İşaret ve Sistemler. Ders 9: Sistemlere Giriş

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İşaret ve Sistemler. Ders 9: Sistemlere Giriş"

Transkript

1 İşare ve Sisemler Ders 9: Sisemlere Giriş

2 Sisem Kavramı Belirli bir işi görmek için bir araa geirilmiş alelerin ve devrelerin ümüne birden SİSEM adı verilir. Başka bir deişle sisem, fiziksel bir sürecin maemaiksel modelidir ve bir giriş işareine karşılık çıkış işarei üreen EK unique bir dönüşüm kuralı olarak anımlanır. Sisemler işareler aracılığıla konrol edilirler. İşare ve Sisemler

3 Sisem Kavramı SİSEM Giriş İşarei [. ] SİSEM Operaör Çıkış İşarei = [ ] İşare ve Sisemler 3

4 Sisem Kavramı Daha açık bir deişle sisem, girişine ugulanan işareleri işler. Çıkış olarak ise ugulanan işarein değişirilmiş/dönüşürülmüş eni bir şeklini üreir. Her sisem kendine özel bir ransfer fonksionuna {} sahipir ve farklı giriş işarelerine karşılık olarak farklı çıkış işareleri üreir. Birim darbe ve birim basamak gibi işarelere verilen cevaplar sisemlerin karakerisiklerini belirler. İşare ve Sisemler 4

5 Sisemlerin Sınıflandırılması Sisemler aşağıdaki özellikler göz önünde bulundurularak sınıflandırılabilmekedirler: Lineer Doğrusal / Non-Lineer Doğrusal Olmaan, Zamanla Değişen / Zamanla Değişmeen, Nedensel / Nedensel Olmaan, Hafızalı / Hafızasız, Kararlı / Kararsız, Dinamik / Saik, oplu paramereli / Dağınık disribued paramereli, Akif / Pasif, ersine çevirilebilen, Sisemler karakerize edilirken genelde lineerlik ve zamanla değişmezlik özellikleri kullanılmakadır. İşare ve Sisemler 5

6 Lineer ve Lineer Olmaan Sisemler V V [. ] Y Y İşare ve Sisemler 6

7 Lineer ve Lineer Olmaan Sisemler a. v b. v a. v b. v Giriş a. b. Çıkış İşare ve Sisemler 7

8 Örnek 9. İşare ve Sisemler 8

9 Örnek 9. ÇÖZÜM: Sisemin giriş ve çıkışındaki işareler; İşare ve Sisemler 9

10 Örnek 9. İşare ve Sisemler 0

11 Örnek 9. Giriş sinali s i c sinali ile çarpan bir karışırıcı mier olan sisemin lineer olup olmadığını belirleiniz? İşare ve Sisemler

12 Örnek 9. ÇÖZÜM: Sisemin girişine a ve b işarelerinin ugulandığını düşünürsek; s = a a c s = b b c s =[a + b] [a+b] c Sisem LİNEERDİR!! İşare ve Sisemler

13 Zamanla Değişen/Değişmeen Sisemler v girişine sisemin cevabı iken, v- 0 girişine sisemin cevabı - 0 ise siseme zamanla değişmeen sisem denir. v [. ] v- 0-0 v v 0 0 Herhangi bir 0 için eşiliği sağlaan siseme zamanla değişmeen sisem, sağlamaan siseme de zamanla değişen sisem denir. İşare ve Sisemler 3

14 Zamanla Değişen/Değişmeen Sisemler İşare ve Sisemler 4

15 Zamanla Değişen/Değişmeen Sisemler İşare ve Sisemler 5

16 Zamanla Değişen/Değişmeen Sisemler Zamanla değişmeen bir sisemin giriş işareine karşı anıı grafikeki gibidir: v SİSEM v 0 0 SİSEM o o İşare ve Sisemler 6

17 Lineer ve Zamanla Değişen/Değişmeen Sisemler İşare ve Sisemler 7

18 Lineer ve Zamanla Değişen/Değişmeen Sisemler İşare ve Sisemler 8

19 Lineer ve Zamanla Değişen/Değişmeen Sisemler İşare ve Sisemler 9

20 Nedensel/Nedensel Olmaan Sisemler Eğer herhangi bir andaki sisemin çıkışı sadece o andaki ve geçmişeki girişlerine bağlısa bu siseme nedensel sisemler denir. Daha açık bir ifadele, nedensel sisemlerde sisemin çıkışı gelecekeki giriş değerlerine bağlı değildir. Örneğin, oomobil nedensel bir sisemdir. Sürücünün geleceke apacağını oomobil beklemez. Belleği olmaan üm sisemler nedenseldir. İşare ve Sisemler 0

21 Nedensel/Nedensel Olmaan Sisemler Nedensel sisemin impuls cevabı aşağıdaki gibidir: v h Lineer zamanla değişmeen bir sisemin nedensel olabilmesi için gerek ve eer şar: Sisemin impulse cevabı h = 0, < 0 olmalıdır. NEDENSEL SİSEM Nedensel olan sisemler fiziksel olarak gerçekleşirilebilir. Herhangi bir sisem nedensel olma şarını sağlamıorsa bu sisemlere nedensel olmaan sisem denir. İşare ve Sisemler

22 Örnek 9.3 Sisemin girişi, çıkışı, a ve b birer sabi olmak üzere sisemin giriş-çıkış ilişkisi = a.+b şeklinde verilmişir. Bu sisem lineer midir? İşare ve Sisemler

23 Örnek 9.3 İşare ve Sisemler 3 b a. b a. b a. b a b a.... b a

24 Örnek 9.4 = a. + b olan sisemin girişine erine işarei ugulanıor. Buna göre sisem lineer midir? İşare ve Sisemler 4

25 Örnek 9.4 ÇÖZÜM: a. b.. a. b. Olduğundan dolaı sisem lineer DEĞİLDİR!! İşare ve Sisemler 5

26 Örnek 9.5 Sisemin girişi, çıkışı, a ve b birer sabi olmak üzere sisemin giriş-çıkış ilişkisi. Cosw şeklinde verilmişir. Bu sisem lineer midir? c İşare ve Sisemler 6

27 Örnek 9.5 ÇÖZÜM: İşare ve Sisemler 7 Cosw Cosw Cosw c c c a Cosw a a c olduğundan sisem lineerdir.

28 Örnek 9.6 İşare ve Sisemler 8

29 Örnek 9.6 ÇÖZÜM: a. Cosw c. Cosw olduğundan dolaı sisem lineer DEĞİL!! c a. Cosw a. Cosw Cosw c. a. Cosw Cosw c. c c c. Cosw c İşare ve Sisemler 9

30 Örnek 9.7 Sisemin girişi, çıkışı olmak üzere sisemin girişçıkış ilişkisi.. n n şeklinde verilmişir. Bu sisem lineer midir? Zamanla değişen midir? İşare ve Sisemler 30

31 Örnek 9.7 İşare ve Sisemler a a a n n n Cos. n n n n n Cos.

32 Örnek 9.7 ÇÖZÜM: Sisemin girişine Cos Cos Sin 4 4 İşarei ugulanırsa;. n Sin n. n Sinn Sin. n n n n 0 n 4 n 4 olduğunda sisem zamanla değişendir. Bu sisem ideal örnekleici olarak isimlendirilir. İşare ve Sisemler 3

33 Çalışma Sorusu İşare ve Sisemler 33

İşaret ve Sistemler. Ders 7: Konvolüsyon (Evrişim)

İşaret ve Sistemler. Ders 7: Konvolüsyon (Evrişim) İşare ve Siseler Ders 7: Konvolüsyon Evrişi Konvolüsyon Evrişi Konvolüsyonconvoluion uzun yıllardır bilinen ve uygulanan aeaiksel bir işle olakla birlike bu işlei anılaak için aeaike çok çeşili eriler

Detaylı

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS)

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) Yrd. Doç. Dr. Musafa Zahid YILDIZ musafayildiz@sakarya.edu.r oda no: 469 Kaynaklar: 1. Signals and Sysems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

BÖLÜM 7 GÜÇ (POWER) YÜKSELTECİ KONU: GEREKLİ DONANIM: ÖN BİLGİ: DENEYİN YAPILIŞI:

BÖLÜM 7 GÜÇ (POWER) YÜKSELTECİ KONU: GEREKLİ DONANIM: ÖN BİLGİ: DENEYİN YAPILIŞI: BÖLÜM 7 GÜÇ (POWER) YÜKSELTECİ KONU: 1. Transisörlü güç yükselecinin analizi ve çalışma karakerisiklerinin incelenmesi. GEREKLİ DONANIM: Osilaskop (Çif Kanallı) İşare Üreeci (Signal Generaor) DC Güç Kaynağı

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLER

TRANSİSTÖRLÜ YÜKSELTEÇLER Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim Dalı * Elekronik Laborauarı I 1. Deneyin Amacı TRANSİSTÖRLÜ YÜKSELTEÇLER Transisörlerin yükseleç

Detaylı

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER DENEY-6 LOJİK KPILR VE İKİLİ DEVRELER DENEYİN MCI: Bu deneyde emel manık kapıları (logic gaes) incelenecek ek kararlı ikili devrelerin çalışma prensipleri gözlemlenecekir. ÖN HZIRLIK Temel lojik kapı devrelerinden

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI Tarih: 4-0-008 Adı Soyadı : No : Soru 3 4 TOPLAM Puan 38 30 30 30 8 Soru

Detaylı

ANALOG ELEKTRONİK - II

ANALOG ELEKTRONİK - II ANALOG ELEKTONİK - II BÖLÜM Temel Opamp Devreleri Konular:. Eviren ve Evirmeyen Yükseleç. Temel ark Alıcı.3 Gerilim İzleyici.4 Türev ve Enegral Alıcı Amaçlar: Bu bölümü biirdiğinizde aşağıda belirilen

Detaylı

hafta 6: Katlama işlemi özellikleri

hafta 6: Katlama işlemi özellikleri hafa 6: Kalama işlemi özellikleri 3.4 Kalama işlemi özellikleri... 2 3.4.1 Yer değişirme özelliği (Commuaive Propery)... 2 3.4.2 Dağılma özelliği (Disribuive Propery)... 2 3.4.2.1 Dağılma özelliği kullanarak

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.C. ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMRLIK FKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN4 ELEKTRONİK DEVRELER LBORTUVRI II DENEY 6: OSİLTÖRLER DENEY GRUBU :... DENEYİ YPNLR :......... RPORU HZIRLYN :...

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY ZAMANLAMA DEVRESİ

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY ZAMANLAMA DEVRESİ T.. ULUDĞ ÜNİVESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK - ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN334 ELEKTONİK DEVELE LBOTUVI II DENEY 6 ZMNLM DEVESİ Deneyi Yapanlar Grubu Numara d Soyad aporu Hazırlayan Diğer Üyeler

Detaylı

Ç A L I Ş M A N O T L A R I. Haberleşme Teknolojileri Dr.Aşkın Demirkol İşaret tipleri

Ç A L I Ş M A N O T L A R I. Haberleşme Teknolojileri Dr.Aşkın Demirkol İşaret tipleri İşare ipleri Bu bölümde emel işare ipleri bulundukları kaegori ve sınıflarına göre model ve işlevleriyle ele alınacakır. Analog ve Dijial İşareler Analog işarelerle, sürekli-zaman işareleri daima karışırılır.

Detaylı

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ 3.1- Giriş 3.. Külenin kornm: Süreklilik denklemi 3.3. Momenmn kornm: Momenm denklemi 3.3.1 Laminer kama gerilmesinin modellenmesi 3.3. Momenm denkleminin

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve inelenmesi. ÖN HAZIRLIK 1. TEMEL TANIMLAR Frekans Modülasyonu: Taşıyıı genliğinin sabi uulduğu ve aşıyıı rekansının bildiri

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siir Üniversiesi Elekrik-Elekronik Mühendisliği Kaynak (Ders Kiabı): Fundamenals of Elecric Circuis Charles K. Alexander Mahew N.O. Sadiku McGraw Hill,

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER Deneyi Yapanlar Grubu Numara

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY : TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER DENEY GRUBU :... DENEYİ YAPANLAR

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir.

DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir. DADA DÖNÜŞÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüşüren devrelerdir. Uygulama Alanları 1. DA moor konrolü 2. UPS 3. Akü şarjı 4. DA gerilim kaynakları

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK - ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK - ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK - ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN334 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 1: TRANZİSTÖRLÜ KUVVETLENDİRİCİLERDE GERİBESLEME I. EĞİTİM II.

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 7 KOMPARATÖRLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 7 KOMPARATÖRLER T.C. LĞ ÜNİVERSİTESİ MÜHENİSLİK FKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENİSLİĞİ ÖLÜMÜ ELN4 ELEKTRONİK EVRELER LORTVRI II ENEY 7 KOMPRTÖRLER eneyi Yapanlar Grubu Numara d Soyad Raporu Hazırlayan iğer Üyeler eneyin

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

6.2. Güç Denklemleri: Güç, tanım olarak transfer edilen enerji veya yapılan işin oranıdır. Matematiksel olarak, W P = (6.1) t

6.2. Güç Denklemleri: Güç, tanım olarak transfer edilen enerji veya yapılan işin oranıdır. Matematiksel olarak, W P = (6.1) t BÖLÜM 6 GÜÇ 6.1.Giriş: Günümüz dünyasının karşı karşıya olduğu önemli sorunlardan birisi de enerji krizleridir. Perolden üreilen enerji hızla ükeildiğinden dolayı yeni enerji kaynakları bulunması zorunluluk

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim alı * Elekronik Laborauarı I FET.Lİ KUETLENİİCİLE 1. eneyin Amacı FET Transisörlerle yapılan

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ

GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ Tarık ERFİDAN Saılmış ÜRGÜN Bekir ÇAKIR Yakup KARABAG Kocaeli Üniversiesi Müh.Fak. Elekrik Mühendisliği Bölümü, 41100, İzmi/Kocaeli

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

DENEY 5 RL ve RC Devreleri

DENEY 5 RL ve RC Devreleri UUDAĞ ÜNİVESİTESİ MÜHENDİSİK FAKÜTESİ EEKTİK-EEKTONİK MÜHENDİSİĞİ BÖÜMÜ EEM2103 Elekrik Devreleri aborauarı 2014-2015 DENEY 5 ve Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney Sonuçları (40/100)

Detaylı

ELEKTRİK DEVRE TEMELLERİ LAB. DENEY FÖYÜ

ELEKTRİK DEVRE TEMELLERİ LAB. DENEY FÖYÜ ELEKTRİK DEVRE TEMELLERİ L. DENEY FÖYÜ EYLÜL 00 DENEY : OSİLOSKOP, VOMETRE ve İŞRET ÜRETEİ KULLNIMI Deneyin macı: u deneyde elekrik devrelerindeki akım, gerilim, direnç gibi fiziksel büyüklüklerin ölçülmesi

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

Bölüm 9 FET li Yükselteçler

Bölüm 9 FET li Yükselteçler Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini

Detaylı

DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER

DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEYİN AMACI: Bu deneyde BJT ve MOS kuvvelendiriciler incelenecek ve elde edilecek veriler yardımıyla her iki kuvvelendiricinin çalışma özellikleri gözlemlenecekir.

Detaylı

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR,  2006 MC www.matematikclub.com, Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar TEST I. f() = + 4 + fonksionunun alabileceği en büük 8 9. f() = + + ifadesinin alabileceği en küçük 4 5.

Detaylı

BÖLÜM 7 2.1 YARIM DALGA DOĞRULTMAÇ TEMEL ELEKTRONİK

BÖLÜM 7 2.1 YARIM DALGA DOĞRULTMAÇ TEMEL ELEKTRONİK BÖLÜM 7 2.1 YARIM DALGA DOĞRULTMAÇ Tüm elekronik cihazlar çalışmak için bir DC güç kaynağına (DC power supply) gereksinim duyarlar. Bu gerilimi elde emenin en praik ve ekonomik yolu şehir şebekesinde bulunan

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER. GİRİŞ - Konu, Hız ve İve - Newon Kanunları. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal Hareke

Detaylı

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ İsmail KINACI 1, Aşır GENÇ 1, Galip OTURANÇ, Aydın KURNAZ, Şefik BİLİR 3 1 Selçuk Üniversiesi, Fen-Edebiya Fakülesi İsaisik

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ İANBUL İCARE ÜNİERİEİ BİLGİAAR MÜHENDİLİĞİ BÖLÜMÜ BİLGİAAR İEMLERİ LABORAUARI ER PERPEKİF DÖNÜŞÜM İLE ÜZE DOKUU ÜREİMİ Bu deneyde, genel haları ile herhangi bir yüzeye bir dokunun kopyalanması üzerinde

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

DENEY NO: 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER

DENEY NO: 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEY NO: 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEYİN AMACI: Bu deneyde BJT ve MOS kuvvelendiriciler incelenecek ve elde edilecek veriler yardımıyla her iki kuvvelendiricinin çalışma prensipleri ve

Detaylı

FİZİK II LABORATUVARI DENEY FÖYÜ

FİZİK II LABORATUVARI DENEY FÖYÜ ELAL BAYA ÜNİESİTESİ / FEN-EDEBİYAT FAKÜLTESİ / FİZİK BÖLÜMÜ FİZİK LOATUA DENEY FÖYÜ. DİENÇ E ELEKTOMOTO KUETİNİN ÖLÇÜLMESİ. OHM YASAS. KHHOFF YASALA 4. ELEKTİK YÜKLEİNİN DEPOLANŞ E AKŞ AD SOYAD: NUMAA:

Detaylı

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 3 HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 2 EŞ-ANLI DENKLEM SİSTEMLERİ Bu bölümde analitik ve grafik olarak eş-anlı denklem sistemlerinin

Detaylı

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi 1) Çelik Çaı Taşıyıcı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1) Aralıklarının Çaı Örüsüne Bağlı Olarak Belirlenmesi Çaı örüsünü aşıyan aşıyıcı eleman aşık olarak isimlendirilir. Çaı sisemi oplam

Detaylı

Reaksiyon Derecesi ve Hız Sabitlerinin Bulunması

Reaksiyon Derecesi ve Hız Sabitlerinin Bulunması ERİYES ÜNİVERSİTESİ Reaksiyon Derecesi ve Hız Sabilerinin Bulunması MÇ Herhangi bir reaksiyon için reaksiyon derecesi ve hız sabiinin belirlenmesi. ÖN BİLGİ Kimyasal reaksiyonların nasıl, ne hızda ve hangi

Detaylı

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t)

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t) Dalgalar Tireşimlerin bir uyarının veya bir sarsınının uzay içinde zamanla ilerlemesine dalga denir. Maemaiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel

Detaylı

ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ

ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ 000000000 Komison ÖABT LİSE MATEMATİK PİYASA 9 DENEME ISBN 978-605-38-86-6 Kitapta er alan bölümlerin tüm sorumluluğu azarlarına aittir. Pegem Akademi Bu kitabın basım,

Detaylı

Gaussian-Modülasyonlu Sinüzoidal UWB İşaretlerle Uyarılmış Omik Yüklü Dipol Antenlerin Geçici Alan Davranışlarının İncelenmesi

Gaussian-Modülasyonlu Sinüzoidal UWB İşaretlerle Uyarılmış Omik Yüklü Dipol Antenlerin Geçici Alan Davranışlarının İncelenmesi Gaussian-Modülasyonlu Sinüoidal UWB İşarelerle Uyarılmış Omik Yüklü Dipol Anenlerin Geçici Alan Davranışlarının İncelenmesi Yasin Oğu Haydar Kaya Enformaik Bölümü, Karadeni Teknik Üniversiesi, Trabon Elekrik-Elekronik

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

SÜREKLİ ZAMANLI KAOTİK SİSTEMİNİN DURUM GERİ BESLEME İLE DOĞRUSALLAŞTIRILMASI VE DENETİMİ

SÜREKLİ ZAMANLI KAOTİK SİSTEMİNİN DURUM GERİ BESLEME İLE DOĞRUSALLAŞTIRILMASI VE DENETİMİ SÜREKLİ ZAMANLI KAOTİK SİSTEMİNİN DURUM GERİ BESLEME İLE DOĞRUSALLAŞTIRILMASI VE DENETİMİ Ümi ÇOKRAK Ahme UÇAR Elekrik-Elekronik Mühendisliği Bölümü Mühendislik Fakülesi Fıra Üniversiesi, 9, Elazığ e-posa:

Detaylı

GEFRAN PID KONTROL CİHAZLARI

GEFRAN PID KONTROL CİHAZLARI GEFRAN PID KONTROL CİHAZLARI GENEL KONTROL YÖNTEMLERİ: ON - OFF (AÇIK-KAPALI) KONTROL SİSTEMLERİ: Bu eknik en basi konrol ekniğidir. Ölçülen değer (), se değerinin () üzerinde olduğunda çıkış sinyali açılır,

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5 FIRT ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ EMÜ419 OTOMTİK KONTROL LORTURI DENEY 5 PID KONTROLÖR KRKTERİSTİKLERİNİN İNELENMESİ VE NLOG OLRK POZİSYON KONTROL SİSTEMLERİNDE

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

FUZZY METRİK UZAYLAR YÜKSEK LİSANS TEZİ MELİH ÇINAR

FUZZY METRİK UZAYLAR YÜKSEK LİSANS TEZİ MELİH ÇINAR FUZZY METRİK UZAYLAR 2015 YÜKSEK LİSANS TEZİ MELİH ÇINAR FUZZY METRİK UZAYLAR Melih ÇINAR Bülen Ecevi Üniversiesi Fen Bilimleri Ensiüsü Maemaik Anabilim Dalında Yüksek Lisans Tezi Olarak Hazırlanmışır.

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

PIC İŞLEMCİ DENETİMLİ ADIM MOTOR MİKROADIM SÜRÜCÜSÜ. Erhan AKDOĞAN Marmara Üniversitesi Teknik Bilimler MYO, 81040, Göztepe eakdogan@marmara.edu.

PIC İŞLEMCİ DENETİMLİ ADIM MOTOR MİKROADIM SÜRÜCÜSÜ. Erhan AKDOĞAN Marmara Üniversitesi Teknik Bilimler MYO, 81040, Göztepe eakdogan@marmara.edu. 3. ULUSLARARAS İLERİ TEKNOLOJİLER SEMPOZYUMU, 18-0 AĞUSTOS 003, ANKARA PC LEMCİ DENETİMLİ ADM MOTOR MİKROADM SÜRÜCÜSÜ Erhan AKDOĞAN Marmara Üniversiesi Teknik Bilimler MYO, 81040, Gözepe eakdogan@marmara.edu.r

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

GÜÇ SİSTEMLERİNDE KADEME DEĞİŞTİRİCİ TRANSFORMATÖRLERİN KAOTİK OSİLASYONLARI

GÜÇ SİSTEMLERİNDE KADEME DEĞİŞTİRİCİ TRANSFORMATÖRLERİN KAOTİK OSİLASYONLARI GÜÇ SİSEMLERİNDE KADEME DEĞİŞİRİCİ RANSFORMAÖRLERİN KAOİK OSİLASYONLARI Kadir ABACI Mehme Ali YALÇIN Yılmaz UYAROĞLU 3 Hüseyin GELBERİ 4 Elekrik-Elekronik Mühendisliği Bölümü Sakarya Üniversiesi, Esenepe

Detaylı

Bölüm V Darbe Kod Modülasyonu

Bölüm V Darbe Kod Modülasyonu - Güz Bölüm V Dare Kod Modülasyonu emel Bilgiler Bi nerjisi Gürülü Gücü İlinisel lıcı Uygun Süzgeçli lıcı Bi Haa Olasılığı Semoller rası Girişim DKM ve Ha Kodlama DC veya Bilgisayardan sayısal daa k Semol

Detaylı

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler DERS Doğrusal Denklem Sistemleri ve Matrisler Sosal ve Beşeri Bilimlerde Matematik I kitabımıda doğrusal denklemleri tanımlamıştık (safa 85). Arıca, matematiksel modeli doğrusal denklemler içeren problem

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi. Mathematical Evaluation of Image Quality in Fluoroscopic Units

Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi. Mathematical Evaluation of Image Quality in Fluoroscopic Units Süleman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, -3 (007),0-07 Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi Turan OLĞAR Ankara Üniversitesi, Mühendislik

Detaylı

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÇELİK KAFES SİSTEM TASARIMI DERS PLANI KONULAR 1. Çelik Çaı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1 Aralıklarının

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

İKİNCİ BASAMAKTAN DİFERANSİYEL DENKLEMLER VE EMDEM- FOWLER TİPİ DİFERANSİYEL DENKLEMLERİN BİR SİSTEMİ İÇİN SALINIMSIZLIK KRİTERLERİ.

İKİNCİ BASAMAKTAN DİFERANSİYEL DENKLEMLER VE EMDEM- FOWLER TİPİ DİFERANSİYEL DENKLEMLERİN BİR SİSTEMİ İÇİN SALINIMSIZLIK KRİTERLERİ. İKİNCİ BASAMAKTAN DİFERANSİYEL DENKLEMLER VE EMDEM- FOWLER TİPİ DİFERANSİYEL DENKLEMLERİN BİR SİSTEMİ İÇİN SALINIMSIZLIK KRİTERLERİ Rukiye TOSUN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN Konikler Yazar Doç.Dr. Hüsein AZCAN ÜNİTE 7 Amaçlar Bu ünitei çalıştıktan sonra; lise ıllarından da tanıdığınız çember, elips, parabol ve hiperbol gibi konik kesitleri olarak adlandırılan geometrik nesneleri

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiyel Denklemlerin Sınıflandırılması

DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiyel Denklemlerin Sınıflandırılması DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiel Denklemlerin Sınıflandırılması Birçok mühendislik, fizik ve sosal kökenli problemler maemaik erimleri ile ifade edildiği zaman bu problemler, bilinmeen

Detaylı

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation).

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation). DERS Türevin Ugulamaları: Kapalı Türev, Değişim Oranları.. Kapalı Türev(İmplici Differeniaion). Eğer f (), denkleminde olduğu gibi kapalı(implici olarak verilmişse, ü bulmak için zincir kuralı kullanılabilir:

Detaylı

BİR ELEKTROMEKANİK SİSTEMİN STATİK DAVRANIŞININ İNCELENMESİ

BİR ELEKTROMEKANİK SİSTEMİN STATİK DAVRANIŞININ İNCELENMESİ Uludağ Üniversiesi Müendislik-Mimarlık Fakülesi Dergisi, Cil 8, Sayı, 003 BİR ELEKTROMEKNİK SİSTEMİN STTİK DVRNIŞININ İNCELENMESİ Gürsel ŞEFKT * İbraim YÜKSEL Öze: Elekronik elemanların ızlı gelişimi,

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat )... u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü FZM450. Elektro-Optik. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü FZM450. Elektro-Optik. Doç. Dr. Hüseyin Sarı Ankara Üniversiesi Mühendislik Fakülesi Fizik Mühendisliği Bölümü FZM450 Elekro-Opik Doç. Dr. Hüseyin Sarı İçerik Opoelekronik Teknolojisi-Moivasyon Tanımlar Elekro-Opik Opoelekronik Foonik Elekromanyeik

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

İnersiyal Algılayıcı Tabanlı Hareket Yakalama Inertial Sensor Based Motion Capture

İnersiyal Algılayıcı Tabanlı Hareket Yakalama Inertial Sensor Based Motion Capture İnersiyal Algılayıcı Tabanlı Hareke Yakalama Inerial Sensor Based Moion Capure Tuba Kurban 1, Erkan Beşdok 1 1 Mühendislik Fakülesi Erciyes Üniversiesi ubac@erciyes.edu.r, ebesdok@erciyes.edu.r Öze Biyomekanik,

Detaylı

İKİ KADEMELİ ELEKTROHİDROLİK BİR HIZLI ANAHTARLAMA VALFİNİN KARAKTERİSTİKLERİNİN İNCELENMESİ. Mesut Şengirgin ve İbrahim Yüksel

İKİ KADEMELİ ELEKTROHİDROLİK BİR HIZLI ANAHTARLAMA VALFİNİN KARAKTERİSTİKLERİNİN İNCELENMESİ. Mesut Şengirgin ve İbrahim Yüksel İKİ KADEMELİ ELEKTROHİDROLİK BİR HIZLI ANAHTARLAMA VALFİNİN KARAKTERİSTİKLERİNİN İNCELENMESİ Mesu Şengirgin ve İbrahim Yüksel Uludag Üniverisesi Mühendislik-Mimarlık Fakülesi 659 Görükle/Bursa ÖZET Bu

Detaylı

bilgisi ht () kanalından iletilmek istenmektedir. Aşağıda filtre çıkışlarından hangisi iletilmek istenen işarete (veriye) ait olabilir.

bilgisi ht () kanalından iletilmek istenmektedir. Aşağıda filtre çıkışlarından hangisi iletilmek istenen işarete (veriye) ait olabilir. ANALOG VERİ BAND GENİŞLİĞİ Örnek 2 Bir haberleşme siseminde x( ) sinc (5000 ) bilgisi h () kanalından ileilmek isenmekedir. Aşağıda filre çıkışlarından hangisi ileilmek isenen işaree (veriye) ai olabilir.

Detaylı

RL, RC ve RLC DEN OLUŞMUŞ DEVRELERDE GEÇİCİ REJİMLERİN İNCELENMESİ

RL, RC ve RLC DEN OLUŞMUŞ DEVRELERDE GEÇİCİ REJİMLERİN İNCELENMESİ DNY NO: 6, C ve C DN OUŞMUŞ DVD GÇİCİ JİMİN İNCNMSİ Deneyin Amacı: Birinci derece elekrik devrelerinin zaman domeninde incelenmesi ve davranışlarının analiz edilmesi amaçlanmakadır. Genel Bilgiler: Bir

Detaylı

Öğrenci Seçme Sınavı (Öss) / 14 Haziran Matematik II Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 14 Haziran Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 4 Haziran 9 Matematik II Soruları ve Çözümleri. pozitif gerçel saısı için olduğuna göre, kaçtır? ( )² ifadesinin değeri A) B) 4 C) 4 D) 6 E) 6 5 Çözüm ( )² ifadesinde ( ) erine

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı