Doğrusal Olmayan Devreler, Sistemler ve Kaos

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Doğrusal Olmayan Devreler, Sistemler ve Kaos"

Transkript

1 Dğrusal Olmayan Devreler Sistemler ve Kas Neslihan Serap Şengör da n:07 tel n: Özan Karabaca da n:7 tel n:

2 Dğrusal Olmayan Devreler Sistemler ve Kas 6 Şubat 0-9 Mart 0 Neslihan Serap Şengör 7 hafta Ödev % 0 Yarıyıliçi Sınavı 5 Nisan 0 % 0 9 Şubat 0 Nisan 0-0 Mayıs 0 Özan Karabaca 6 hafta Ödev % 0 Yarıyılsnu Sınavı % 40

3 Yararlanılan Kaynalar H.K.Khalil Nnlinear Systems 3 rd Editin Pearsn Educatin 000. Y.A. Kuznetsv Elements f Applied Bifurcatin Thery Springer 004. J. Gucenheimer P. Hlmes Nnlinear Oscillatins Dynamical Systems and Bifurcatin f Vectr Fields Springer-Verlag 983. S. Wiggens Intrductin t Applied Nnlinear Dynamical Systems and Chas Springer 003. S.H. Strgatz Nnlinear Dynamics and Chas Addisn-Wesley Pub. Cmp E. Ott Chas in Dynamical Systems Cambridge University Press 993. P.G. Drazin Nnlinear Systems Cambridge University Press 993.

4 Yararlanılaca Araç XPP/XPPAUT Dinami sistemleri çözme durum prtreleri dallanma diyagramlarını elde etme için ullanılabilece bir araç B. Ermentrut Simulating Analyzing and Animating Dynamical systems siam00.

5 Xppaut Çalıştırma İçin Gereenler Xppaut pp ve aut isimli ii parçadan luşur. Birbirleri arasında daima geçiş yapabilirsiniz. aut dallanma diyagramını hesaplama için ullanılır. adresinden indirilebilir. ppaut_yülediğiniz_dizin\ppaut\windws\ppall dizini altında pp.bat dsyası mevcuttur. Bu dsya içerisine uygulama ile ilgili adreslerin dğru yazılması geremetedir. Örneğin benim mainemde ppaut aşağıda lan adresde yülüdür. G:\4_mart_008_new_data\Dtra. Dlayısıyla G:\4_mart_008_new_data\Dtra\ppaut\windws\ppall adresinde lan pp.bat dsyasının içeriği aşağıdai şeildedir. set BROWSERC:\Prgram Files\Internet Eplrer\ieplre.ee Set A. Yiğit XPPHELPG:\4_mart_008_new_data\Dtra\ppaut\windws\ppall\help\pphelp.h tml set DISPLAY7.0.0.:0.0 set HOMEG:\4_mart_008_new_data\Dtra\ppaut\windws\ppall G:\4_mart_008_new_data\Dtra\ppaut\windws\ppall\ppaut % % %3 pause

6 Xppaut çalıştığında nasıl bir eran açılır? A. Yiğit

7 Örnelerle Dallanma Diyagramı Oluşturma A. Yiğit

8 Neden dğrusal lmayan devreler sistemler ve as? Virtually all physical systems are nnlinear in nature. M. Vidyasagar O zaman neden hep lineer devreler ve sistemler ile ilgilenildi?... nt t prduce the mst cmprehensive descriptive mdel but t prduce the simplest pssible mdel that incrprates the majr features f the phenmenn f interest. Hward Emmns

9 Hatırlatma Lineer sistemi hatırlıyalım... Başa nasıl ifade ediyruz? durum değişeni & t y t A t C t Bu t Du t t il şul çıış değişeni giriş değişeni Bu değişenlere ilişin başa neyi belirtmemiz gere y... u... Bu sistemin çözümü... t e A tt t t t e A tτ Bu τ dτ

10 Ayrı zamanda lineer sistemi hatırlıyalım... ˆ Du C y Bu A Bu sistemin çözümü... n N n Bu A A 0 Hatırlatma n n N n Bu A A 0 0

11 Bir özel hal: & t A t Otnm sistem Hatırlatma Çözümü bir daha yazarsa özdeğerler t e S c e... e λ tt λ tt λn tt S c S n c n özvetörler Çözüm özvetörler ve özdeğerler ile nasıl değişir?

