Bahar Yarıyılı Bölüm-2 (Kuantum Fiziğine Giriş) ve tarihli ders notları Ankara A. OZANSOY

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bahar Yarıyılı Bölüm-2 (Kuantum Fiziğine Giriş) ve tarihli ders notları Ankara A. OZANSOY"

Transkript

1 FİZ314 Fizikte Güncel Konular Bahar Yarıyılı Bölüm-2 (Kuantum Fiziğine Giriş) ve tarihli ders notları Ankara A. OZANSOY

2 Bölüm 2: Kuantum Fiziğine Giriş 1. Kuantum Fiziğiei Neden Gereklidir? 2. Em Dalgaların Genel Özellikleri 3. Siyah Cisim Işıması 4. Fotoelektrik Olay 5. Compton Olayı 6. X-ışınları 7. de Broglie Hipotezi 8. Foton nedir? 9. Çift Yarık Deneyinin Gözden Geçirilmesi 10. Belirsizlik Bağıntıları 11. Dalga Paketleri 12. Olasılık 2

3 6. X ışınları 6.1. X-ışınlarının keşfi Katot ışınları (*) ile çalışmalar yapan Wilhelm Conrad Roentgen ( ) 8 Kasım 1895 te, her tarafı siyah kartonla kaplı bir katot ışını tüpünü açtığında, tüpten 1-2 metre ötede bulunan, baryum platin siyanür kaplı bir ekranda bir ışıma olduğunu gözlemledi. Yapısını tam olarak açıklayamadığı bu ışınlara bilinmeyen anlamında X-ışınları dedi. Şekil 1. W.C. Roentgenin laboratuvarı. Kaynak [1] Şekil 2. Katot ışınları tüpü Kaynak [2] (*) Katot ışınlarının (dolayısıyla bunları oluşturan elektronların) doğasını anlamaya yönelik ilk çalışmalar 19 yy başlarına dayanır. İçine metal elektrotlar yerleştirilmiş ve havası boşaltıldıktan sonra düşük basınçlı bir gazla (hidrojen, karbondioksit vb.) doldurulmuş cam tüpler, elektrotlar arsına yeterince yüksek bir potansiyel fak uygulandığında şimşek parıltısına benzeyen parıltıların oluştuğu fark edilmiştir. Daha sonra, bunların eksi yüklü katottan kopan parçacıklardan kaynaklandığı anlaşılmış ve bu parlamalara katot ışınları denilmiştir. (Bknz. Kaynak [3] 3

4 Esasında W.C. Roentgen den önce pek çok bilim adamı (William Morgan 1785, Humphrey Davey 1822, Michael Faraday 1835, Sir William Crookes 1878 ile Arthur Goodspeed ve Willam Jenings 1890) katot ışın tüpü ile çalışırken farkında olmadan X- ışını üretmişler ancak bunun farkında olamamışlardı. Roentgen 15 dk lık bir ışınlama ile, keşfinden 14 gün sonra 22 Aralık 1895 te eşi Bertha nın elinin görüntüsünü elde etti. Bu meşhur görüntü ilk X-ışını görüntüsüdür. Şekil 3. İlk X-ışını görüntüsü Kaynak [1] Roentgen buluşunu 28 Aralık 1895 te Yeni bir Tür Işın Üzerine başlıklı bir bildiri ile Würzburg Fiziksel Tıp Topluluğuna sundu. Özellikle tıp tarihi için bir dönüm noktası olan bu buluş 1901 yılında Nobel Fizik Ödülü almıştır. 4

5 6.2. Doğal ve Yapay X-ışınlarının Oluşum Mekanizması Doğal X-ışınlarının oluşumu Bir atoma gönderilen yüksek enerjili elektronlar, atomun ilk yörüngelerindeki elektronları koparırlar, kopan bu elektronların yerine daha üst seviyelerden elektronlar atlayarak bu boşlukları doldururlar. Bu sırada ortaya çıkan enerji fazlalığı X-ışını olarak salınır. Çekirdek içindeki protonlardan biri de elektron yakalayarak nötürleşir. Yine üst seviyelerden gelen bir elektron yakalanan elektronun boşluğu doldurarak da X-ışınları oluşabilir. 5

6 Yapay X-ışınlarının Oluşumu: Isıtılan katottan termoiyonik yayınlama ile elektronlar elde edilir. Yüksek bir voltaj ile hızlandırılan elektronlar metal bir hedefe bombardıman edildiğinde yavaşlar ve elektronların kaybettiği enerji X-ışınına dönüşür. Bu ışımaya Almanca Bremsstrahlung (Frenleme Işınımı) denir. Şekil 4. X-ışını tüpü Kaynak [4] Şekil 5. X-ışını oluşum mekanizması Kaynak [5] 6 Elektromanyetik teoriye göre, ivmeli hareket eden yüklü bir parçacık elektromanyetik dalga (ışınım) yayınlar. Buna göre, hızlandırılmış elektronlar, aniden yavaşlayarak ivme kazanır. Elektronların frenlemeden dolayı enerji kaybı ağır parçacıklara göre daha fazladır, çünkü elektronlar yolları üzerindeki çekirdeklerin yakınından geçerken daha fazla ivmelenirler. Elektronun enerjisi ve etkileştiği çekirdeklerin atom sayısı arttıkça frenleme ışınımın enerjisi artar.

