Saf Eğilme (Pure Bending)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Saf Eğilme (Pure Bending)"

Transkript

1

2 Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik olan ve kesite etkien eğilme momentinin bu eksene dik bir doğrultuda olması durumu için geçerli olacak.

3 Saf Eğilme (Pure Bending) Bir eksene göre simetrik en kesite sahip ve bu eksene dik doğrultuda etkien eğilme momentine maruz prizmatik, doğrusal eleman (örneğin kiriş), aşağıda gösterilmiştir: Simetri Ekseni Bouna Doğrultuda Eksen Tarafsız/Nötr Yüze

4 Saf Eğilme (Pure Bending) Doğrusal Elemanlar Yüksek derecede deforme olabilen bir malzemenden apılmış, örneğin: kauçuk, prizmatik bir elamanın uçlarına etkien eğilme momenti etkisi altındaki deformasonunu inceleelim, elemanın en kesiti dikdörtgen olsun: Yata çizgiler eğildi Deformasondan Önce Düşe çizgiler düz kaldı, ancak döndü Deformasondan Sonra

5 Saf Eğilme (Pure Bending) Doğrusal Elemanlar Eğilme etkisine maruz bir elemanın alt bölümleri çekme, üst bölümleri ise basınç etkisine maruz kalmakta (momentin önü bir önceki şekildeki gibise). Bu durumda bu iki bölüm arasında, şekil değiştirmeen bir üze olacaktır. Bu üzee tarafsız vea nötr üze denir. M M

6 Saf Eğilme (Pure Bending) Yukarıdaki gözlemlerden, gerilmelerin Doğrusal Elemanlar malzemei nasıl deforme ettiği ile ilgili şu kabulleri apmak mümkün: (i) düzlemden önce düzlem olan kesitler eğildikten sonra da düzlem kalmaktadır, (ii) tarafsız düzlemde bulunan bouna doğrultudaki x ekseninin bou değişmemektedir, sadece eğilmektedir, (iii) kirişin deformasondan önce x Z ekseni tarafsız eksenine dik olan tüm kesitleri eksen! deformason sonrasında da x eksenine dik kalmaktadır, (iv) kesitlerin kendi düzlemleri içindeki deformasonları ihmal edilecektir. Nötr üze

7 Bu şekil değişiminin malzemei nasıl Saf Eğilme (Pure Bending) Doğrusal Elemanlar zorladığını incelemek için, kirişin mesnetlenmiş noktasından x mesafesinde ve deforme olmamış kalınlığı x olan bir kiriş dilimi çıkarılacaktır, bu dilimin deforme olmadan önce ve sonraki durumu aşağıda gösterilmiştir: Dikkat edilirse, nötr eksen üzerinde herhangi bir şekil değişimi olmamakta! Bouna eksen Bouna eksen Deformasondan Önce Deformasondan Sonra

8 Saf Eğilme (Pure Bending) Doğrusal Elemanlar Nötr eksenin üstünde kalan kısımlarda bo kısalması, altında kalan kısımlarda ise bo uzaması olmaktadır. Nötr eksenin üzerinde herhangi bir mesafesindeki bir lifte oluşan normal birim şekil değiştirme aşağıdaki gibi bulunur: ε = lim s s s s 0 (1) Bouna eksen Deformasondan Sonra Şimdi bu şekil değişimini, dilimin çıkarıldığı noktadaki eğrilik arıçapı (ρ), mesafesi cinsinden ifade edelim.

9 Deformasondan önce s= x. Saf Eğilme (Pure Bending) Doğrusal Elemanlar Deformasondan sonra x, O merkezine sahip ρ eğrilik arıçapına sahip olacaktır. θ en kesitler arasındaki açıı tanımlamaktadır, bu durumda, x= s= ρ θ Benzer şekilde, tarafsız eksenden mesafesindeki kısalmış bo aşağıdaki gibi bulunur: ( ρ ) s = θ (2) (3) Bouna eksen

10 Saf Eğilme (Pure Bending) Doğrusal Elemanlar (2) ve (3) nolu ifadeler (1) nolu ifadede erine konur sadeleştirmeler apılırsa, ( ρ ) θ ρ θ ε = lim = s 0 ρ θ ρ Bu çok önemli bir sonuçtur ve şunu ifade eder: kirişin herhangi bir noktasındaki eğilmeden kanaklı bouna normal birim şekil değiştirme, o noktanın kesitteki erini tanımlaan mesafesine ve incelenen kesitin olduğu noktadaki eğrilik arıçapına bağlıdır.

11 Saf Eğilme (Pure Bending) Doğrusal Elemanlar Bir başka deişle, bouna doğrultudaki normal birim şekil değiştirme, nötr eksenden ölçülen mesafesi ile lineer olarak değişmektedir. + mesafesinde kısalma şekil değiştirmeleri (negatif işaret), - mesafesinde ise uzama birim şekil değişimleri oluşacaktır (pozitif işaret) ε ε max = / ρ c / ρ ε = ε c max Kesitteki Normal şekil değişimi dağılımı

12 Saf Eğilme (Pure Bending) Doğrusal Elemanlar Bu sonuçlar aptığımız kabuller altında geçerlidir ve kiriş sadece moment etkisi altındadır. Bu durumda kirişte sadece eksenel doğrultuda normal birim şekil değişimi oluşmaktadır. Bu durumda şunu kabul etmek de ugun olacaktır: kirişte sadece bouna eksen doğrultusunda normal gerilmeler oluşmaktadır (σ x = Eε x ). Poisson oranı gereği, diğer iki önde de şekil değişimler oluşacaktır: ε =-ϑ ε x ve ε z =-ϑ ε x bu değerler, kesiti kendi içinde deforme edeceklerdir. Bu tip bir deformason, nötr eksenin üstünde kalan kısımların en kesit alanını büütecek, altında kalanlarının ise küçültecektir. Bu deformasonlar, bu derste ihmal edilecektir.

13 Saf Eğilme (Pure Bending) Eğilme Formülü Şimdi bouna doğrultuda oluşan gerilmeler ile kirişte oluşan moment arasında bir ilişki geliştirelim. Bu ilişki için, malzemenin lineer elastik davrandığı kabulü apılacaktır, ani Hooke asası geçerlidir. Bu durumda, kesitte oluşan lineer normal şekil değiştirme, lineer normal gerilmelerin bir sonucu olarak oluşacaktır: Üçgenlerin benzerliğinden: ε = ε c max σ = σ c max Normal birim şekil değişimi (andan görünüş) Normal gerilme değişimi (andan görünüş)

14 Buradaki pozitif işaret kabulü önemlidir: pozitif moment (+z önünde), + önünde negatif gerilmeler (basınç), benzer şekilde önündeki gerilmeler ise pozitif (çekme) gerilmeleri oluşturmaktadır. Aşağıdaki eğilme durumunu düşünelim: Saf Eğilme (Pure Bending) Eğilme Formülü Örneğin mesafesindeki bir noktada, basınç gerilmesi oluşacaktır. Tek bir noktada, tek bir gerilme durumu söz konusudur. Eğilme gerilmesi değişimi

15 Saf Eğilme (Pure Bending) Eğilme Formülü Nötr eksenin erini bulmak için kesite etkien kuvvetler düşünülmelidir. Bu durumda, kesitteki normal gerilmelerden dolaı oluşan bileşke kuvvet sıfır olmak zorundadır. Aşağıdaki şekle referansla: Eğilme gerilmesi dağılımı 0 = df = σda σ A = A A maxda c σ max = c da A Bu ifadenin sıfır olabilmesi için integrantın sıfır olması gerekmektedir, ani: A= A da=0 Alanın nötr eksene göre birinci momentinin sıfır olması gerekmekte. Bu durum ancak nötr eksenin kesitin merkezinden geçmesi durumunda mümkündür. Bir başka deişle, kesitin merkezi biliniorsa, nötr eksenin eri de bilinmektedir.

16 Saf Eğilme (Pure Bending) Eğilme Formülü Kesitte oluşan gerilmelerin şiddeti ise denge şartını dikkate alarak bulunabilir: kesit momenti (iç kuvvet) = gerilme dağılımının oluşturduğu moment değerine. ( M ) R = M ; M = dm = df z z A A = ( σ da ) A = A σ c σ max M= c A ( ) ; 0 R max = = A 2 da Dikkate edilirse, kesit -eksenine göre simetrik olduğunda aşağıdaki koşul otomatik olarak sağlanmakta: M M z σ da

17 Saf Eğilme (Pure Bending) Eğilme Formülü σ M= c max 2 da A Yukarıdaki denklemde, integrand nötr eksene (kesit merkezinden geçen z-eksenine) göre kesitin atalet momentidir ve I harfi ile gösterilir. Bu durumda σ max aşağıdaki gibi azılabilir: σ max M = c I σ max /c = - σ/ ifadesi kullanılarak, kesitin herhangi bir erindeki gerilme değeri formülü azılabilir. Bu ifadee eğilme formülü denir ve çok önemli bir bağıntıdır: M σ =- I (-) işareti önemlidir, çünkü şağ el kuralına göre belirlenen pozitif moment, nötr eksenin üstünde basınç, altında ise çekme gerilmeleri oluşturacaktır!

18 Saf Eğilme (Pure Bending) Eğilme Formülü σ max M = c I Eğilme formülü, (i) kesitin nötr eksene göre dik olan bir eksene göre simetrik olması durumunda, ve (ii) momentin bu dik eksen doğrultusunda etkimesi durumunda kullanılabilir.

19 Örnek - 1 Şekilde gösterilen kiriş dikdörtgen en kesit alanına sahiptir ve kesit üzerinde gösterilen gerilme dağılımına sahiptir, kesitte oluşan M eğilme momentini: (a) eğilme formülünü kullanarak ve (b) gerilme dağılımının bileşkesini kullanarak bulunuz. 1 lb = N 1 in = 2.54 cm 1 ft = 12 in 1 ft = m

20 Örnek 1 (devam) (a) Şekle referansla maksimum gerilmenin c = 6 in değerinde oluşacağını görebiliriz: Eğilme formülünü hatırlarsak σ max M = c I Bu durumda

21 Örnek 1 (devam) (b) Aşağıdaki gerilme dağılımlarının altında kalan hacimler birbirine eşittir ve bir kuvvet çifti sistemi oluştururlar, bileşke kuvvet F aşağıdaki gibi bulunur: = Kuvvet çifti arasındaki mesafesinin 8 in olduğu görülürse, kesitte oluşan moment değeri rahatlıkla bulunabilir:

22 Örnek - 2 Şekilde gösterilen basit mesnetli kirişin en kesit geometrisi aşağıda gösterilmiştir. Kirişte oluşan mutlak maksimum gerilme değerini bulunuz ve gerilme dağılımını kesit üzerinde çiziniz.

23 Örnek 2 (devam) Maksimum gerilme değeri, maksimum momentin oluştuğu noktada oluşacaktır (gerilme formülünü hatırlaınız). Bu nedenle önce kirişin moment diagramı çizilecektir: Maksimum moment, kirişin tam ortasında 22.5 knm şiddetindedir.

24 Örnek 2 (devam) Simetriden dolaı, en kesitin alan merkezinin simetri ekseninden geçtiği ve dolaısıla tarafsız eksenin de buradan geçtiği görülecektir. Bir başka deişle ağırlık merkezini arıca hesaplamaa gerek oktur. Tarafsız (nötr) eksen, toplam üksekliğin arısından geçmekte! Bu eksene göre, atalet momenti paralel eksenler teoremi kullanılarak hesaplanabilir:

25 Örnek 2 (devam) Eğilmeden dolaı oluşan gerilmeler gerilme formülü ugulanarak hesaplanır, c = 170 mm için en dış lifte mutlak maksimum gerilmeler oluşacaktır: Gerilme diagramını çizmek için, kesitin B noktasında oluşan gerilme değerini de hesaplamak gerekmektedir:

26 Kesitteki gerilme dağılımının üç boutlu görünümü aşağıda gösterilmiştir: Örnek 2 (devam) Sınavda iki boutlu görünümü çizmek eterli olacaktır!

27 Örnek - 3 Şekilde gösterilen ankastre mesnetli kirişin en kesit geometrisi aşağıdaki gibidir. a-a kesitinde eğilmeden dolaı oluşan maksimum gerilmei bulunuz.