12 Özvetörleri aynı özdeğerleri farlı ii sistem Hatırlatma A 0 5 A 5 4 λ λ i i λ 3 λ 3 i i S i S i S i S i Hangisi daha hızlı sıfıra yalaşıyr? A sistemi A sistemi

13 Özdeğerleri aynı özvetörleri farlı ii sistem Hatırlatma B B sistemi S S B i i λ 0.5 λ 0.5 S S.35i.35i i Hızlarında bir farlılı var mı? B sistemi 0.408i 0.95 λ i λ i B sistemi B sistemi

14 Hatırlatma Bu durumda lineer sistemin çözümleri neler labilir? Tüm bu durum prtrelerinde rta bir şey var ne? S. Hayin Neural Netwrs- A Cmprehensive Fundatin nd Editin Prentice Hall 999 New Jersey.

15 Otnm lineer sistem için başa ne diyebiliriz? & t A t Özel bir çözüm: denge ntası 0 A e 0 e Denge ntasının Lyapunv anlamında ararlılığı Tanım: Lyapunv anlamında ararlılı & t f t ε Hatırlatma sistemine ilişin bir denge ntası d lsun. Verilen herhangi bir için bir bulunabiliyrsa; öylei > 0 δ ε > 0 0 < δ ε d t d < ε t> 0 d ntası Lyapunv anlamında ararlıdır. Ve Lyapunv anlamında ararlılığı lineer sistemde anlama için...

16 Bazı Dğrusal Olmayan Sistemler Saraç ml& θ mg sinθ l & θ Θ l yerçeimi sürtünme mg Durum uzayı gösterimi θ ˆ & θ ˆ durum değişenleri & & g l sin m

17 Önce ne yapacağız? sin 0 0 m l g denge ntaları π -π π -π Bu denge ntalarının hepsi anlamlı mı? Denge ntalarının civarındai davranışı inceleme istese ne yapmamız gereir? 00 civarında 0 m l g & & Bu sistemin ararlılığını incelemeyi biliyruz...

18 π0 civarında 0 m l g & & Bu sistemin de ararlılığını incelemeyi biliyruz... Sürtünmenin etisini ihmal etse... ± 0 0 l g & & Bu sistemin ararlılığına basa ın civarı π0 civarı H.K.Khalil Nnlinear Systems 3 rd Editin Pearsn Educatin 000.

19 Tünel Diyd Devresi [ ] [ ] E Ri v L i i v h C v L C L L C C & & [ ] [ ] µ γ β α h & &

20 Denge ntaları... [ ] [ ] µ γ β α 0 0 h µ h µ γ γ h

21 Ntasyna ilişin hatırlatma : Öyle i : Her : Vardır! : Sadece bir tane vardır Dinami Sistem Dinami sistem: T X φ t φ t : X X a φ 0 I a φ ts φ t φ s TR süreli zaman T zaman TZ ayrı zaman XR n X durum uzayı XC n

22 Hatırlatma: Metri Uzay X z y d X R X X d.. : y y d 0 y d y d y z d z d y d Çember R r X { } r d X r B < { } r d X r B ~ { } r d X r S Süreli Dönüşüm ~ d Y Y d X X Y X T : ~ 0 0 ε δ ε < > > T T d d T da sürelidir YaınsamaTam UzayBüzülme...

23 Lineer Vetör Uzayı V Hatırlatma cebri işlem α β lma üzerev de ii ve aşağıdai gibi tanımlanmış lsun y z V ve F. Vetör tplama VT y V y V VT y V y y VT y z V y z y z VT3!0 V V 0 VT4 V! - V 0

24 Hatırlatma Saler ile çarpma SÇ α. V V α F α α. α α SÇ F y V y.. y SÇ α β F V α β. α. β. SÇ3 α β α β αβ F V.. SÇ4 V.

25 Nrm Hatırlatma V vetör uzayı lma üzere aşağıdai dört özelliği sağlayan fnsiyn : nrmdur. V R α α y y

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

BİR BİLİŞSEL SÜREÇ OLARAK DAVRANIŞ SEÇMENİN DİNAMİK MODELİ. Özkan Karabacak Neslihan Şengör

BİR BİLİŞSEL SÜREÇ OLARAK DAVRANIŞ SEÇMENİN DİNAMİK MODELİ. Özkan Karabacak Neslihan Şengör BİR BİLİŞSEL SÜREÇ OLARAK DAVRANIŞ SEÇMENİN DİNAMİK MODELİ Öza Karabaca Nesliha Şegör İçeri Beyi alt bölümleri ve C-BG-TH çevrimi Diami hafızaj.g. Taylor, N.R. Taylor İşaret seçmek. Gurey, T.J. Prescot,

Detaylı

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL Özet Çalışmamızda ilk olarak, irtibatlı bir Lie grubu üzerinde esas grupların demeti bilinen tekniklerle oluşturulmuştur. Daha sonra elde

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W)

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W) N: EEM DENEY SEİ EZONANS DEESİ. Amaçlar Değişen frekanslı seri C devresinde empedansın ölçülmesi ve çizilmesi Seri C devresinde akım değişiminin frekansın değişimine göre incelenmesi Seri C devresinin

Detaylı

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür. 1 TEME DEVEEİN KAMAŞIK SAYIAA ÇÖÜMÜ 1. Direnç Bbin Seri Devresi: (- Seri Devresi Direnç ve bbinin seri bağlı lduğu Şekil 1 deki devreyi alalım. Burada devre gerilimi birbirine dik lan iki bileşene ayrılabilir.

Detaylı

FZM450 Elektro-Optik. 9.Hafta

FZM450 Elektro-Optik. 9.Hafta FZM450 Elektr-Optik 9.Hafta şığın Mdülasynu 008 HSarı 1 9. Hafta Ders İçeriği Temel Mdülatör Kavramları LED ışık mdülatörler Elektr-ptik mdülatörler Akust-Optik mdülatörler Raman-Nath Tipi Mdülatörler

Detaylı

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 11 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 11. HAFTA Kapsam: İmpuls Momentum yöntemi İmpuls ve momentum ilkesi

Detaylı

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge Fizik 3 Ders 9 Döne, Tork Moent, Statik Denge Dr. Ali ÖVGÜN DAÜ Fizik Bölüü www.aovgun.co q θ Döne Kineatiği s ( π )r θ nın birii radyan (rad) dır. Bir radyan, yarçapla eşit uzunluktaki bir yay parasının

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları

Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları JEODEZİ8 1 Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları Jeodezik dik koordinatları tanımlamak için önce bir meridyen x ekseni olarak alınır. Bunun üzerinde

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

HİPPARCOS KATALOĞUNDAKİ ALGOL YILDIZLARININ KİNEMATİĞİ. T. Özdemir *, A. İskender * * İnönü Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü

HİPPARCOS KATALOĞUNDAKİ ALGOL YILDIZLARININ KİNEMATİĞİ. T. Özdemir *, A. İskender * * İnönü Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü HİPPARCOS KATALOĞUNDAKİ ALGOL YILDIZLARININ KİNEMATİĞİ T. Özdemir *, A. İskender * * İnönü Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü Algol tipi sistemler (klasik algol) *Örten çift yıldız sistemi

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

Ü ş ş ş ş ş Ü ş Ü ç ş Ö ç Ü ç ç ş ç ş ş ş ş ş Ç ş ş ş ş ş Ç Ö Ü Ö Ü Ü Ü ş ç ç ş ş ş ş ç ç ş ş ç ş ş ç ç ş ç ş ç ç ç ç ş ç ç ş ş ç ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ş ç ş ş ş ş

Detaylı

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987 99 ÖYS.,8 (, ), işleminin sonucu açtır? A) B) C) D) E) 7. Raamları sıfırdan ve birbirinden farlı, üç basamalı en büyü sayı ile raamları sıfırdan ve birbirinden farlı, üç basamalı en üçü sayının farı açtır?

Detaylı

ĐST 522 ĐSTATĐSTĐKSEL SĐSTEM ANALĐZĐ

ĐST 522 ĐSTATĐSTĐKSEL SĐSTEM ANALĐZĐ ĐST 5 ĐSTATĐSTĐKSEL SĐSTEM ANALĐZĐ ve KONTROL Kaynalar: Davis, M.H.A. and Winter,R.B. Stochastic Modelling and Control, Chapman and Hall,985. Davis, M.H.A. Linear Estimation and Stochastic Control, Chapman

Detaylı

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri C.Ü. Fe-Edebiyat Faültesi Fe Bilimleri Dergisi 5Cilt 6 Sayı Aralığı İç Notasıda Süresizliğe Sahip Dirac Operatörüü Spetral Özellileri R. Kh. AMİROV ve Y. GÜLDÜ Cumhuriyet Üiversitesi Fe Edebiyat Faültesi

Detaylı

ELASTİK PLASTİK. İstanbul Üniversitesi

ELASTİK PLASTİK. İstanbul Üniversitesi ELASTİK PLASTİK HOMOJEN HETEROJEN dislokasyon birkristalideformeetmekiçinharcananenerji, teorik ve hatasız olan kristalden daha daha az! malzemelereplastikdeformasyonuygulandığında, deforme edebilmek için

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

ENERJİ DAĞITIMI. Doç. Dr. Erdal IRMAK. 0 (312) Erdal Irmak. G.Ü. Teknoloji Fak. Elektrik Elektronik Müh.

ENERJİ DAĞITIMI. Doç. Dr. Erdal IRMAK. 0 (312) Erdal Irmak. G.Ü. Teknoloji Fak. Elektrik Elektronik Müh. ENERJİ DAĞITIMI Doç. Dr. Erdal IRMAK G.Ü. Teknoloji Fak. Elektrik Elektronik Müh. http://websitem.gazi.edu.tr/erdal 0 (312) 202 85 52 Erdal Irmak Önceki dersten hatırlatmalar Üç Fazlı Alternatif Akımda

Detaylı

Lineer Cebir II (MATH232) Ders Detayları

Lineer Cebir II (MATH232) Ders Detayları Lineer Cebir II (MATH232) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir II MATH232 Bahar 4 0 0 4 7 Ön Koşul Ders(ler)i Math 231 Lineer Cebir

Detaylı

BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR Yrd. Doç. Dr. Nesrin AYDIN ATASOY

BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR Yrd. Doç. Dr. Nesrin AYDIN ATASOY BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR 2016 Yrd. Dç. Dr. Nesrin AYDIN ATASOY 3. HAFTA: PLANLAMA Yazılım geliştirme sürecinin ilk aşaması, planlama aşamasıdır. Başarılı bir prje geliştirebilmek için prjenin

Detaylı

10. Ders Akusto- ve Magneto-Optik Etkiler

10. Ders Akusto- ve Magneto-Optik Etkiler 10. Ders Akust- ve Magnet-Optik Etkiler l ışık Ses Dalgası 1 Bu bölümü bitirdiğinizde, Akust-ptik etki, Akust-ptik mdülatörler, Magnete-ptik etki, Faraday dönmesi, Optik yalıtıcılar knularında bilgi sahibi

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI Öğrenci Numarası: I. / II. Öğretim: Adı Soyadı: İmza: HAFTA 02 1. KONU: KOORDİNAT SİSTEMLERİ 2. İÇERİK Küresel Koordinat Sistemleri Coğrafi Koordinat

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

Anizotropik Ortamda Işık HSarı 1

Anizotropik Ortamda Işık HSarı 1 Aitrpi Ortamda Işı 8 HSarı 1 Ders İçeriği Işığı ristal içide ilerleişi İtrpi lmaa (aitrpi) ristaller Kübi ristaller Te seli Kristaller Çift seli Kristaller Opti ese taımı Çift ırılma Atrpi ristalleri ugulamaları

Detaylı

SPICE MOS Model Parametrelerinin Ölçülmesi (1., 2. ve 3. Düzey Modeller)

SPICE MOS Model Parametrelerinin Ölçülmesi (1., 2. ve 3. Düzey Modeller) SPICE MOS Model Parametrelerinin Ölçülmesi (1., 2. ve 3. Düzey Modeller) 504041230 Şuayb Yener ELE517 Yarıiletken Eleman ve Düzenlerin Modellenmesi 1. Düzey Model Parametreleri V T0 ve KP Parametrelerinin

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

Birinci Sınıf Bağlar Ayar Dönüşümlerinin Jeneratörleri midir?

Birinci Sınıf Bağlar Ayar Dönüşümlerinin Jeneratörleri midir? Birinci Sınıf Bağlar Ayar Dönüşümlerinin Jeneratörleri midir? Mehmet Kemal Gümüş Hacettepe Üniversitesi Fizik Mühendisliği Bölümü 14 Şubat 2015 Mehmet Kemal Gümüş (Hacettepe Üniversitesi Birinci Fizik

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

Bölüm 11: Doğrusal Olmayan Optik Alıştırmalar

Bölüm 11: Doğrusal Olmayan Optik Alıştırmalar Bölüm : Dğusal Olmayan Optik Alıştımala. (a Şiddeti I (W/m laak veilen ışığın, dğusal kıılma indisi n lan madde tamı içinde elektik alanının (E laak veilebileceğini gösteiniz. 7, 4 I E = (b I=,5 W/cm laze

Detaylı

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ MALZEME LABORATUARI I DERSĠ BURULMA DENEY FÖYÜ BURULMA DENEYĠ Metalik malzemelerin burma deneyi, iki ucundan sıkıştırılırmış

Detaylı

ÖNSÖZ. Kitabın kapak tasarımında katkılarından dolayı A-Ztech Ltd. den Sn Ali ÖGE ye teşekkür ederim.

ÖNSÖZ. Kitabın kapak tasarımında katkılarından dolayı A-Ztech Ltd. den Sn Ali ÖGE ye teşekkür ederim. ÖNSÖZ Katıların mekaniği kendi içinde Katı Cisimlerin Mekaniği (veya kısaca Mekanik) ve Şekil Değiştiren Cisimlerin Mekaniği (veya kısaca Mukavemet) olmak üzere iki alt gruba ayrılmıştır. Bunlardan mekaniğin

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 9. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 9. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. f(x) sıfırdan farklı dğrusal fnksiyn lmak üzere, f(x 6) f(x ) f(x) f(x ) f(x) f(x ) işleminin snucu kaçtır?. Rakamları çarpımı ile rakamları tplamının tplamları kendisine

Detaylı

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce ELEKTRİK DEVRELERİ II ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE nedimtutkun@duzce.edu.tr Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki devrede

Detaylı

Welch and Bishop (2004) Kalman filtresinin kullanımını voltaj tahmini ile örneklendirerek açıklamışlardır.

Welch and Bishop (2004) Kalman filtresinin kullanımını voltaj tahmini ile örneklendirerek açıklamışlardır. . GİRİŞ Maroeonomi model; eonominin işleyişini açılayan, amaçlanan eonomi yapıya ulaşabilme için birbiriyle ilişili temel eonomi büyülülerin nasıl gelişeceğini ve hangi alanlarda darboğazlarla arşılaşılacağını

Detaylı

KAYNAK BAĞLANTILARI SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

KAYNAK BAĞLANTILARI SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU KAYNAK BAĞLANTILARI MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Kayna Bağlantıları Kayna, çözülemez bağlantı şeilleri içinde en yaygın ullanım alanına sahip bağlama yöntemidir. Kayna işleminin

Detaylı

VİRTÜEL İŞ (VIRTUEL WORK)

VİRTÜEL İŞ (VIRTUEL WORK) VİRTÜEL İŞ (VIRTUEL WORK) Bir Kuvvetin Yaptığı İş VII - 1 VII - 2 Bir Kuvvet Çiftinin Yaptığı İş Virtüel İş Denge Maddesel Nokta VII - 3 Ri,jit Cisim Rijit Cisim Sistemi Dış Kuvvetler Bağ Kuvvetleri İç

Detaylı

Leyla Bugay Haziran, 2012

Leyla Bugay Haziran, 2012 Sonlu Tekil Dönüşüm Yarıgruplarının Doğuray Kümeleri ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Haziran, 2012 Yarıgrup Teorisi Nedir? Yarıgrup terimi ilk olarak 1904 yılında Monsieur l

Detaylı

Farklı Sıcaklıkların Scymnus subvillosus un Bıraktığı Yumurta Sayıları Üzerine Etkilerinin Karışımlı Poisson Regresyon ile Analiz Edilmesi

Farklı Sıcaklıkların Scymnus subvillosus un Bıraktığı Yumurta Sayıları Üzerine Etkilerinin Karışımlı Poisson Regresyon ile Analiz Edilmesi Yüzüncü Yıl Üniversitesi, Ziraat Faültesi, Tarım Bilimleri Dergisi J. Agric. Sci., 2007, 72: 73-79 Araştırma Maalesi/Article Geliş Tarihi: 3.0.2007 abul Tarihi: 2.07.2007 Farlı Sıcalıların Scymnus subvillosus

Detaylı

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Fizik 101-Fizik I 2013-2014 Hareket Kanunları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Kuvvet Kavramı Newton nun Birinci Yasası ve Eylemsizlik

Detaylı

Matris Analizi (MATH333) Ders Detayları

Matris Analizi (MATH333) Ders Detayları Matris Analizi (MATH333) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Matris Analizi MATH333 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i Math 231 Linear Algebra

Detaylı

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK HAZIRLAYAN ÖĞRENCİLER: Barış BALKAN Meryem Nilsu ÇETİN DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ İZMİR 2016 İçindekiler Sayfa 1. Giriş... 2 1.1 Projenin Amacı....

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

ETA Seminer Dizisi CMOS ANALOG ÇARPMA DEVRELERİ. M.Sc. Devrim Yılmaz AKSIN Elek. Hab. Mühendisi

ETA Seminer Dizisi CMOS ANALOG ÇARPMA DEVRELERİ. M.Sc. Devrim Yılmaz AKSIN Elek. Hab. Mühendisi ETA Seminer Dizisi CMOS ANALOG ÇARPMA DEVRELERİ M.Sc. Devrim Yılmaz AKSIN Elek. Hab. Mühendisi Sunumun Çerçevesi Tanım ve Uygulamalar Çarpıcı Performans Kriterleri Temel tasarım yaklaşımları Farklı Çarpıcı

Detaylı

Q5.1. A. T 1 B. T 2 C. T 3 D. T 1, T 2, ve T 3. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Q5.1. A. T 1 B. T 2 C. T 3 D. T 1, T 2, ve T 3. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Q5.1 Şekilde bir araba motoru zincirlerle asılı durumda dengededir. Buna göre motorun serbest cisim diyagramında gerilme kuvvet yada kuvvetlerinden hangisi yada hangileri dahil edilmelidir? A. T 1 B. T

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri. 4. Uç uca ekleme yöntemiyle K + L + M + N vektörlerini toplayalım. I. grubun oyunu kazanabilmesi için F 1

Vektör - Kuvvet. Test 1 in Çözümleri. 4. Uç uca ekleme yöntemiyle K + L + M + N vektörlerini toplayalım. I. grubun oyunu kazanabilmesi için F 1 7 Vektör - uvvet 1 Test 1 in Çözümleri 1. 4. Uç uca ekleme yöntemiyle + + + vektörlerini toplayalım. I. grubun oyunu kazanabilmesi için kuvvetinin den büyük olması gerekir. A seçeneğinde her iki grubun

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS LİNEER CEBİR FEB-221 2/2. YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi Dersin

Detaylı

TEMEL SI BİRİMLERİ BOYUTSUZ SI BİRİMLERİ

TEMEL SI BİRİMLERİ BOYUTSUZ SI BİRİMLERİ TEMEL SI BİRİMLERİ fiziksel nicelik nicelik simgesi isim simge uzunluk l, b, d, h, r, s metre m kütle m kilogram kg zaman t saniye s akım I amper A termodinamik sıcaklık T kelvin K substans miktarı n mol

Detaylı

DİNAMİK İNŞ2009 Ders Notları

DİNAMİK İNŞ2009 Ders Notları DİNAMİK İNŞ2009 Ders Ntları Dç.Dr. İbrahim Serkan MISIR Dkuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü Ders ntları için: http://kisi.deu.edu.tr/serkan.misir/ 2018-2019 GÜZ Dynamics, Furteenth Editin

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

MEKANİK TİTREŞİMLER DERS NOTLARI

MEKANİK TİTREŞİMLER DERS NOTLARI SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK TİTREŞİMLER DERS NOTLARI 2015 BAHAR 2 KAYNAKLAR 1. Mekanik Titreşimler, Birsen Kitabevi, Prof. Dr. Fuat Pasin 2. Mechanical

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP Sabit Nokta ve Fonksiyonel Yineleme Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 3 7! Sabit Nokta ve Fonksiyonel Yineleme 1 / 23 Sabit Nokta

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

Yinelemeli ve Uyarlanır Ayrıt Saptayıcı Süzgeçleri

Yinelemeli ve Uyarlanır Ayrıt Saptayıcı Süzgeçleri Yinelemeli ve Uyarlanır Ayrıt Saptayıcı Süzgeçleri innur Kurt, Muhittin Gökmen İstanbul Teknik Üniversitesi ilgisayar Mühendisliği ölümü Maslak 8066, İstanbul {kurt,gokmen}@cs.itu.edu.tr Özetçe Görüntü

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

CFD-FASTRAN ÖZET. Kanat Konfigürasyonu. hesaplanabilmesi için türbülans modellerinin deneysel sonuçlarla kalibrasyonu gerekmektedir. 2.

CFD-FASTRAN ÖZET. Kanat Konfigürasyonu. hesaplanabilmesi için türbülans modellerinin deneysel sonuçlarla kalibrasyonu gerekmektedir. 2. CFD-FASTRAN ÖZET CFD-FASTRAN Navier-Stokes hesaplanabilmesi için türbülans modellerinin deneysel sonuçlarla kalibrasyonu gerekmektedir. Kanat Konfigürasyonu CFD- FASTRAN Navier-Stokes çözücünün limitleri

Detaylı

Kümülatif Dağılım Fonksiyonu (Sürekli)

Kümülatif Dağılım Fonksiyonu (Sürekli) Kümülatif Dağılım Fonksiyonu (Sürekli) sürekli bir rastgele değişken olsun. Bu durumda kümülatif dağılım fonksiyonu şu şekilde tanımlanır. F ( ) = Pr[ ] Tipik bir KDF şu şekilde görünür:.0 F () 0 Kümülatif

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

SBS MATEMATİK DENEME SINAVI

SBS MATEMATİK DENEME SINAVI SS MTEMTİK DENEME SINVI 8. SINIF SS MTEMTİK DENEME SINVI. 4.. Güneş ile yut gezegeni arasındaki uzaklık 80000000 km dir. una göre bu uzaklığın bilimsel gösterimi aşağıdakilerden hangisidir? ),8.0 9 km

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

İçerik. Fizik 101-Fizik I

İçerik. Fizik 101-Fizik I Fizik 101-Fizik I 2013-2014 Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332-4392 İçerik Yerdeğiştirme, Hız ve Sürat Ani Hız ve Sürat İvme Hareket Diyagramları

Detaylı

Doğrusal Olmayan Devreler, Sistemler ve Kaos

Doğrusal Olmayan Devreler, Sistemler ve Kaos Elektronik ve Haberleşme Mühendisliği İstanbul Teknik Üniversitesi 25 Nisan 2013 Outline 1 2 3 Sabit noktaları: x 1 = 0 ve x 2 = 1 1 r x 0 (, 0) (0, ) = x n x(k + 1) = f (x(k)) f r (x) = rx(1 x) r = 4.2

Detaylı

Küre Küre Üzerinde Hesap. Ders Sorumlusu Prof. Dr. Mualla YALÇINKAYA 2018

Küre Küre Üzerinde Hesap. Ders Sorumlusu Prof. Dr. Mualla YALÇINKAYA 2018 Küre Küre Üzerinde Hesap Ders Sorumlusu Prof. Dr. Mualla YALÇINKAYA 2018 Küre ve Küre ile İlgili Tanımlar Küre: «Merkez» adı verilen bir noktaya eşit uzaklıktaki noktaların bir araya getirilmesiyle, ya

Detaylı

SİMGELER DİZİNİ. ( t Φ Γ. E xz. xxz. j j j

SİMGELER DİZİNİ. ( t Φ Γ. E xz. xxz. j j j ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ HEDEF TAKİBİNDE UYARLI KALMAN FİLTRESİNİN KULLANIMI ÜZERİNE BİR ÇALIŞMA Emine ÇERÇİOĞLU İSTATİSTİK ANABİLİM DALI ANKARA 2006 Her haı salıdır

Detaylı

Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları

Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Bilgisayarlara ve Programlamaya Giriş COMPE 101 Güz 2 2

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 2 Salı, Mart 14, :00-12:30

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 2 Salı, Mart 14, :00-12:30 Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 2 Salı, Mart 14, 2006 11:00-12:30 SOYADI ADI Öğrenci No. Talimat: 1. TÜM ÇABANIZI GÖSTERİN. Tüm cevaplar sınav kitapçığında gösterilmelidir? 2. Bu kapalı bir sınavdır.

Detaylı

Name: Diferensiyel Geometri Spring 2014

Name: Diferensiyel Geometri Spring 2014 Çalışma soruları Tanim [Basit egri] α : (a, b) R 3 egrisi verilsin. Farkli t 1, t 2 (a, b) noktalari icin α(t 1 ) α(t 2 ) oluyorsa α egrisine basit egri adi verilir (kendisini kesmeyen egriye basit egri

Detaylı

Uydu Yörüngelerine Giriş

Uydu Yörüngelerine Giriş Uydu Yörüngelerine Giriş Niçin Uydular Dolanıyor? Merkezcil kuvvet ile çekim kuvveti t ye bağlı değişim göstermezse yörünge dairesel olur. Eğer hız biraz fazla veya az ise, yani t ye bağlı değişiyorsa

Detaylı

ELASTİK DALGA YAYINIMI

ELASTİK DALGA YAYINIMI ELASTİK DALGA YAYINIMI (016-10. Ders) Prof.Dr. Eşref YALÇINKAYA Geçtiğimiz ders; Cisim dalgaları (P ve S) Tabakalı ortamda yayılan sismik dalgalar Snell kanunu Bu derste; Yüzey dalgaları (Rayleigh ve Love)

Detaylı

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU Bilişim Sistemleri Modelleme, Analiz ve Tasarım Yrd. Doç. Dr. Alper GÖKSU Ders Akışı Hafta 5. İhtiyaç Analizi ve Modelleme I Haftanın Amacı Bilişim sistemleri ihtiyaç analizinin modeli oluşturulmasında,

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ GRADİYENT: f(,y,z) her noktada sürekli ve türevlenebilir bir skaler alan olsun. Herhangi bir

Detaylı

30. HAZERFAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ. Özet

30. HAZERFAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ. Özet 3. HAZERAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ Özet Gelişen havacılık teknolojisiyle birlikte gelişimini sürdüren İHAları son zamanlarda üzerinde araştırmalar ve yatırımlar yapılan öncelikli

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR,

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR, , 00 M ebir Notları Gökhan EMĐR, gdemir@yahoo.com.tr Trigonometri. TEST I π 'ün esas ölçüsü kaçtır? ) p ) p ) p ) π p. tanθ = ) ) olduğuna göre, sinθ değeri kaçtır? ) ). 0 'nin esas ölçüsü kaçtır?. θ

Detaylı

MEVITAS İŞLEMLERİ... 1 1. MEVITAS Merkezi Elektronik Veri İletim Toplama Analiz Sistemi Genel İlkeleri 1

MEVITAS İŞLEMLERİ... 1 1. MEVITAS Merkezi Elektronik Veri İletim Toplama Analiz Sistemi Genel İlkeleri 1 MEVİTAS İŞLEMLERİ İÇERİK MEVITAS İŞLEMLERİ... 1 1. MEVITAS Merkezi Elektrnik Veri İletim Tplama Analiz Sistemi Genel İlkeleri 1 2. MEVITAS YETKİLENDİRME İşlem Akışı... 2 A. MV20 MEVİTAS Yetkilendirme Giriş...

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2 T.C. MİLLÎ EĞİTİM BAKANLIĞI 01-016 7. SINIF DEĞERLENDİRME SINAVI - 01-016 7. SINIF DEĞERLENDİRME SINAVI - MATEMATİK Adı ve Syadı :... Sınıfı :... Öğrenci Numarası :... SORU SAYISI : 0 SINAV SÜRESİ : 40

Detaylı

INTEGRAL REPRESENTATIONS FOR SOLUTIONS OF FRETNEL DIFFERENTIAL EQUATION SYSTEMS TYPE DIFFERENTIAL EQUATIONS

INTEGRAL REPRESENTATIONS FOR SOLUTIONS OF FRETNEL DIFFERENTIAL EQUATION SYSTEMS TYPE DIFFERENTIAL EQUATIONS Cumhuriyet Ünivertsitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt 35, No. (4) ISS: 3-949 Cumhuriyet University Faculty of Sciences Science Journal (CSJ), Vol. 35, No. (4) ISS: 3-949 FRENET DİFERANSİYEL

Detaylı

Çoğul-Değerli Fonksiyonların Almost D-Süreklilikleri Üzerine

Çoğul-Değerli Fonksiyonların Almost D-Süreklilikleri Üzerine C.Ü. en-edebiat akültesi en Bilimleri Dergisi (23)Cilt 24 Saı Çğul-Değerli nksinların Almst D-Süreklilikleri Üzerine Metin AKDAĞ ve Savaş TEMİZİŞLER Cumhuriet Üniversitesi en Edebiat akültesi Matematik

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı