İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama"

Transkript

1 İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama Dr. Özgür Kabak Güz

2 } Gerçek hayattaki bir çok problem } tam sayılı değişkenlerin ve } doğrusal kısıt ve amaç fonksiyonları ile } modellenebilir. } Tamamen tamsayılı programlar (Pure integer programming) } Karma tamsayılı programlar (Mixed integer programming) } 0-1 (ikili) tamsayılı programlar (Binary integer programmin)

3 Uygulama alanları } Kesikli girdi ve çıktısı olan problemler } Mantıksal koşulların yer aldığı problemler } Birleşi (combinatorial) problemler } Doğrusal olmayan problemler } Ağ (network) problemleri

4 Tam sayılı programlama Çözüm yöntemleri } Kesme Düzlemi yöntemleri } Sayma(Enumerative) yöntemleri } Preudo-Boolean yöntemleri } Dal Sınır yöntemleri

5 Kesikli girdi ve çıktısı olan problemler } Tam sayı değeri alan karar değişkenleri } Gösterge değişkenler } Sabit maliyet içeren problemler } Şartlı durumlar (Ör. A üretilirse B de üretilmelidir.)

6 Mantıksal koşulların yer aldığı problemler } Ú : veya }. : ve } ~ :değil } : ise } «: ancak ve ancak

7 Mantıksal koşulların yer aldığı problemler } Veya kısıtları } Verilen eşitsizliklerden en az birinin sağlanması isteniyorsa; } f(x $, x $,, x ' ) 0 } g(x $, x $,, x ' ) 0 } Modele aşağıdaki kısıtlar ilave edilir: } f(x $, x $,, x ' ) My } g x $, x $,, x ' M 1 y } y = 0 veya 1 } Eğer ise kısıtları } Eğer f(x $, x $,, x ' ) > 0 ise g(x $, x $,, x ' ) 0 koşulu da sağlanmak isteniyorsa modele aşağıdaki kısıtlar ilave edilir: } g(x $, x $,, x ' ) My } f x $, x $,, x ' M 1 y } y = 0 veya 1

8 Konveks olmayan bölgeler

9 Sürekli Parçalı fonksiyonların modellenmesi } a 1 < a 2 <.< a k } f(x), (a i, f(a i )) i= 1,,k noktaları ile tanımlanmış bir sürekli parçalı fonksiyon } x = : 9;$ λ 9 a 9, : 9;$ λ 9 = 1 a 1 a 2 a 3 a 4 a 5 } f x = : 9;$ λ 9 f(a 9 ) Min : λ 9 f(a 9 ) 9;$ : Öyle ki; 9;$ λ 9 = 1, } λ $ y $, } λ 9 y 9<$ + y 9 i = 2,, k 1, } λ : y :<$ } :<$ 9;$ y 9 = 1 } λ 9 0 } y 9 0,1 } x in birbirini takip eden l lar ile ifade edilebilmesi için y i, i = 1,,k-1, 0-1 değişkenleri tanımlanır.

10 Ağ (network) problemleri } En kısa yol problemi } En küçük maliyetli akış problemi } En büyük akış problemi } Proje Planlama - CPM-PERT

11 En kısa yol problemi

12 Özel Tamsayılı Programlama Modelleri } Küme kapsama problemi } Küme paketleme Problemi

13 Özel Tamsayılı Programlama Modelleri } Küme Bölüntüleme Problemi } Sırt çantası Problemi

14 Gezgin Satıcı Problemi } min 9 C c 9C x 9C } öyle ki; 9 x 9C = 1 j } C x 9C = 1 i } u 9 u C + Nx 9C N 1 i j; i, j > 1 } x 9C = 0 veya 1 (i, j) } u 9 0 i

15 Problem Karmaşıklığı } P problemler: } Deterministik Turing makinası ile polinomiyal zamanda çözülebilen karar problemleri } NP (nondeterministic polynomial time): } verilen bir çözümün doğru olup olmadığının polinomial zamanda doğrulanabildiği problemler. } NP-zor (NP-hard) } En az NP de en zor problemler kadar zor olan problem sınıfları } NP-tam (NP-complete) } NP deki en zor problemleri içeren problem sınıfı. Polinom zamanda çözülemeyen, polinom zamanda doğrulanabilen problemler.

16 Problem Karmaşıklığı

17 Tam sayılı programlama İyi formulasyon nasıl yapılır? } Doğrusal programlamadaki kurallar burada da geçerli. } Modeldeki değişken sayısı? } 0-1 değişken sayısı çözme zorluğunu doğrudan etkilemez } Tam sayılı değişkenler 0-1 değişkene nasıl çevrilir? } Ekstra değişken eklemek çözümü kolaylaştırır mı? } Modeldeki kısıt sayısı

18 } Modeldeki kısıt sayısı } DP gevşetme } Dışbükey örtü (Convex hull) } Dışbükey örtüyü bulmak zor olsa da bazı türdeki problemler için } TP formülasyonu halihazırda dışbükey örtü olabilir } Problem kolayca yeniden formüle edilerek dışbükey örtü elde edilebilir } Problem dışbükey örtüye çık yakın bir DP ye dönüştürülebilir

19 Tamsayılı programlama modelini basitleştirme } Sınırların daraltılması } Bir kısıt yerine başka bir kısıt ekleme

20 Tamsayılı programlama modelini basitleştirme } Bir kısıt yerine birden çok kısıt ekleme

21 Tamsayılı programlama ne zaman ve nasıl kullanılmalı? } Bahsedilen uygulama alanları geçerli ise TP kullanımını değerlendirmek gerekir: } Kesikli girdi ve çıktısı olan problemler } Mantıksal koşulların yer aldığı problemler } Birleşi (combinatorial) problemler } Doğrusal olmayan problemler } Ağ (network) problemleri } Problemin potansiyel büyüklüğü değerlendirilmelidir: } Eğer tamsayılı değişken sayısı birkaç yüzden fazla ise ve problemin özel bir yapısı yok ise TP nin hesaplama maliyeti çok yüksek olacaktır. } Önerilecek TP nin özel yapısı olup olmadığı veya özel bir yapıya dönüştürülüp dönüştürülemeyeceği araştırılmalıdır. } Model, problemin tamamı yerine küçük bir örnek üzerinde denenmelidir. } Eğer problemin TP ile çözümü zor ise uygun sezgisel yaklaşımlar araştırılmalıdır. } Model çözümünde akıllıca çözüm stratejileri geliştirilebilir. Bunun için gerçek problem konusunda uzman birinden destek alınabilir. } TP modelleme ve çözümü konusunda çalışmalar artarak daha büyük ve karmaşık problemlerin çözümü mümkün olmaktadır.

22 Ödev } Tedarik zinciri Ağ yapısı makalesi (Kabak ve Ulengin, 2011)* temel alınarak tedarik zinciri planlama kullanılan matematiksel programlama yöntemleri ile ilgili en fazla iki sayfalık rapor. } En az iki farklı kaynaktan faydalanılmalıdır. } * Kabak Ö., Ülengin, F. (2011) Possibilistic linear-programming approach for supply chain networking decisions. European Journal of Operational Research, 209 (3), s

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 TP Modelleme Dr. Özgür Kabak Çek Tahsilatı Ofisi Örneği Bir Amerikan şirketinin Birleşik Devletlerdeki müşterilerinin ödemelerini gönderdikleri çekler ile topladığını varsayalım.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Yöneylem Araştırması II (IE 323) Ders Detayları

Yöneylem Araştırması II (IE 323) Ders Detayları Yöneylem Araştırması II (IE 323) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması II IE 323 Güz 3 2 0 4 5.5 Ön Koşul Ders(ler)i IE 222

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE621 3+0 3 7 Ön Koşul Dersleri ISE222 veya eşdeğer bir optimizasyona giriş dersi Dersin Dili Dersin Seviyesi Dersin Türü İngilizce

Detaylı

Kesikli Programlama (IE 506) Ders Detayları

Kesikli Programlama (IE 506) Ders Detayları Kesikli Programlama (IE 506) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Kesikli Programlama IE 506 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI Mevcut Program: TEZLİ YÜKSEK LİSANS PROGRAMI 1.Dönem 2.Dönem 521 Doğrusal Eniyileme ve Ağ Modelleri 2-2-3 10 524

