HATLARIYLA TARIM VE TARIMSAL GELİŞİM SÜRECİ... 1 1.2. SÜRDÜRÜLEBİLİR GELİŞME VE TARIM EKONOMİSİ... 18 1.3. TARIMDAKİ DEĞİŞİMİN ALTINDA YATAN TEMEL NEDENLER...

Detaylı

DERS NOTU 01 TÜKETİCİ TEORİSİ

DERS NOTU 01 TÜKETİCİ TEORİSİ DERS NOTU 01 TÜKETİCİ TEORİSİ Bugünki dersin işleniş planı: I. Hanehalkı Karar Problemi... 1 A. Bütçe Doğrusu... 1 II. Seçimin Temeli: Fayda... 5 A. Azalan Marjinal Fayda... 5 B. Fayda Fonksiyonu... 9

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

İKTİSAT SORU BANKASI ECONOMICUS TAMAMI ÇÖZÜMLÜ DİLEK ERDOĞAN KURUMLU TEK KİTAP

İKTİSAT SORU BANKASI ECONOMICUS TAMAMI ÇÖZÜMLÜ DİLEK ERDOĞAN KURUMLU TEK KİTAP ECONOMICUS İKTİSAT SORU BANKASI TAMAMI ÇÖZÜMLÜ Mikro İktisat Makro İktisat Para-Banka Kredi Uluslararası İktisat Büyüme ve Kalkınma Türkiye Ekonomisi İktisadi Doktrinler Tarihi KPSS ve kurum sınavları

Detaylı

15.433 YATIRIM. Ders 3: Portföy Teorisi. Bölüm 1: Problemi Oluşturmak

15.433 YATIRIM. Ders 3: Portföy Teorisi. Bölüm 1: Problemi Oluşturmak 15.433 YATIRIM Ders 3: Portföy Teorisi Bölüm 1: Problemi Oluşturmak Bahar 2003 Biraz Tarih Mart 1952 de, Şikago Üniversitesi nde yüksek lisans öğrencisi olan 25 yaşındaki Harry Markowitz, Journal of Finance

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Makro İktisat II Örnek Sorular. 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120

Makro İktisat II Örnek Sorular. 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120 Makro İktisat II Örnek Sorular 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120 Tüketim harcamaları = 85 İhracat = 6 İthalat = 4 Hükümet harcamaları = 14 Dolaylı vergiler = 12

Detaylı

Açık Maliyetler Örtük Maliyetler:

Açık Maliyetler Örtük Maliyetler: MALİYETLER Açık Maliyetler: Üretim faktörlerini elde etmek için yapılan gerçek ödemeleri ifade eder. Muhasebeleştirilen maliyetlerdir. Örtük Maliyetler: Gerçekte ödeme yapılmayan, ancak bir alternatiften

Detaylı

A. IS LM ANALİZİ A.1. IS

A. IS LM ANALİZİ A.1. IS A. ANALZ A.. Analizi (Mal Piyasası) (Investment aving) (atırım Tasarruf) Eğrisi, faiz oranları ile gelir düzeyi arasındaki ilişkiyi gösterir. Analizin bu kısmında yatırımları I = I bi olarak ifade edeceğiz.

Detaylı

KAMU YÖNETİMİ LİSANS PROGRAMI

KAMU YÖNETİMİ LİSANS PROGRAMI İSTANBUL ÜNİVERSİTESİ AÇIK VE UZAKTAN EĞİTİM FAKÜLTESİ KAMU YÖNETİMİ LİSANS PROGRAMI MİKRO İKTİSAT DOÇ. DR. YÜKSEL BAYRAKTAR MALİYETLER 7. Kısa ve Uzun Dönem Firma Maliyetleri 7.1. Kısa Dönem Firma Maliyetleri

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 3 HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 2 EŞ-ANLI DENKLEM SİSTEMLERİ Bu bölümde analitik ve grafik olarak eş-anlı denklem sistemlerinin

Detaylı

İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR...

İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR... İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR... 1 1.1. EKONOMİ İLE İLGİLİ DÜŞÜNCELER... 3 1.1.1. Romalıların Ekonomik Düşünceleri... 3 1.1.2. Orta Çağ da Ekonomik Düşünceler...