7 Etkileşme türüne göre sürekli ve kesikli X-ışınları elde edilir. Klasik elektromanyetik kuram elektronların ivmeli hareketinden dolayı ışıma çıkacağını öngörür, ancak iki deneysel gözlem klasik kuram ile açıklanamamaktadır. Işın şiddetinin dalga boyu (ya da frekansa bağlı) dağılımları (spektrumları) incelendiğinde; 1. Aynı potansiyel fark altındaki farklı malzemelerden elde edilen dağılımlar için, sürekli dağılımı bozan birkaç keskin pik gözlenmiştir. Bu pikler belli malzeme için üretilen ışınımın büyük bölümünün özel bazı dalga boylarında üretildiğine işaret eder. Bu dalga boylarındaki X-ışınlarına karakteristik X-ışınları denir. Karakteristik X-ışınları klasik fizik ile açıklanamaz, atomik enerji seviyelerinin kuantumlanması ile açıklanır. Şekil 6. Tungsten ve Molibden için 35 kv da ışın dağılımı. Kaynak [6] 7

8 2. Belirli bir hızlandırma potansiyeli (V) ile oluşturulan X- ışınlarının dalga boyları min değerinden daha küçük değildir. V arttıkça min değeri de azalmaktadır. Şekil 7. Tungsten için farklı hızlandırma potansiyellerinde elde edilen ışın dağılımı. Kaynak [6] 8

9 Burada elektronların kinetik enerjisi fotonun enerjisine dönüşmektedir. (Xışınları tüpündeki metal hedefin iş fonksiyonunu ihmal ediyoruz. Çünkü iş fonksiyonları ev (elektronvolt) mertebesinde iken, buradaki hızlandırıcı potansiyeller yüz binlerce volt mertebesindedir. Deneysel gözlemlerden; maks V sbt E foton = h maks K elektron =ev h min maks maks ev, c Elektromanyetik dalga için h: Planck sabiti (h= J.s) e: elektron yükü (e= C) c: ışık hızı (c=310 8 m/s) min hc ev hc 1 ( ) e V V 6 V. m Duane-Hunt Yasası 9

10 Örnek 2.3: Hızlandırma potansiyeli V olan bir X-ışını tüpünden çıkan ışınımdaki en kısa dalga boyunu bulunuz. Çözüm: min hc ev hc 1 ( ) e V V 6 min V m nm Bu dalga boyu şu frekansa karşılık gelir: maks c min Hz 10

11 6. 3. X ışınlarının Özellikleri X-ışınları elektromanyetik spektrumun düşük dalga boyu (5 pm ile 10 nm arası), yüksek frekans bölgesinde yer alır. X- ışınlarının enerjileri 1 kev ile 100 kev arasında değişir. Yüksek enerjili X-ışınlarına sert ya da çok girici (hard) X-ışınları; daha düşük enerjili olanlara da yumuşak ya da az girici (soft) X-ışınları denir. (Genellikle, 0.1 nm den daha uzun dalga boylu olanlara yumuşak X ışını denir.) 11

12 Esasında sert ve yumuşak X-ışınları arasındaki ayrım çok kesin değildir. Genellikle 10 kev den daha yüksek enerjili olanlarına sert X-ışınları denir. Daha uygun bir ayrım yapabilmek, X-ışınlarını gözlemek için kullanılan aletlerle ve hangi fiziksel şartlar altında X- ışınlarının üretildiği ile ilgilidir. Sert X-ışınları, yüksek dalga boylu (ya da düşük enerjili) gama ışınları ile çakışırlar; bununla birlikte ikisi arasındaki fark ışınımın kaynağı (ışınımın nasıl oluştuğu) ile ilgilidir, dalga boyu ile ilgili değildir. X-ışınları enerjik elektron süreçlerinde üretilirken, gama ışınları atom çekirdeği içerisindeki geçişlerle üretilirler. 12

13 X-ray telescopes Şekil 8. Sert ve yumuşak X-ışınılarının kullanımı Kaynak [7] 13

14 X-ışınlarının algılanması: X-ışınları Dünya atmosferine nüfuz etmezler. Bu nedenle atmosferin üzerinde yer alan bir platformdan gözlenebilirler. X-ışınlarının gözlenebilmesi için, kullanılan detektör içerisindeki maddenin belli bir hacmi ile etkileşmesi ve serbest elektronları oluşturması gerekir. Bu oluşturulan serbest elektronlar sonuçta bir elektrik akımı olarak algılanır. Sert X-ışınları, yumuşak X-ışınlarından daha girici olduğundan gözlemlenebilmek için daha yoğun bir maddeye ihtiyaç duyarlar. Örneğin; polimer bir penceresi olan bir gazla dolu yalıtılmış bir silindir ve bir metal telden oluşan Geiger-Müller Sayacında olduğu gibi. Yüksek bir gerilim, silindir (katot) ve metal tel (anot) arasına uygulanır. Bir X- ışını silindire geldiğinde içerdeki gazı iyonlaştırır ve gaz iletken olmaya ve bir akım oluşturmaya başlar. Bu akımın tepe değeri sayaçta bir sayma olarak adlandırılır ve bu bu algılanır. Şekil 9. Geiger-Müller Sayacı Kaynak [8] 14