Detaylı

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 Emre YAMANGİL Orhan FEYZİOĞLU Süleyman ÖZEKİCİ Galatasaray Üniversitesi Galatasaray Üniversitesi Koç Üniversitesi

Detaylı

DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS YÖNEYLEM ARAŞTIRMA - EN-3 3/ 3+0 3 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

TAMSAYILI PROGRAMLAMAYA GİRİŞ

TAMSAYILI PROGRAMLAMAYA GİRİŞ TAMSAYILI PROGRAMLAMAYA GİRİŞ (Bu notlar Doç.Dr. Şule Önsel tarafıdan hazırlanmıştır) DP sorunlarının modeli kurulurken bazı karar değişkenlerinin kesinlikle tamsayı değerler alması gerektiğini görürüz

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Yöneylem Araştırması I (IE 222) Ders Detayları

Yöneylem Araştırması I (IE 222) Ders Detayları Yöneylem Araştırması I (IE 222) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması I IE 222 Güz 3 2 0 4 5 Ön Koşul Ders(ler)i Math 275 Doğrusal

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayarlı Kontrol Sistemleri BIL

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayarlı Kontrol Sistemleri BIL DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bilgisayarlı Kontrol Sistemleri BIL311 5 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz

Detaylı

TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK ENİYİLEME YAKLAŞIMI

TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK ENİYİLEME YAKLAŞIMI Uluslararası Yönetim İktisat ve İşletme Dergisi, Cilt 8, Sayı 17, 2012 Int. Journal of Management Economics and Business, Vol. 8, No. 17, 2012 TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK

Detaylı

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI (OPERATIONAL RESEARCH) ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SUNUM PLANI Yöneylem araştırmasının Tanımı Tarihçesi Özellikleri Aşamaları Uygulama alanları Yöneylem

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu

Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu Zorunlu Dersler Ders Kodu Ders Adı Teorik Uygulama Toplam AKTS IENG540 Optimizasyon Modelleri ve Algoritmalar 3 0 3 8 IENG560 Olasılıksal Analiz

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

TP SORUNLARININ ÇÖZÜMLERİ

TP SORUNLARININ ÇÖZÜMLERİ TP SORUNLARININ ÇÖZÜMLERİ (Bu notlar Doç.Dr. Şule Önsel tarafıdan hazırlanmıştır) TP problemlerinin çözümü için başlıca iki yaklaşım vardır. İlk geliştirilen yöntem kesme düzlemleri (cutting planes) olarak

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Doğrusal Programlama (IE 502) Ders Detayları

Doğrusal Programlama (IE 502) Ders Detayları Doğrusal Programlama (IE 502) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Doğrusal Programlama IE 502 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

EĞĠTĠM-ÖĞRETĠM PLANI

EĞĠTĠM-ÖĞRETĠM PLANI T.C. ERCĠYES ÜNĠVERSĠTESĠ Mühendislik Fakültesi Endüstri Mühendisliği Bölümü 2016-2017 EĞĠTĠM-ÖĞRETĠM PLANI I. YARIYIL II. YARIYIL ENM 101 Matematik I 4 0 6 6 ENM 102 Matematik II 4 0 6 6 ENM 103 Fizik

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Türkçe Adı: TEDARİK ZİNCİRİ MODELLEME VE ANALİZİ

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Türkçe Adı: TEDARİK ZİNCİRİ MODELLEME VE ANALİZİ Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: TEDARİK ZİNCİRİ MODELLEME VE ANALİZİ Dersin Orjinal Adı: TEDARİK ZİNCİRİ MODELLEME VE ANALİZİ Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Otoma Teorisi Ve Biçimsel Diller BIL445 7 3+0 3 4 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu

Detaylı

TİPİK MODELLEME UYGULAMALARI

TİPİK MODELLEME UYGULAMALARI MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi tanımlamalara

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Türk-Alman Üniversitesi. Ders Bilgi Formu

Türk-Alman Üniversitesi. Ders Bilgi Formu Türk-Alman Üniversitesi Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması WNG301 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta) (saat/hafta) (saat/hafta) 6 2 2 0 Ön Koşullar

Detaylı

EĞĠTĠM-ÖĞRETĠM PLANI

EĞĠTĠM-ÖĞRETĠM PLANI T.C. ERCĠYES ÜNĠVERSĠTESĠ Mühendislik Fakültesi Endüstri Mühendisliği Bölümü 2014-2015 EĞĠTĠM-ÖĞRETĠM PLANI I. YARIYIL II. YARIYIL ENM 101 Matematik I 4 0 4 6 ENM 102 Matematik II 4 0 4 6 ENM 103 Fizik

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS YÖNEYLEM ARAŞTIRMASI MAN Ön Koşul Dersleri - Dersin Seviyesi

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS YÖNEYLEM ARAŞTIRMASI MAN Ön Koşul Dersleri - Dersin Seviyesi DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS YÖNEYLEM ARAŞTIRMASI MAN 336 6 3 + 0 3 6 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü Almanca Lisans Zorunlu Dersin Koordinatörü Dersi

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

İbrahim Küçükkoç Arş. Gör.

İbrahim Küçükkoç Arş. Gör. Doğrusal Programlamada Karışım Problemleri İbrahim Küçükkoç Arş. Gör. Balikesir Üniversitesi Endüstri Mühendisliği Bölümü Mühendislik-Mimarlık Fakültesi Çağış Kampüsü 10145 / Balıkesir 0 (266) 6121194

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER Örnek 1: Bir boya fabrikası hem iç hem dış boya üretiyor. Boya üretiminde A ve B olmak üzere iki tip hammadde kullanılıyor. Bir günde A hammaddesinden

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS LFM 521 Lojistikteki Uygulamalarıyla Benzetim

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS LFM 521 Lojistikteki Uygulamalarıyla Benzetim İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS LFM 521 Lojistikteki Uygulamalarıyla Benzetim 1 3 0 0 3 6 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) ŞEBEKE MODELLERİ EN-413 4/I 3+0+0 3 5 Dersin Dili : İngilizce Dersin Seviyesi : Lisans

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

OTOMOTİV ENDÜSTRİSİNDE TEDARİK ZİNCİRİ AĞININ KARMA TAMSAYILI PROGRAMLAMA MODELİ İLE TASARIMI

OTOMOTİV ENDÜSTRİSİNDE TEDARİK ZİNCİRİ AĞININ KARMA TAMSAYILI PROGRAMLAMA MODELİ İLE TASARIMI Ege Akademik Bakış / Ege Academic Review 9 (1) 2009: 213-229 OTOMOTİV ENDÜSTRİSİNDE TEDARİK ZİNCİRİ AĞININ KARMA TAMSAYILI PROGRAMLAMA MODELİ İLE TASARIMI DESIGN OF SUPPLY CHAIN NETWORK WITH MIXED INTEGER

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. ALGORİTMA ANALİZİ VE TASARIMI Ders Saati (T+U+L) Kredi AKTS BG-315 3/1 3+0+0 3+0 5 Dersin Dili : TÜRKÇE Dersin

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Algoritmalar ve Programlama Lab. I BİL 103 1 2+0 2 2 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları

Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları Bilgisayarlara ve Programlamaya Giriş (COMPE 101) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Bilgisayarlara ve Programlamaya Giriş COMPE 101 Güz 2 2

Detaylı

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve Rastgele Süreçler EE213 Güz 3 0 0 3 7 Ön Koşul Ders(ler)i

Detaylı

Endüstri Mühendisliği Yöneylem Araştırması I

Endüstri Mühendisliği Yöneylem Araştırması I Endüstri Mühendisliği Yöneylem Araştırması I 14 Ekim 2011, Şişli-Ayazağa, İstanbul, Türkiye. Yrd. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 1001

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 1001 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: ALGORİTMA VE PROGRAMLAMA I Dersin Orjinal Adı: ALGORITHMS AND PROGRAMMING I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

Uzaktan Eğitim Uygulama ve Araştırma Merkezi

Uzaktan Eğitim Uygulama ve Araştırma Merkezi JAVA PROGRAMLAMA Öğr. Gör. Utku SOBUTAY İÇERİK 2 Java Veri Tipleri ve Özelilkleri Değişken Tanımlama Kuralları Değişken Veri Tipi Değiştirme (Type Casting) Örnek Kodlar Java Veri Tipleri ve Özelilkleri

Detaylı

Tedarik Zinciri Yönetiminde Optimizasyon. Doç.Dr. Özgür Kabak

Tedarik Zinciri Yönetiminde Optimizasyon. Doç.Dr. Özgür Kabak Tedarik Zinciri Yönetiminde Optimizasyon Doç.Dr. Özgür Kabak Özgür Kabak } İstanbul Teknik Üniversitesi } Endüstri Mühendisliği Bölümünde Doçent } Doktora İTÜ den } 2008 } Olabilirsel doğrusal programlama

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

Lojistik (AVM206) Ders Detayları

Lojistik (AVM206) Ders Detayları Lojistik (AVM206) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lojistik AVM206 Güz 3 0 0 3 4 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin Seviyesi

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 17.02.2006 Makalenin Kabul Tarihi : 16.11.2006

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) YÖNEYLEM ARAŞTIRMA İÇİN ALGORİTMALAR EN-312 3/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Stok Kontrol Önceki Derslerin Hatırlatması Ders 5 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit oranlı, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Algoritmalar ve Programlama Lab. II BIL104 2. 2+0 2 2 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Yüz Yüze

Detaylı

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. SINIF 2 Ocak Pazartesi 3 Ocak Salı 4 Ocak Çarşamba 5 Ocak Perşembe 6 Ocak Cuma Bilgisayar Mühendisliğine Giriş Fransızca I Sınıf: 118-222 Kimya I Sınıf: 118-231-314 BİLGİSAYAR

Detaylı

YZM 3217 YAPAY ZEKA DERS#3: PROBLEM ÇÖZME VE ARAMA

YZM 3217 YAPAY ZEKA DERS#3: PROBLEM ÇÖZME VE ARAMA YZM 3217 YAPAY ZEKA DERS#3: PROBLEM ÇÖZME VE ARAMA Geçen Haftalar: Özet YZ nin Tanımı ve Tarihçesi Turing Testi Zeki Ajanlar: Ajan Tipleri: Basit Tepki, model tabanlı, hedef tabanlı, fayda tabanlı Rasyonel

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız?

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Lisansüstü Eğitiminizi Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Endüstri Mühendisliği Bölümü, 1990 yılında kurulmuş ve ilk mezunlarını 1994

Detaylı

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011)

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011) 08.401.001 08.401.002 08.401.003 Dikkat Seviyesindeki Değişimlerin Elektrofizyolojik Ölçümler İle İzlenmesi PFO(Patent Foramen Ovale) Teşhisinin Bilgisayar Yardımı İle Otomatik Olarak Gerçeklenmesi ve

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Rassal Modeller (IE 324) Ders Detayları

Rassal Modeller (IE 324) Ders Detayları Rassal Modeller (IE 324) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Rassal Modeller IE 324 Güz 3 0 0 3 3 Ön Koşul Ders(ler)i IE 201 Olasılık ve İstatistik

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ İÇİNDEKİLER Önsöz... v İçindekiler... vii BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ 1.1 Tedarik Zincirinin Temel Fonksiyonları... 8 1.1.1 Üretim... 8 1.1.2 Envanter Yönetimi... 16 1.1.3 Taşıma ve

Detaylı

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki, Algoritma Karmaşıklığı ve Büyük O Gösterimi (Big O Notation) Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla

Detaylı

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011)

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011) 08.401.001 08.401.002 08.401.003 Dikkat Seviyesindeki Değişimlerin Elektrofizyolojik Ölçümler İle İzlenmesi PFO(Patent Foramen Ovale) Teşhisinin Bilgisayar Yardımı İle Otomatik Olarak Gerçeklenmesi ve

Detaylı