28 Örnek 3 (devam) Bileşke iç kuvvetlerin kesitte etkidiği nokta kesitin alan merkezidir, arıca nötr (tarafsız) eksen ine kesitin merkezinden geçmektedir. Bu nedenle, ilk önce kesitin merkezi bulunmalıdır, bu işlem için hatırlanırsa ağırlıklı ortalama formülü kullanılır: Nötr eksen z

29 Örnek 3 (devam) a-a kesitinde oluşan moment değerini bulalım. Bunun için, kiriş a-a kesitinden kesilir ve sol parçanın dengesi incelenir: Dikkat edilirse, iç kuvvetlerin bileşkesi kesitin merkezinden geçmekte! Bu moment değeri, eğilmeden kanaklı oluşan normal gerilmelerin hesabında kullanılacak. Normal kuvvet ise kesitte ekstra gerilmeler oluşturacaktır, ileride bu gerilmelerle momentten kanaklı gerilmelerin süperpozisonu apılacaktır. Burada sadece momentten kanaklı gerilmeler dikkate alınacaktır.

30 Örnek 3 (devam) Kesitin nötr eksene göre atalet momentine ihtiaç var:

31 Örnek 3 (devam) Maksimum gerilme nötr eksenden en uzak mesafede oluşacaktır, burası kesitin en alt noktasıdır ve c = = m dir mm mm Bu örnekte momentin etkime önünden dolaı, nötr eksenin üst tarafında çekme, alt tarafında ise basınç gerilmeleri oluşmaktadır.

32 Eksentrik Eksenel Yükleme c P c D Yandaki şekilde, ekseni üzerinde belli bir mesafeden etkien P ükünün, kesit üzerinde oluşturduğu etki incelenecektir. Dikkat edilirse, P ükünden dolaı, kesitte hem eksenel normal gerilmeler hem de, eksentirisitesinden dolaı moment oluşacak ve bu moment etkisi, ine kesitte normal gerilmeler oluşturacaktır.

33 Eksentrik Eksenel Yükleme Bu gözlemler doğrultusunda, ukarıdaki üklemenin etkisine eş değer aşağıdaki üklemei oluşturabiliriz: c P c D M = P* Bu üklemenin oluşturduğu x ekseni doğrultusundaki normal gerilmeler ise aşağıdaki gibi hesaplanır: P M σ x = A I z z Dikkat edilirse, her iki ükleme de, x ekseni doğrultusunda normal gerilmeler oluşturmaktadır. Moment ekseni ise z ekseni doğrultusundadır.

34 Eksentrik Eksenel Yükleme Bu durumda, normal kuvvet kesitte uniform basınç gerilmeleri, moment ise önü dikkate alındığında nötr eksenin üstünde basınç altında ise çekme gerilmeleri oluşturmaktadır. x P P σ x = M Mz A σ x = c I x z max P M σ x = A I z z c x min P M σ x = + A I z z c M x + σ = Mz c I z = P Kuvvetinin Etkisi Yandan Görünüş Momentin Etkisi Yandan Görünüş P + M nin Etkisi Yandan Görünüş

35 Örnek - 5 Y ekseni üzerinde eksantrik olarak etki eden 4.80 kn luk basınç kuvvetinin A ve D ve B ve C hatlarında medana getirdikleri gerilmeleri hesaplaınız kn 35 mm B x A D C

36 Örnek 5 (devam) Dikkat edilirse, 4.80 kn luk kuvvet z ekseni doğrultusunda bir moment oluşturacaktır: M z x 4.80 kn ( ) M = 4.80kN 60mm 35mm = 120kNm z En kesit alanına ve z eksenine göre atalet momentine ihtiacımız olacaktır: ( )( ) A= 0.080m 0.120m = m Iz = ( m)( m) = m

37 Örnek 5 (devam) Gerilmelerin hesabına geçilebilir: x 4.80 kn Eksenel kuvvetten kanaklı normal gerilme tüm kesite Saint Venant prensibi gereği üniform olarak etki etmektedir: P 4.80kN = = = 0.5MPa A m x 3 2 M z σ Eğilmeden kanaklı olarak (Mz), AD hattında basınç, BC hattında ise çekme gerilmeleri oluşacaktır: σ σ AD x BC x M 120Nm = = 6 4( 0.06m) = 0.625MPa I m z M 120Nm = = 6 4( 0.06m) = 0.625MPa I m z

38 Örnek 5 (devam) Süperpozison prensibi kullanılarak, AD ve CB hatlarındaki toplam gerilmeler hesaplanabilir: 35 mm 4.80 kn x AD σx TOP = 0.5MPa 0.625MPa= MPa (B) σ BC x = 0.5MPa MPa= MPa (Ç) M z Olarak bulunur. Dikkat edilirse, AD hattındaki malzeme lifleri CB hattındakilere göre daha çok zorlanmaktadır.

39 Simetrik Olmaan Eğilme Gelişigüzel bir eksen doğrultusunda etkien moment: = + σ M = z + I z M I z

40 Simetrik Olmaan Eğilme Nötr eksenin eri: + Nötr eksen üzerinde gerilmeler sıfırdır! 0 M z = + I z M z I = Iz tanα = tanθ I

41 Soru: Aşağıdaki en kesite etkien M momentinin P noktasında medana getirdiği normal gerilme değeri nasıl hesaplanabilir?

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

Nlαlüminyum 5. αlüminyum

Nlαlüminyum 5. αlüminyum Soru 1. Bileşik bir çubuk iki rijit mesnet arasına erleştirilmiştir. Çubuğun sol kısmı bakır olup kesit alanı 60 cm, sağ kısmı da alüminum olup kesit alanı 40 cm dir. Sistem 7 C de gerilmesidir. Alüminum

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ DÜZLEM-BİRİM ŞEKİLDEĞİŞTİRME 3D durumda, bir noktadaki birim şekil değiştirme durumu 3 normal birim şekildeğiştirme bileşeni,, z, ve 3 kesme birim şekildeğiştirme bileşeninden,

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 4 Basit Eğilme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4.1 Giriş Bu bölümde, eğilmeye

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 6 Kirişlerde ve İnce Cidarlı Elemanlarda Kayma Gerilmeleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok,

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Endüstiryel uygulamalarda en çok rastlanan yükleme tiplerinden birisi dairsel kesitli millere gelen burulma momentleridir. Burulma

Detaylı

BURKULMA DENEYİ DENEY FÖYÜ

BURKULMA DENEYİ DENEY FÖYÜ T.C. ONDOKUZ MYIS ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ MKİN MÜHENDİSLİĞİ BÖLÜMÜ BURKULM DENEYİ DENEY FÖYÜ HZIRLYNLR Prof.Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ EKİM 1 SMSUN BURKULM DENEYİ 1. DENEYİN MCI

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

Malzemenin Mekanik Özellikleri

Malzemenin Mekanik Özellikleri Bölüm Amaçları: Gerilme ve şekil değiştirme kavramlarını gördükten sonra, şimdi bu iki büyüklüğün nasıl ilişkilendirildiğini inceleyeceğiz, Bir malzeme için gerilme-şekil değiştirme diyagramlarının deneysel

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

M b. bh 12. I x

M b. bh 12. I x dı /Soadı : No : İmza: MUKVEMET. YL İÇİ SNV --00 Örnek Öğrenci No 00030403 ---------------acde aşap cm 6cm cm G d Şekildeki rijit çuuğu, noktasında mafsallı ağlı, ile noktası arasında q aılı kuvveti etkimektedir.

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

BURULMA. Deformasyondan önce. Daireler yine dairesel kalır. Boyuna çizgiler çarpılır. Radyal çizgiler doğrusal kalır Deformasyondan sonra

BURULMA. Deformasyondan önce. Daireler yine dairesel kalır. Boyuna çizgiler çarpılır. Radyal çizgiler doğrusal kalır Deformasyondan sonra BURULMA Toprak matkabının ucunda burulma etkisiyle oluşan gerilme ve dönme açısı matkap makinasının dönme çıkışıyla birlikte mile temas eden toprağın direncine bağlıdır. BURULMA Dairesel kesite sahip Mil

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017 KÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) ölümleri SRU-1) Mühendislik apılarında kullanılan elemanlar için KSN (Tarafsız eksen) kavramını tanımlaınız ve bir kroki şekil çizerek

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR BASİT EĞİLME ETKİSİNDEKİ ELEMANLARIN TAŞIMA GÜCÜ Çekme çubuklarının temel işlevi, çekme gerilmelerini karşılamaktır. Moment kolunu arttırarak donatının daha etkili çalışmasını sağlamak

Detaylı

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt

Detaylı

EĞİLME. Düşey yükleme. Statik Denge. M= P. x P = P. M= P.a (eğilme momenti, N.m) 2009 The McGraw-Hill Companies, Inc. All rights reserved.

EĞİLME. Düşey yükleme. Statik Denge. M= P. x P = P. M= P.a (eğilme momenti, N.m) 2009 The McGraw-Hill Companies, Inc. All rights reserved. 009 The Graw-Hill Copanies, n. All rights reserved. - ifthechancs OF ATERALS EĞİLE Basit eğile Eksantrik üklee Beer Johnston DeWolf aurek Düşe üklee Statik Denge P.a (eğile oenti, N.) P. P P 009 The Graw-Hill

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BÖLÜM 1- MAKİNE ELEMANLARINDA MUKAVEMET HESABI Doç. Dr. Ali Rıza YILDIZ 1 BU DERS SUNUMDAN EDİNİLMESİ BEKLENEN BİLGİLER Makine Elemanlarında mukavemet hesabına neden ihtiyaç

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER ders notu Yard. Doç. Dr. Erd DAMCI Aralık 015 Mukavet I - Çöümlü Örnekler - 5.1.015 / 7 Örnek 1. Üerinde alnıca aılı ük bulunan ve açıklığı L olan bir basit kirişe ait eğilme

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 9 Kirişlerin Yer Değiştirmesi Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9.1 Giriş

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi Eksenel çekme deneyi A-A Kesiti Kiriş eğilme deneyi A: kesit alanı Betonun çekme dayanımı: L b h A A f ct A f ct L 4 3 L 2 2 bh 2 bh 6 Silindir yarma deneyi f ct 2 πld Küp yarma deneyi L: silindir numunenin

Detaylı

Perçinli ve Bulonlu Birleşimler ve Perçin Hesapları Amaçlar

Perçinli ve Bulonlu Birleşimler ve Perçin Hesapları Amaçlar Perçinli ve Bulonlu Birleşimler ve Perçin Hesapları Amaçlar Perçinli/bulonlu birleşimlerin ne olduğunu inceleyeceğiz, Perçinli/bulonlu birleşimleri oluştururken yapılan kontrolleri öğreneceğiz. Perçinli

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Çelik Yapılar - INS /2016

Çelik Yapılar - INS /2016 Çelik Yapılar - INS4033 2015/2016 DERS IV Dayanım Limit Durumu Enkesitlerin Dayanımı Fatih SÖYLEMEZ Yük. İnş. Müh. İçerik Dayanım Limit Durumu Enkesitlerin Dayanımı Çekme Basınç Eğilme Momenti Kesme Burulma

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ İNŞAAT MÜHENDİSLİĞİNE GİRİŞ MEKANİK ve MUKAVEMET BİLGİSİ Prof.Dr. Zekai Celep MEKANİK VE MUKAVEMET BİLGİSİ 1. Gerilme 2. Şekil değiştirme 3. Gerilme-şekil değiştirme bağıntısı 4. Basit mukavemet halleri

Detaylı

MOMENT YENİDEN DAĞILIM

MOMENT YENİDEN DAĞILIM MOMENT YENİDEN DAĞILIM Yeniden Dağılım (Uyum) : Çerçeve kirişleri ile sürekli kiriş ve döşemelerde betonarme bir yapının lineer elastik davrandığı kabulüne dayalı bir statik çözüm sonucunda elde edilecek

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PROF.DR. MURAT DEMİR AYDIN ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. Ders Notları (pdf), Sınav soruları cevapları, diğer kaynaklar için Öğretim

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ MAK-AB06 ĠÇ BASINÇ TKĠSĠNDKĠ ĠNC CĠDARI SĠĠNDĠRD DNYS GRĠM ANAĠZĠ DNYĠ. DNYĠN AMACI Mukavemet derslerinde iç basınç etkisinde bulunan ince cidarlı silindirik basınç kaplarında oluşan gerilme ve şekil değişimleri

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI a) Denge Burulması: Yapı sistemi veya elemanında dengeyi sağlayabilmek için burulma momentine gereksinme varsa, burulma denge burulmasıdır. Sözü edilen gereksinme, elastik aşamada değil taşıma gücü aşamasındaki

Detaylı

Perçinli ve Bulonlu Birleşimler ve Hesapları Amaçlar

Perçinli ve Bulonlu Birleşimler ve Hesapları Amaçlar Amaçlar Perçinli/bulonlu birleşimlerin ne olduğunu inceleyeceğiz, Perçinli/bulonlu birleşimleri oluştururken yapılan kontrolleri öğreneceğiz. Kayma Gerilmesinin Önemli Olduğu Yükleme Durumları En kesitte

Detaylı