15 X-ışınlarının dedekte edilmesi çeşitli yöntemlere dayanır. En yaygın olarak bilineni (hastanelerde tanı amaçlı kullanılan) fotografik bir plaka kullanmaktır. X-ışınları yumuşak madde içerisine nüfuz edebilme özelliğine sahiptir. X-ışınları deri ve organlar içerisinden geçerken, nüfuz ederler ve fotografik plakayı karartırlar, kemik veya iyot (kontrast bir ürün) enjekte edilmiş kandan geçerken durdurulurlar ve bu bölgeler ise plakada beyazdır. Başka bir yöntem, sodyum iyodür (NaI) gibi flouresans bir plaka kullanmaktır. Bu yöntemler, X-ışınlarının enerjisi hakkında bilgi vermez, sadece uzaysal yoğunlukları ile ilgili bilgi verir. Şekil 10 X-ışını görüntüsü Kaynak [9] 15

16 Pek çok astronomik cisim kendi X-ışını kaynağıdır. X-ışını astronomisi (yüksek enerji astrofiziği) yıldızlar, galaksiler vs. den üretilen X-ışınlarını gözlemek, bunlarla ilgili fiziği anlamak ve kullanmakla ilgilenir. Şekil 11. Chandra X-ışını Gözlemevi Kaynak [9] 16

17 Türkiye de ilk çalışmalar; Dr. Esad Feyzi Bey ( ) X-ışınlarının keşfinden çok kısa bir süre sonra (yaklaşık 3 ay sonra) ülkemizde de X- ışınları kullanarak görüntüler elde edilmiştir. Tıp alanındaki ilk uygulamaları askeri tıbbiye okulu öğrencileri Esad Feyzi Bey ve Osman Rifat Bey gerçekleştirmişlerdir. Esad Feyzi ve Osman Rifat Beyler 29 Ocak 1896 da laboratuar şartlarında oluşturdukları bir düzenekle X ışını üretmişler ve bir hekim arkadaşlarının elinin görüntüsünü almayı başarmışlardır. Daha sonra 1897 Osmanlı-Yunan savaşında Esad Feyzi Bey ve arkadaşları yaralı askerlerin vücutlarında bulunan mermi parçalarını ve kemik kırıklarını tespit etmek için X-ışınlarını kullanmışlardır. Bu, radyolojinin savaşta ilk kullanımı olarak dünya tıp literatürüne geçmiştir. Dr. Esad Feyzi Bey, çalışmalarını Röntgen Şuaatı ve Tatbikat-ı Tıbbiye ve Cerrahiye isimli el yazmalarında toplamıştır. Şekil 12. Dr. Esad Feyzi Bey in kitabı, Kaynak [10] 17

18 6.4. X-ışını kırınımı Dalga boyu çok küçük olan X-ışınlarının dalga boyunu belirleyebilmek gerekiyor. Bunun için en uygun yöntem ışınları bir kırınım ağına göndermek. Kırınımın gerçekleşebilmesi için dalga boyu ve yarık aralığının yaklaşık aynı mertebede olması gerekir de Max von Laue, kırınım ağı olarak kristalleri kullanmayı önerdi. Kristallerde atomlar düzenli sırlar halinde ve sıralar arası uzaklık 0.1 nm mertebesindedir. Dolayısı ile X-ışını kırınımı için 3-boyutlu bir kırınım ağı olarak kullanılabilir. 2dsin=n Bragg Yasası (1913) 18 Şekiller Kaynak[11] den alınmıştır. W.L. Bragg ve babası W.H. Bragg, 1915 Nobel Ödülü)

19 9. Çift Yarık Deneyinin Gözden Geçirilmesi (Bu kesim, Kaynak [12] ve Kaynak [13] referans alınarak hazırlanmıştır.) Bu deney, dalga ve parçacık özelliklerinin ikisini aynı anda ölçmenin olanaksız olduğunu gösterir. Işık, girişim ve kırınım gibi olaylarda dalga özelliği gösterir. Aynı kaynaktan çıkan tek renkli ışık ışınları çift yarıktan geçirilip bir perde üzerine düşürüldüğünde, perde üzerinde aydınlık ve karanlık saçaklardan oluşan bir girişim deseni elde ediliyordu. Elektron demeti ile yapılan çift yarık deneyinde, tıpkı ışıkta olduğu gibi bir girişim deseni gözlenmiştir. Eğer elektronlar klasik tanecikler gibi davransalardı böyle bir desen gözlenmezdi ve elektronların dalga karakterinden bahsedemezdik I. Deneyi ilk olarak klasik parçacıklar ile yapalım. Bunun için mermileri kullanalım. Çift yarıktan geçen mermilerden uzağa bir engel koyalım. Engel üzerinde, yer değiştirebilen bir detektör yerleştirelim. Detektör belli bir anda kaç merminin içeri girdiğini ölçecek. 19

20 Şekil, Kaynak [12] den alınmıştır. Mermiler taneler halinde gelirler. Detektör içindeki mermileri sayarsak hep tam sayıda mermi elde ederiz. Belli bir süre içinde kaç merminin geldiğini ölçersek «gelme olasılığından» bahsedebiliriz. Olasılıkları P ile gösterelim. Yalnız 1 numaralı delik açıkken elde edilen olasılık P 1, Yalnız 2 numaralı delik açıkken elde edilen olasılık P 2 ve ikisi de açıkken elde edilen olasılık P 12 olsun. İki delik açıkken elde edilen sonuç, delikler ayrı ayrı açıkken elde edilen sonuçların toplamıdır. P 12 = P 1 + P 2 (Girişim yok) 20

21 II. Deneyi ikinci olarak su dalgaları ile yapalım. Su dalgalarında periyodik olarak değişen büyüklük, suyun yüksekliğidir. Detektör olarak suya bir mantar koyup onun yukarı-aşağı hareketlerini ölçebiliriz. Bu, su dalgalarının taşıdığı enerji ile tam olarak orantılıdır. Bu enerji herhangi bir büyüklükte olabilir. Şekil, Kaynak [12] den alınmıştır. h 1, h 2 her delik ayrı ayrı açıkken ölçülen su yükseklikleri h 12 iki delik açıkken ölçülen su yüksekliği I 1, I 2 şiddetler I 12 I 1 + I 2 (Girişim var) 21

22 III. Son olark bu deneyi elekytronlar ile yapalım. Elektron kaynağı olarak bir elektron tabancası ve detektör olarak da elektron yükünü ölçebilen bir sistem olabilir. Detektöre tam bir elektron geldiğinde bir sinyal duyulur. Bu elektronun tanecik gibi davrandığını gösterir. Buna karşın, iki delik birden açıkken ekranda su dalgalarında olduğu gibi bir girişim deseni gözlenir. Girişim deseni ise dalga karakterinin kesin bir kanıtıdır. Şekil, Kaynak [12] den alınmıştır. 1, 2 genlikler P 12 P 1 + P 2 (İki delik birlikte açıkken girişim var) 22

23 IV. Elektronların hangi delikten geçtiğini saptamak istiyoruz: Bunun için ışık kullanırız. Deliklerin yakınlarını ışık ile aydınlatarak elektronları gözleriz. Bu durumda ekranda girişim deseni kaybolur. Durum tıpkı mermilerde olduğu gibi olur. P 12 = P 1 + P 2 Sorun nerededir? Girişimi yok etmeden elektronun hangi delikten geçtiğini belirlemek mümkün değildir. Bir topa ışık tuttuğunuzda, topun yönü değişmez ancak bir elektrona ışık tuttuğunuzda durum farklıdır. Foton ile etkileşen elektron momentum kazanır ve yönü değişir. (Elektronun hangi yarıktan geçeceğini tespit etmek üzere deneyi değiştirdiğimizde girişim yok! ) Şekil, Kaynak [6] dan alınmıştır. Sorunun çözümü için gerekli cevap «konum-momentum belirsizlik ilkesi» dir. Ölçme işleminin incelenen sistem üzerinde etkisi vardır. 23

24 Şekil, Kaynak [14] ten alınmıştır. Klasik mekaniğe göre, elektron belirli bir yol izler ve deliklerden birinden geçer. Kuantum mekaniksel olarak, elektronun belli konumlarda bulunma olasılığı verilir, ancak kesin konum belirlenemez. Elektronun konumu belirlenmek istenirse, elektronun daha sonraki hareketi değişmiş olur. Elektronu klasik bir dalga olarak ele alamayız. Böyle olsaydı, klasik optiğe göre girişim deseni hemen oluşmalıydı. Ancak yukarıdaki şekilden de görüldüğü üzere, belli bir süre beklendiğinde girişim deseni oluşmaktadır. Buna göre elektronları kaynaktan ekrana kadar uzanan klasik bir dalga değil, bir dalga paketi olarak ele almalıyız. [Kaynak 15] 24

25 Kaynaklar: Kuantum Fiziği Laboratuvarı Deney Kılavuzu, A.Ü. Fen Fakültesi Fizik Bölümü Kuantum Fiziği, E.Aygün ve M.Zengin, 7. Baskı, 2006 Ankara. 6. Modern Fiziğin Kavramları, A. Beiser (Çeviri Prof. Dr. Gülsen Önengüt), 6. Baskıdan Çeviri, Akademi Yayıncılık 2008, İstanbul Fen ve Mühendislik için Fizik, Cilt-II, R.A. Serway ve R.J. Beichner, (Çeviri Editörü: Prof. Dr. Kemal Çolakoğlu), 5. Baskıdan çeviri, Palme Yayıncılık 2002, Ankara. 12. The Feynman Lectures on Physics, R. Feynman, R. B. Leighton, M. Sands, Addison-Wesley Publishing Company, Third Printing, Fizik Yasaları Üzerine, R. Feynman (Çeviri: N. Arık), Tübitak Popüler Bilim Kitapları 12, 11. Basım, 1999, Ankara. 14. Fen ve Mühendislik için Modern Fizik, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, (Çeviri: Prof. Dr. Bekir Karaoğlu), 2. Baskıdan Çeviri, Okutman Yayıncılık, 2008, Ankara. 15. Kuantum Mekaniğine Giriş, B. Karaoğlu, Genişletilmiş 6. Baskı, Seçkin Yayıncılık, 2008, Ankara. 25

X-IŞINI OLUŞUMU (HATIRLATMA)

X-IŞINI OLUŞUMU (HATIRLATMA) X-IŞINI OLUŞUMU (HATIRLATMA) Şekilde modern bir tip X-ışını aygıtının şeması görülmektedir. Havası boşaltılmış cam bir tüpte iki elektrot bulunur. Soldaki katot ısıtıldığında elektronlar salınır. Katot

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için, DENEY NO : 7 DENEYİN ADI : ELEKTRONLARIN KIRINIMI DENEYİN AMACI : Grafit içinden kırınıma uğrayan parçacıkların dalga benzeri davranışlarının gözlemlenmesi. TEORİK BİLGİ : 0. yüzyılın başlarında Max Planck

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

8.04 Kuantum Fiziği Ders VI

8.04 Kuantum Fiziği Ders VI Fotoelektrik Etki 1888 de gözlemlendi; izahı, Einstein 1905. Negatif yüklü metal bir levha ışıkla aydınlatıldığında yükünü yavaş yavaş kaybederken, pozitif bir yük geriye kalır. Şekil I: Fotoelektrik etki.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç GİRİŞİM Girişim olayının temelini üst üste binme (süperpozisyon) ilkesi oluşturur. Bir sistemdeki iki farklı olay, birbirini etkilemeden ayrı ayrı ele alınarak incelenebiliyorsa bu iki olay üst üste bindirilebilinir

Detaylı

X IŞINLARININ ELDE EDİLİŞİ

X IŞINLARININ ELDE EDİLİŞİ X IŞINLARININ ELDE EDİLİŞİ Radyografide ve radyoterapide kullanılan X- ışınları, havası boşaltılmış bir tüp içinde, yüksek gerilim altında, ısıtılan katottan çıkan elektron demetinin hızlandırılarak anota

Detaylı

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-ışınlarının oluşum mekanizması fotoelektrik olaya neden olanın tam tersidir.

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

X-Işınları. 1. Ders: X-ışınları hakkında genel bilgiler. Numan Akdoğan. akdogan@gyte.edu.tr

X-Işınları. 1. Ders: X-ışınları hakkında genel bilgiler. Numan Akdoğan. akdogan@gyte.edu.tr X-Işınları 1. Ders: X-ışınları hakkında genel bilgiler Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-Işınları

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

X-Işınları. Numan Akdoğan. 1. Ders: X-ışınları hakkında genel bilgiler.

X-Işınları. Numan Akdoğan. 1. Ders: X-ışınları hakkında genel bilgiler. X-Işınları 1. Ders: X-ışınları hakkında genel bilgiler Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-Işınları

Detaylı

Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY

Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY FİZ314 Fizikte Güncel Konular 2015-2016 Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY Gece Görüş Sistemleri Gece gören cihazların temeli fotoelektrik olaya dayanır. (Gözlük, dürbün,

Detaylı

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması Dalga Nedir Enerji taşıyan bir değişimin bir yöne doğru taşınmasına dalga denir.

Detaylı

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir.

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir. SERKAN TURHAN 06102040 ABDURRAHMAN ÖZCAN 06102038 1878 Abbe Işık şiddetinin sınırını buldu. 1923 De Broglie elektronların dalga davranışına sahip olduğunu gösterdi. 1926 Busch elektronların magnetik alanda

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

X IŞINLARININ TARİHÇESİ

X IŞINLARININ TARİHÇESİ X IŞINLARININ TARİHÇESİ X ışınları 1895 yılında Alman fizik profesörü Wilhelm Conrad Röntgen tarafından keşfedilmiştir Röntgen, bir Crookes tüpünü indüksiyon bobinine bağlayarak, tüpten yüksek gerilimli

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Modern Fizik (Fiz 206)

Modern Fizik (Fiz 206) Modern Fizik (Fiz 206) 3. Bölüm KUANTUM Mekaniği Bohr modelinin sınırları Düz bir dairenin çevresinde hareket eden elektronu tanımlar Saçılma deneyleri elektronların çekirdek etrafında, çekirdekten uzaklaştıkça

Detaylı

6- RADYASYON KAYNAKLARI VE DOZU

6- RADYASYON KAYNAKLARI VE DOZU 6- RADYASYON KAYNAKLARI VE DOZU Güneşten gelen ısı ve ışık enerjisi radyasyonun doğal formudur. Bunlar çevremizde doğal olarak bulundukları gibi yapay olarak da elde edilmektedir. O nedenle radyasyon kaynağına

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 43 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Kimyafull Gülçin Hoca

Kimyafull Gülçin Hoca 1.ÜNİTE MODERN ATOM TEORİSİ 1. BÖLÜM: Atomla İlgili Düşünceler 1. Dalton Atom Modeli 2. Atom Altı Tanecikler Elektronun Keşfi Protonun Keşfi Nötronun Keşfi 0 Kimyafull Gülçin Hoca DALTON ATOM MODELİ Democritus