Detaylı

APC= = = + c bulunur. Bunun anlamı gelir arttıkça bireylerin ortalama tüketim

APC= = = + c bulunur. Bunun anlamı gelir arttıkça bireylerin ortalama tüketim A. Toplam Harama ve Denge Gelir Düzeyi A.. Tüketim Fonksiyonu ve Tüketim ğilimi Keynes e göre, devletin olmadığı bir ekonomide ( = C + I) bir dönemdeki (ari dönemdeki) tüketim, ari gelirin bir fonksiyonudur

Detaylı

MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI

MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI Harcama yöntemine göre yapılan GSYİH hesaplaması GSYİH = C + I + G şeklinde idi. Biz burada GSYİH ile MG arasındaki farkı bir

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi N. K. Ekinci Ekim 2015 İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi 1. Tek Sektörlü Ekonomide Gelir Dağılımı Tek mal (buğday) üreten bir ekonomi ele alalım. 1 birim buğday üretimi

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ekonomide Uzun Dönem. Bilgin Bari İktisat Politikası 1

Ekonomide Uzun Dönem. Bilgin Bari İktisat Politikası 1 Ekonomide Uzun Dönem Bilgin Bari İktisat Politikası 1 Neden bazı ülkeler zengin bazı ülkeler fakir? Bilgin Bari İktisat Politikası 2 Bilgin Bari İktisat Politikası 3 Bilgin Bari İktisat Politikası 4 Bilgin

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

MALİYET MİNİMİZASYONU... 2

MALİYET MİNİMİZASYONU... 2 MAİYET MİNİMİZASYONU... 2 1. EN DÜŞÜ MAIYETTE ÜRETIM... 2 1.1. GIRDI İAMESI... 2 1.2. EŞ MAIYET DOĞRUSU... 4 1.3. EN DÜŞÜ MAIYET TENIĞI... 6 1.3.l. Girdi Fiyatlarında Değişmeler... 7 1.4. MARJINA ÜRÜN

Detaylı

iktisaoa GiRiş 7. Ürettiği mala ilişkin talebin fiyat esnekliği değeri bire eşit olan bir firma, söz konusu

iktisaoa GiRiş 7. Ürettiği mala ilişkin talebin fiyat esnekliği değeri bire eşit olan bir firma, söz konusu 2009 BS 3204-1. şağıdakilerden hangisi dayanıksız mal veya hizmet grubu içerisinde ~ almaz? iktiso GiRiş 5. Gelirdeki bir artış karşısında talebi azalan mallara ne ad verili r? ) Benzin B) Mum C) Ekmek

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Teknolojik Gelişme ve Ekonomik Büyüme:

Teknolojik Gelişme ve Ekonomik Büyüme: B.E.A. Teknolojik Gelişme ve Ekonomik Büyüme: Daha önce üretim fonksiyonunda yalnızca fiziksel sermaye (K) ve insan (N) girdisi bulunmakta idi. Şimdi üretim fonksiyonuna teknolojiyi eklemekteyiz: Y=F(K,N,A)

Detaylı

İKTİSAT. İktisata Giriş Test Dolmuş ile otobüs aşağıdaki mal türlerinden

İKTİSAT. İktisata Giriş Test Dolmuş ile otobüs aşağıdaki mal türlerinden İktisata Giriş Test - 1 1. Doğada insan ihtiyaçlarına oranla kıt olan elde etmek için çaba sarf edilen ve fiyatı olan mallara ne ad verilir? A) Serbest mallar B) İktisadi mallar C) Nihai mallar D) Üretici

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

1. Mal Piyasası ve Para Piyasası

1. Mal Piyasası ve Para Piyasası DERS NOTU 06 IS/LM MODELİ Bugünki dersin içeriği: 1. MAL PİYASASI VE PARA PİYASASI... 1 2. MAL PİYASASI İLE PARA PİYASASININ İLİŞKİSİ... 1 3. FAİZ ORANI, YATIRIM VE IS EĞRİSİ... 2 IS EĞRİSİNİN CEBİRSEL

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

MİKRO İKTİSAT ÇALIŞMA SORULARI-8 TÜKETİCİ TEORİSİ TÜKETİCİ DAVRANIŞLARI VE DENGESİ

MİKRO İKTİSAT ÇALIŞMA SORULARI-8 TÜKETİCİ TEORİSİ TÜKETİCİ DAVRANIŞLARI VE DENGESİ MİKRO İKTİSAT ÇALIŞMA SORULARI-8 TÜKETİCİ TEORİSİ TÜKETİCİ DAVRANIŞLARI VE DENGESİ 1. Çeşitli mal veya hizmetlerin insan ihtiyaçlarını karşılama özelliğine ne ad verilir? A) Fayda B) Değer C) Util D) Refah

Detaylı