STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN"

Transkript

1 Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK

2 MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu Kuvvet Sistemleri - Üç Boutlu Kuvvet Sistemleri. DENGE - Düzlemde Denge - Üç Boutta Denge 4. YAPILAR - Düzlem Kafes Sistemler - Çerçeveler ve Makinalar 5. SÜRTÜNME 6. KÜTLE MERKEZLERİ ve GEOMETRİK MERKEZLER

3 STATİK 6 KÜTLE MERKEZLERİ ve GEOMETRİK MERKEZLER

4 Statik Kütle Merkezi 6. Kütle Merkezleri ve Geometrik Merkezler 1 Bir cismin ağırlığı aslında bir tek kuvvet değildir. Ağırlık kuvveti cismin hacmi üzerinde aılmış olan aılı bir kuvvettir. Ama problem çözerken kolalık olsun die bu aılı kuvvetin erine geçen bir bileşke kuvvet göz önüne alınır. G W Statik dersinde kuvvet vektörünün bir tesir çizgisi vardır. Bileşke ağırlık kuvvetinin de bir tesir çizigisi vardır ve nereden geçtiği bilinmelidir. Bir cisim herhangi bir noktasından tavana bir iple asılarak ağırlık kuvvetinin tesir çizgisi bulunabilir. Çünkü ağırlık kuvvetinin tesir çizgisi daima ip ile çakışıktır. Farklı noktalardan asarak elde edilen farklı tesir çizgilerinin hepsinin anı bir noktada kesiştiği görülür. İşte bu noktaa kütle merkezi vea ağırlık merkezi denir. Kütle merkezini G ile göstereceğiz. G (,, z )

5 Statik 6. Kütle Merkezleri ve Geometrik Merkezler A B A B G G A W W W Kütle merkezinin erini hesap aparak bulmak için Varignon teoreminden fadalanılır. W = dw Diferansiel eleman z O el el dw W G (,, z ) z el el el z el Diferansiel elemanın kütle merkezinin koordinatları -eksenine göre moment alarak: W = el dw el dw = W Benzer şekilde: el dw = W z el dw z = W W = g m dw = g dm el dm = m el dm = m z el dm z = m

6 Statik dm = ρ dv el ρ dv el ρ dv z el ρ dv = = z = ρ dv ρ dv ρ dv 6. Kütle Merkezleri ve Geometrik Merkezler ρ : Yoğunluk, birim hacmin kütlesi ise (Homojen cisim) el dv el dv z el dv = = z = V V V Simetri düzlemi Simetri düzlemi G Simetri düzlemi Homojen bir cismin kütle merkezi, varsa, simetri düzlemi üzerindedir. Eğer birbirini kesen iki tane simetri düzlemi varsa kütle merkezi simetri düzlemlerinin kesişme doğrusu üzerindedir. Bu doğruu da kesen bir simetri düzlemi daha varsa o zaman doğrunun düzlemi kestiği nokta cismin kütle merkezidir.

7 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 4 Geometrik Merkez Homojen bir cismin kütle merkezi bulunurken cismin sadece geometrisi ile ilgilenmek eterli olur. ismin sedece geometrisi ile ilgilenilerek bulunan merkeze geometrik merkez denir. Homojen bir cismin kütle merkezi geometrik merkez ile çakışıktır. Dolaısı ile herhangi bir cismin, cisim homojen kabul edilerek, kütle merkezi bulunursa geometrik merkezi bulunmuş olur. Geometrik merkezi harfi ile göstereceğiz. (,, z ) el dv el dv z el dv = = z = V V V el el z el Diferansiel elemanın geometrik merkezinin koordinatları t = sb. ise (Kalınlık sabit) A = sb. ise (Kesit alanı sabit) dv = t da dv = A dl el da el da z el da = = z = A A A el dl el dl z el dl = = z = L L L

8 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 5 6/1 Herhangi bir çember parçasının geometrik merkezinin erini bulunuz. A = sb. Çözüm Bir cismi homojen kabul ederek kütle merkezi bulunursa o cismin geometrik merkezi bulunmuş olur. Homojen bir cismin kütle merkezi, varsa, simetri ekseni üzerindedir. Bir çember parçası, kesit alanı sabit olan bir cisim olarak göz önüne alınabilir. Kesit alanı sabit olan bir cismin geometrik merkezini bulurken sadece bou ile ilgilenmek eterli olur. Ya parçasının simetri ekseni, -ekseni ile çakıştırılırsa: O = O r Tam çemberin geometrik merkezi Ya parçasının geometrik merkezi θ = dθ θ dl = r dθ O θ = L = el dl L = r el = r cosθ dl = r dθ (r) = (r cosθ) (r dθ) (r) = r (sinθ r sin = Bu nın birimi daima radandır. O =? Geometrik merkez, cismin dışında da olabilir. r sin O =! Bu değer, seçilen eksen takımından bağımsızdır.

9 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 6 6/1 Herhangi bir çember parçasının geometrik merkezinin erini bulunuz. A = sb. r sin O = Bu değer, seçilen eksen takımından bağımsızdır. Yarım çember Çerek çember O r π O = π/ r sin O = r O = π = π/4 r sin O = r O = π O =? = 0, r = π! r = = π Bu koordinatlar, eksenler ukarıdaki gibi seçilirse geçerlidir.

10 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 7 6/ Herhangi bir üçgenin geometrik merkezinin herhangi bir tabanına uzaklığını bulunuz. t = sb. Çözüm Bir üçgen, kalınlığı sabit olan bir cisim olarak göz önüne alınabilir. Kalınlığı sabit olan bir cismin geometrik merkezini bulurken sadece üze alanı ile ilgilenmek eterli olur. Üçgenin tabanı, -ekseni ile çakıştırılırsa: a h =?! Diferansiel elemanı seçerken olabildiğince tek aşamada sonuca gidebilecek şekilde seçmee dikkat edilmelidir. Yukarıdaki gibi bir seçim apılırsa sınırlar değişik olduğu için problemi iki bölümde çözmek gerekecektir. d s a A = el da a h A = el = da = s d s h = a h h a h a = (h ) d 0 h a h a h = (h h 0 h = Herhangi bir üçgenin geometrik merkezinin herhangi bir tabanına uzaklığı o tabandan ölçülen üksekliğinin üçte biri kadardır.

11 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 8 6/ Herhangi bir daire parçasının geometrik merkezinin erini bulunuz. t = sb. Çözüm Bir daire parçası, kalınlığı sabit olan bir cisim olarak göz önüne alınabilir. Kalınlığı sabit olan bir cismin geometrik merkezini bulurken sadece üze alanı ile ilgilenmek eterli olur. Daire parçasının simetri ekseni, -ekseni ile çakıştırılırsa: Simetri ekseni -ekseni ile çakıştırıldığı için: O = Tam dairenin geometrik merkezi O Daire parçasının geometrik merkezi θ = dθ θ θ = Bu diferansiel elemanın şekli, her ne kadar bir daire parçası ise de bir üçgen gibi kabul edilebilir. A = el da Herhangi bir üçgenin ( r dθ ) = ( r cos θ ) ( r ) geometrik merkezinin herhangi bir tabanına uzaklığı A = r o tabandan ölçülen ( r el = r cos θ r ) = (sin θ üksekliğinin üçte biri kadardır. dθ da = r r sin =! Bu nın birimi daima radandır. O r O =? r sin O = Bu değer, eksen takımından bağımsız olarak daima geçerli olan bir değerdir. Bir daire parçasının geometrik merkezinin O a uzaklığı, a parçasınınkinin katıdır.

12 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 9 6/ Herhangi bir daire parçasının geometrik merkezinin erini bulunuz. t = sb. r sin O = Bu değer, eksen takımından bağımsız olarak daima geçerli olan bir değerdir. Bir daire parçasının geometrik merkezinin O a uzaklığı, a parçasınınkinin katıdır. Yarım daire Çerek daire O =? O = π/ = π/4 r 4 r O = = r sin r sin O = π π O = = 0, 4 r = π 4 r π! O 4 r = = π 4 r O = π Bu koordinatlar, eksenler ukarıdaki gibi seçilirse geçerlidir.

13 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 10 6/4 Şekildeki alanın geometrik merkezinin koordinatlarını bulunuz. Behcet DAĞHAN a t = sb. d (,) A (a,b) Çözüm = k A noktasında: = a a = k b = b a k = b b = k =? =? el da = d b a A = d 0 b a b A = A = el da da = d el = a b A = b a b = ( d) 0 b a b k = 4 d 0 b a b a 5 = ( b = a 10 A = el da da = d el = a b A = b a b = ( d) 0 b a b = k d 0 b a b a 4 = ( b 4 0 = b 4

14 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 11 Bileşik isimler ve Şekiller Kütle merkezi bulunacak olan cismin tamamı basit bir geometrie sahip olmaabilir. Eğer basit geometrik şekle sahip cisimlerin eklenip çıkarılması ile elde edilebilen bir cisim ise o zaman ine Varignon teoreminden fadalanılabilir. Eklenen cismin kütlesi pozitif olarak, çıkarılan cismin kütlesi negatif olarak alınır. 1 (m 1 + m + m ) X = m m + m Σ m i X = Σ m i i i=1 i=1 G Genelleştirme aparak: G 1 G G m 1 X m m Σm X = Σm Σm Y = Σm Σm z Z = Σm Üstten görünüş Homojen bir cismin, - kütlesinin erine hacmi ile, - kalınlığı da sabit ise üze alanı ile, - vea kesit alanı da sabit ise bou ile ilgilenmek eterli olur.

15 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 1 6/5 Şekildeki alanın geometrik merkezinin koordinatlarını bulunuz. Çözüm t = sb. + + = a a/ 1 = 1 = 4 a a/ = π ΣA π a 4 a (a/) a a/ + ( ) X = π a A ΣA 1 = = a X = A A A = 4 π 1 + A π a 4 (a/) a + ( ) 4 (a/) a A = 7 a X = 6 (π 1) X =? Y =? ΣA Y = ΣA π a 4 a (a/) a a + ( ) A A 4 π Y = = A 1 + A π a (a/) a + ( ) 4 a Y = π 1

16 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 1 6/6 Şekildeki gibi bükülmüş olan çubuğun geometrik merkezinin koordinatlarını bulunuz. Behcet DAĞHAN Çözüm A = sb. 00 mm 150 mm + = 1 1 = 150 mm 1 = 150 mm L 1 = 00 mm r 00 = = mm π π = 0 L = 150 π mm ΣL X = ΣL 00 L L 00 ( 150) π π X = = L 1 + L π X = 0 X =? Y =? ΣL Y = ΣL L L 00 ( 150) π (0) Y = = L 1 + L π Y = 58. mm

17 Statik 6. Kütle Merkezleri ve Geometrik Merkezler 14 6/7 Şekildeki gibi kesilmiş ve bükülmüş olan levhanın geometrik merkezinin koordinatlarını bulunuz. t = sb. Çözüm 1. -z düzlemindeki dikdörtgen (50400): (mm) (mm) z (mm) A (mm ) z düzlemindeki dikdörtgen (175400): z düzlemindeki üçgen (10000): X =? Y =? Z =? ΣA X = ΣA (0) (87.5) + ( ) (0) X = ( ) ΣA Y = ΣA (15) (0) + ( ) (16.7) Y = ( ) ΣA z Z = ΣA (00) (00) + ( ) (66.7) Z = ( ) X = 8. mm Y = 64.6 mm Z = 08. mm

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.   Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLEİ - İki Boutlu Kuvvet

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER b) İkinci süreç eğik atış hareketine karşılık geliyor. Orada örendiğin problem çözüm adımlarını kullanarak topun sopadan ayrıldığı andaki hızını bağıntı olarak

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü

Detaylı

KUVVET, MOMENT ve DENGE

KUVVET, MOMENT ve DENGE 2.1. Kuvvet 2.1.1. Kuvvet ve cisimlere etkileri Kuvvetler vektörel büyüklüklerdir. Kuvvet vektörünün; uygulama noktası, kuvvetin cisme etkidiği nokta; doğrultu ve yönü, kuvvetin doğrultu ve yönü; modülüyse

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017 KÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) ölümleri SRU-1) Mühendislik apılarında kullanılan elemanlar için KSN (Tarafsız eksen) kavramını tanımlaınız ve bir kroki şekil çizerek

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği STATİK VE MUKAVEMET AĞIRLIK MERKEZİ Öğr.Gör. Gültekin BÜYÜKŞENGÜR Çevre Mühendisliği STATİK Ağırlık Merkezi Örnek Sorular 2 Değişmeyen madde miktarına kütle denir. Diğer bir anlamda cismin hacmini dolduran

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Noktasal Cismin Dengesi

Noktasal Cismin Dengesi Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

Gerilme Dönüşümü. Bölüm Hedefleri

Gerilme Dönüşümü. Bölüm Hedefleri Gerilme Dönüşümü Bölüm Hedefleri Bu bölümde, belirli bir koordinat sisteminde tanımlı gerilme bileşenlerinin, farklı eğimlere sahip koordinat sistemlerine nasıl dönüştürüleceği üzerinde durulacaktır. Gerekli

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

Bölümün İçeriği ve Amacı:

Bölümün İçeriği ve Amacı: ölümün İçeriği ve macı: Koordinat Sistemleri Vektör ve Skaler Nicelikleri Vektörlerin azı Özellikleri ir Vektörün ileşenleri ve irim Vektörler ölüm 3: Vektörler Vektör kavramının fizikteki önemi ve gerekliliğini

Detaylı

TORK VE DENGE. İçindekiler TORK VE DENGE 01 TORK VE DENGE 02 TORK VE DENGE 03 TORK VE DENGE 04. Torkun Tanımı ve Yönü

TORK VE DENGE. İçindekiler TORK VE DENGE 01 TORK VE DENGE 02 TORK VE DENGE 03 TORK VE DENGE 04. Torkun Tanımı ve Yönü İçindekiler TORK VE DENGE TORK VE DENGE 01 Torkun Tanımı ve Yönü Torka Sebep Olan ve Olmayan Kuvvetler Tork Bulurken İzlenen Yöntemler Çubuğa Uygulanan Kuvvet Dik Değilse 1) Kuvveti bileşenlerine ayırma

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLEİ - İki Boyutlu Kuvvet

Detaylı

1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler.

1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler. 1. HAFTA Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler. Statikte üç temel büyüklük vardır. Uzay: Fiziksel olayların meydana geldiği geometrik bir bölgedir. İncelenen problemin

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

2 = t V A = t

2 = t V A = t İ.T.Ü. Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi 20 Mart 2008 Statik ve Mukavemet Dersi Yarıyıl İçi Sınavı 1.) P r c W b a Yarıçapı r = 30 cm, ağırlığı W = 4 t olan bir silindir şekilde gösterildiği

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik Bölüm 2: Kuvvet Vektörleri Mühendislik Mekaniği: Statik Hedefler Kuvvetleri toplama, bileşenlerini ve bileşke kuvvetlerini Paralelogram Kuralı kullanarak belirleme. Diktörtgen (Cartesian) koordinat sistemi

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bubölümdebirnoktayaetkiyen vebelli bir koordinat ekseni/düzlemi ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi/başka bir düzlem ile ilişkili

Detaylı

Denk Kuvvet Sistemleri

Denk Kuvvet Sistemleri Denk Kuvvet Sistemleri TEK KUVVETİN DENK KUVVET SİSTEMİ Hareket eden bir kuvvetin etkisi. 1. KUVVETİN KENDİ ETKİ ÇİZGİSİ ÜZERİNDE AKTARILMASI. 2. KUVVETİN KENDİ ETKİ ÇİZGİSİ DIŞINA AKTARILMASI. Denk Kuvvet

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

KUVVET için F KÜTLE için m İVME için a

KUVVET için F KÜTLE için m İVME için a 4 III. EWTO MEKİĞİİ TEMEL KULI: Kütlesi ölçülebilecek kadar küçük bir cisim üzerine, şiddeti ölçülebilen bir kuvvet tatbik edelim. ir eksen sistemi seçerek cismin sisteme göre hareketini gözleyelim. u

Detaylı

Fiz 1012 Ders 6 Manyetik Alanlar.

Fiz 1012 Ders 6 Manyetik Alanlar. Fiz 1012 Ders 6 Manyetik Alanlar Manyetik Alan Manyetik Alan Çizgileri Manyetik Alan İçinde Hareket Eden Elektrik Yükü Akım Taşıyan Bir İletken Üzerine Etki Manyetik Kuvvet http://kisi.deu.edu.tr/mehmet.tarakci/

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü MÜH110 Statik Dersi - 1. Çalışma Soruları 20 Şubat 2019

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü MÜH110 Statik Dersi - 1. Çalışma Soruları 20 Şubat 2019 SRU-1) Mekanik (ve Statik, inamik ve/vea Mukavemet) ve Malzeme konularındaki kullanımları açısından bir cismin (malzemenin) kimasal, fiziksel ve mekanik özelliklerini ne belirler? SRU-2) Mekanik (ve Statik,

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir.

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir. Geometrik Cisimlerin Hacimleri Uzayda yer kaplayan (üç boyutlu) nesnelere cisim denir. Düzgün geometrik cisimlerin hacimleri bağıntılar yardımıyla bulunur. Eğer cisim düzgün değilse cismin hacmi cismin

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

6 Rijit cisimlerin düzlemsel kinetiği

6 Rijit cisimlerin düzlemsel kinetiği 6 Rijit cisimlerin düzlemsel kinetiği 6.1 Giriş 5. bölümde rijit cisimlerin düzlemsel kinematiğinin ilişkilerini (denklemlerini) gördük. Bu bölümde bu ilişkileri kullanarak rijit cisimlerin iki boutlu

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

MEKANİZMA TEKNİĞİ (4. HAFTA)

MEKANİZMA TEKNİĞİ (4. HAFTA) MEKANİZMA TEKNİĞİ (4. HAFTA) KONUM ANALİZİ-(Konum denklemi ve Konum Tablosu) Bir mekanizmayı mafsal ve mesnet noktalarından parçalara ayırdığımızda her bir uzvu vektörel konum denklemi ile gösterebiliriz.

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 5 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

b) c) d) (French-p2.1) BÖLÜM -II Örnek 1. Çözüm: a) bu değerleri yukarıdaki ifadede yerine yazalım, elde ederiz. Bunu ise şeklinde ifade edebiliriz.

b) c) d) (French-p2.1) BÖLÜM -II Örnek 1. Çözüm: a) bu değerleri yukarıdaki ifadede yerine yazalım, elde ederiz. Bunu ise şeklinde ifade edebiliriz. Örnek. Aşağıdaki ifadeleri BÖLÜM -II formunda yazınız. a) b) c) d) (French-p.) a) ve bu değerleri yukarıdaki ifadede yerine yazalım, elde ederiz. Bunu ise şeklinde ifade edebiliriz. b) Bu sonuç şeklinde

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: xaxxbxcde STATİK-MUKAVEMET 1.YILİÇİ SINAVI

TEST SORULARI Adı /Soyadı : No : İmza: xaxxbxcde STATİK-MUKAVEMET 1.YILİÇİ SINAVI dı /Soadı : No : İmza: STTİK-MUKVEMET 1.YIİÇİ SINVI 21-03-2011 Örnek Öğrenci No 010030403 ---------------------abcde R= 5(a +b) cm Şekildeki taşııcı sistemin bağ kuvvetlerini bulunuz =2(a+e) N =(a) m =2(a

Detaylı

KKKKK VERİLER. Yer Çekimi İvmesi : g=10 m/s 2

KKKKK VERİLER. Yer Çekimi İvmesi : g=10 m/s 2 VERİLER Yer Çekimi İvmesi : g=10 m/s etrik Ön Takılar sin 45 = cos 45 = 0,7 Numara Ön Takı Simge sin 37 = cos 53 = 0,6 sin 53 = cos 37 = 0,8 10 9 giga G tan 37 = 0,75 10 6 mega sin 30 = cos 60 = -cos 10

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

BİLGİ TAMAMLAMA VEKTÖRLER

BİLGİ TAMAMLAMA VEKTÖRLER DİNAMİK BİLGİ TAMAMLAMA VEKTÖRLER Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü VEKTÖRLER Kapsam Büyüklük yanında ayrıca yön

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

MOMENT. Momentin büyüklüğü, uygulanan kuvvet ile, kuvvetin sabit nokta ya da eksene olan dik uzaklığının çarpımına eşittir.

MOMENT. Momentin büyüklüğü, uygulanan kuvvet ile, kuvvetin sabit nokta ya da eksene olan dik uzaklığının çarpımına eşittir. MOMENT İki noktası ya da en az bir noktası sabit olan cisimlere uygulanan kuvvet cisme sabit bir nokta veya eksen etrafında dönme hareketi yaptırır. Kapı ve pencereleri açıp kapanması, musluğu açıp kapatmak,

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+ ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. a+ = b 4. a = b 0+ a b a b = b a+ b = 0. A ( a + 4, a) noktası y ekseni üzerinde ise, ( + ) a + 4 = 0 A 0, 5 a = 4 B b, b 0 noktası x ekseni

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

13. ÜNİTE KUVVET VE VEKTÖRLER

13. ÜNİTE KUVVET VE VEKTÖRLER 13. ÜNİTE KUVVET VE VEKTÖRLER KONULAR 1. VEKTÖR 2. Skaler Büyüklükler 3. Vektörel Büyüklükler 4. Vektörün Yönü 5. Vektörün Doğrultusu 6. Bir Vektörün Negatifi 7. Vektörlerin Toplanması 8. Uç Uca Ekleme

Detaylı

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Gerilme ve şekil değiştirme kavramları: Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Bir mühendislik sistemine çok farklı karakterlerde dış

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ

KATI CİSMİN DÜZLEMSEL KİNETİĞİ KATI CİSMİN DÜZLEMSEL KİNETİĞİ Bu bölümde, düzlemsel levhaların veya düzlem levha gibi davranış sergileyen üç boyutlu cisimlerin hareketi üzerinde durulacaktır. Diğer bir ifadeyle, katı cisim üzerine etki

Detaylı