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-ışınlarının özellikleri, kalitesi ve kantitesi X-ışınları cam veya metal kılıfın penceresinden

Detaylı

GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU

GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU GĐRĐŞ TEM (Transmission Electron Microscope) Büyütme oranı 1Mx Çözünürlük ~1Å Fiyat ~1000 000 $ Kullanım alanları Malzeme Bilimi Biyoloji ÇALIŞMA PRENSĐBĐ Elektron tabancasından

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 5 Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınları Görüntüleme Teknikleri Bilgisayarlı Tomografi (BT) Manyetik Rezonans Görüntüleme (MRI) Nükleer

Detaylı

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI: 2009-2010 E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI A 1. Plastik bir tarak saça sürtüldü ünde tara n elektrikle yüklü hale gelmesinin 3 sonucunu yaz n z. 2. Katot fl nlar nedir? Katot fl

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

Malzeme muayene metodları

Malzeme muayene metodları MALZEME MUAYENESİ Neden gereklidir? Malzemenin mikroyapısını tespit etmek için. Malzemelerin kimyasal kompozisyonlarını tesbit etmek için. Malzemelerdeki hataları tesbit etmek için Malzeme muayene metodları

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları A. Fiziksel sabitler ve dönüşüm çarpanları B. Seçilmiş bağıntılar Rutherford saçınımının diferansiyel kesiti: Compton kayması Bohr un hidrojenimsi atom modelinde izinli yörüngelerin yarıçapı: olup burada

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

ELEKTRONLAR ve ATOMLAR

ELEKTRONLAR ve ATOMLAR BÖLÜM 3 ELEKTRONLAR ve ATOMLAR 1 Kapsam 1.0 Radyasyon Enerjisinin Doğası ve Karakteristiği 2.0 Fotoelektrik Etki 3.0 ER: Dalga Özelliği 4.0 Dalgaboyu, Frekans, Hız ve Genlik 5.0 Elektromanyetik Spektrum

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

Şekil 8.1 Bakır atomunun enerji seviyeleri

Şekil 8.1 Bakır atomunun enerji seviyeleri DENEY NO : 8 DENEYİN ADI : BAKIR ANOTUN KARAKTERİSTİK X-IŞINI SPEKTRUMU DENEYİN AMACI : Bakır anottan gelen X-ışınlarının spektrumunu bir monokristal yardımıyla inelemek. Kaydedilen spektrumu kullanarak

Detaylı

1. ATOMLA İLGİLİ DÜŞÜNCELER

1. ATOMLA İLGİLİ DÜŞÜNCELER 1. ATOMLA İLGİLİ DÜŞÜNCELER Democritus Maddenin tanecikli yapıda olduğunu ileri sürmüş ve maddenin bölünemeyen en küçük parçasına da atom (Yunanca a-tomos, bölünemez ) adını vermiştir Lavoisier Gerçekleştirdiği

Detaylı

X-Işınları. Çalışma Soruları. Doç. Dr. Numan Akdoğan Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü. X1 (X-ışınları hakkında genel bilgiler)

X-Işınları. Çalışma Soruları. Doç. Dr. Numan Akdoğan Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü. X1 (X-ışınları hakkında genel bilgiler) X-Işınları Çalışma Soruları Doç. Dr. Numan Akdoğan Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü X1 (X-ışınları hakkında genel bilgiler) 1. a) Elektromanyetik spektrumu çizip, açıklayınız. b) X-ışınlarını

Detaylı

Coulomb Kuvvet Kanunu H atomunda çekirdek ve elektron arasındaki F yi tanımlar.

Coulomb Kuvvet Kanunu H atomunda çekirdek ve elektron arasındaki F yi tanımlar. 5.111 Ders Özeti #3 Bugün için okuma: Bölüm 1.2 (3. Baskıda 1.1 ), Bölüm 1.4 (3. Baskıda 1.2 ), 4. Baskıda s. 10-12 veya 3. Baskıda s. 5-7 ye odaklanın. Ders 4 için okuma: Bölüm 1.5 (3. Baskıda 1.3 ) Maddenin

Detaylı

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı.

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı. 1 5.111 Ders Özeti #2 Bugün için okuma: A.2-A.3 (s F10-F13), B.1-B.2 (s. F15-F18), ve Bölüm 1.1. Ders 3 için okuma: Bölüm 1.2 (3. Baskıda 1.1) Elektromanyetik IĢımanın Özellikleri, Bölüm 1.4 (3. Baskıda

Detaylı

X-IŞINLARI KIRINIM CİHAZI (XRD) ve KIRINIM YASASI SİNEM ÖZMEN HAKTAN TİMOÇİN

X-IŞINLARI KIRINIM CİHAZI (XRD) ve KIRINIM YASASI SİNEM ÖZMEN HAKTAN TİMOÇİN X-IŞINLARI KIRINIM CİHAZI (XRD) ve KIRINIM YASASI SİNEM ÖZMEN HAKTAN TİMOÇİN 2012 İÇERİK X-IŞINI KIRINIM CİHAZI (XRD) X-RAY DİFFRACTİON XRD CİHAZI NEDİR? XRD CİHAZININ OPTİK MEKANİZMASI XRD CİHAZINDA ÖRNEK

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

Ankara Üniversitesi Fen Fakültesi Matematik Bölümü A-Grubu Bahar Yarıyılı Bölüm-III Özeti Ankara Aysuhan Ozansoy

Ankara Üniversitesi Fen Fakültesi Matematik Bölümü A-Grubu Bahar Yarıyılı Bölüm-III Özeti Ankara Aysuhan Ozansoy FİZ12 FİZİK-II Ankara Üniversitesi Fen Fakültesi Matematik Bölümü A-Grubu 217-218 Bahar Yarıyılı Bölüm-III Özeti 6.3.217 Ankara Aysuhan Ozansoy «When I have clarified and exhausted a subject, then I turn

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor.

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor. 1. Aşağıdakilerden hangisi Frekans ı tanımlamaktadır? a) Birim zamandaki titreşim sayısıdır ve boyutu sn -1 b) Birim zamandaki hızlanmadır c) Bir saniyedeki tekrarlanmadır d) Hızın zamana oranıdır 6. İki

Detaylı

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddeden kuark a maddenin yapıtaşının serüveni Elementlerin Varlığının Keşfi Maddenin yapıtaşı arayışı M.Ö. 2000 lerde Eski Yunan

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

X IŞINLARININ NİTELİĞİ VE MİKTARI

X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINI MİKTARINI ETKİLEYENLER X-ışınlarının miktarı Röntgen (R) ya da miliröntgen (mr) birimleri ile ölçülmektedir. Bu birimlerle ifade edilen değerler ışın yoğunluğu

Detaylı

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr X-Işınları 3. Ders: X-ışınlarının maddeyle etkileşmesi Gelen X-ışınları Saçılan X-ışınları (Esnek/Esnek olmayan) Soğurma (Fotoelektronlar)/ Fluorescence ışınları Geçen X-ışınları Numan Akdoğan akdogan@gyte.edu.tr

Detaylı

RADYASYON FİZİĞİ 3. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 3. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 3 Prof. Dr. Kıvanç Kamburoğlu X ışın cihazında bulunan güç kaynağının görevleri 1- Filamentin ısınması için düşük voltaj sağlamak 2- Anot ve katot arasında yüksek potansiyel farkı yaratmak

Detaylı

X-Işınları. Çalışma Soruları

X-Işınları. Çalışma Soruları X-Işınları Çalışma Soruları Yrd. Doç. Dr. Numan Akdoğan Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X1 (X-ışınları hakkında genel bilgiler) 1. a)

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY ALETLİ ANALİZ YÖNTEMLERİ X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY X-IŞINI SPEKTROSKOPİSİ X-ışını spektroskopisi, X-ışınlarının emisyonu, absorbsiyonu ve difraksiyonuna (saçılması) dayanır. Kalitatif

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

HIZLANDIRICI FİZİĞİ. Doğru Akım Hızlandırıcıları. Semra DEMİRÇALI Fen Bilimleri Öğretmeni DENİZLİ (TTP-7 Katılımcısı) 05/03/2018

HIZLANDIRICI FİZİĞİ. Doğru Akım Hızlandırıcıları. Semra DEMİRÇALI Fen Bilimleri Öğretmeni DENİZLİ (TTP-7 Katılımcısı) 05/03/2018 HIZLANDIRICI FİZİĞİ Doğru Akım Hızlandırıcıları Semra DEMİRÇALI Fen Bilimleri Öğretmeni DENİZLİ (TTP-7 Katılımcısı) 05/03/2018 İÇİNDEKİLER 1. Elektrostatik Hızlandırıcılar 1.1. Cockroft- Walton Hızlandırıcısı

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ34 Fizikte Güncel Konular 205-206 Bahar Yarıyılı Bölüm-7 23.05.206 Ankara A. OZANSOY 23.05.206 A.Ozansoy, 206 Bölüm 7: Nükleer Reaksiyonlar ve Uygulamalar.Nötron İçeren Etkileşmeler 2.Nükleer Fisyon

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz ve Birimler Çekirdek Elektron Elektron Yörüngesi Nötron Proton Nükleon Atom 18.05.2011 TAEK - ADHK 2

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak ABSORBSİYON VE SAÇILMA X-ışınları maddeyi (hastayı) geçerken enerjileri absorbsiyon (soğurulma) ve saçılma

Detaylı

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan.

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan. X-Işınları 4. Ders: X-ışını sayaçları Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-ışını sayaç çeşitleri 1. Fotoğraf

Detaylı

MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ

MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ Öğretmen Olcay NALBANTOĞLU Hazırlayanlar A.Cumhur ÖZCAN Mustafa GÖNENÇER Okan GİDİŞ Tolga TOLGAY İÇİNDEKİLER 1. Klasik Fiziğin Tanımı 2. Klasik Kuramın

Detaylı

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35 BÖLÜM 1: Matematiğe Genel Bakış 1 1.1. Semboller, Bilimsel Gösterimler ve Anlamlı Rakamlar 1.2. Cebir 1.3. Geometri ve Trigometri 1.4. Vektörler 1.5. Seriler ve Yaklaşıklıklar 1.6. Matematik BÖLÜM:2 Fizik

Detaylı

Boğaziçi Üniversitesi. 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4

Boğaziçi Üniversitesi. 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4 - Algıç Fiziği 2 --Saime Gürbüz Boğaziçi Üniversitesi 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4 2 1 2 3 Cevaplar için tesekkürler Dalida! 4 3 4 Parıldak Sayacı Plastik Plastik veya veya Kristal Kristal

Detaylı

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 IŞINIMLA ISI İLETİMİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Isıl ışınımla gerçekleşen ısı transferinin gözlenmesi, ters kare ve Stefan- Boltzmann kanunlarının ispatlanması.

Detaylı

Işığın Tanecikli Özelliği. Test 1 in Çözümleri

Işığın Tanecikli Özelliği. Test 1 in Çözümleri 37 Işığın Tanecikli Özelliği 1 Test 1 in Çözüleri 1. Fotoeletronların katottan ayrıla ızı, kullanılan ışığın frekansı ile doğru, dalga boyu ile ters orantılıdır. Bu elektronların anado doğru giderken ızlanaları

Detaylı

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. ATOM TEORİLERİ DEMOCRİTUS DEMOCRİTUS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30 Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, 2006 11:00-12:30 SOYADI ADI Öğrenci No. Talimat: 1. TÜM ÇABANIZI GÖSTERİN. Tüm cevaplar sınav kitapçığında gösterilmelidir? 2. Bu kapalı bir sınavdır.

Detaylı

FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS)

FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS) FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI 2014-2015 EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS) 1.Yarıyıl GÜZ YARIYILI DERSİN DERS KURAMSAL UYGULAMA TOPLAM ULUSAL KREDİSİ DERSİN ADI OPTİK KODU

Detaylı

NÜKLEER REAKSİYONLAR II

NÜKLEER REAKSİYONLAR II NÜKLEER REAKSİYONLAR II Doç. Dr. Turan OLĞAR Ankara Üniversitesi, Mühendislik Fakültesi, Fizik Mühendisliği Bölümü Direkt Reaksiyonlar Direkt reaksiyonlarda gelen parçacık çekirdeğin yüzeyi ile etkileştiğinden

Detaylı

EĞİTİM-ÖĞRETİM YILI 12 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ Ay Hafta Ders Saati Konu Adı Kazanımlar Test No Test Adı Hareket Hareket 12.1.1.1. Düzgün

Detaylı

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu Laboratuar Yeri: E1 Blok Termodinamik Laboratuvarı Laboratuar

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy FİZ101 FİZİK-I Ankara Üniersitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy Bir şeyi basitçe açıklayamıyorsan onu tam olarak anlamamışsın demektir. Albert Einstein

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ UV-Görünür Bölge Moleküler Absorpsiyon Spektroskopisi Yrd. Doç.Dr. Gökçe MEREY GENEL BİLGİ Çözelti içindeki madde miktarını çözeltiden geçen veya çözeltinin tuttuğu ışık miktarından

Detaylı

KUTUP IŞINIMI AURORA. www.astrofotograf.com

KUTUP IŞINIMI AURORA. www.astrofotograf.com KUTUP IŞINIMI AURORA www.astrofotograf.com Kutup ışıkları, ya da aurora, genellikle kutup bölgelerinde görülen bir gece ışımasıdır. Aurora, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen

Detaylı

KIZILÖTESİ KULAKTAN SICAKLIK ÖLÇEN TERMOMETRELERİN KALİBRASYONU

KIZILÖTESİ KULAKTAN SICAKLIK ÖLÇEN TERMOMETRELERİN KALİBRASYONU 235 KIZILÖTESİ KULAKTAN SICAKLIK ÖLÇEN TERMOMETRELERİN KALİBRASYONU Kemal ÖZCAN Aliye KARTAL DOĞAN ÖZET Kızılötesi kulaktan sıcaklık ölçen termometreler sağlık sektöründe yaygın olarak kullanılmaktadır.

Detaylı

DENEY NO : 9 DENEYİN ADI: DUANE-HUNT YASASI VE PLANCK SABİTİNİN ÖLÇÜLMESİ

DENEY NO : 9 DENEYİN ADI: DUANE-HUNT YASASI VE PLANCK SABİTİNİN ÖLÇÜLMESİ DENEY NO : 9 DENEYİN ADI: DUANE-HUNT YASASI VE PLANCK SABİTİNİN ÖLÇÜLMESİ DENEYİN AMACI :Bakır anottan gelen X-ışınlarının spektrumunu çeşitli anot voltajları için ölçerek her bir voltaj için frenleme

Detaylı

SEM İncelemeleri için Numune Hazırlama

SEM İncelemeleri için Numune Hazırlama SEM İncelemeleri için Numune Hazırlama Giriş Taramalı elektron mikroskobunda kullanılacak numuneleri, öncelikle, Vakuma dayanıklı (buharlaşmamalı) Katı halde temiz yüzeyli İletken yüzeyli olmalıdır. Günümüzde

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ RADYASYON ÖLÇÜM YÖNTEMLERİ Prof. Dr. Haluk YÜCEL 101516 DERS RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ DEDEKTÖRLERİN TEMEL PERFORMANS ÖZELLİKLERİ -Enerji Ayırım Gücü -Uzaysal Ayırma

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı