7. Ders Fresnel Eşitlikleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "7. Ders Fresnel Eşitlikleri"

Transkript

1 7. De Feel şlkle k k θ θ z 1

2 Bu bölümü bdğzde, Gelş düzlem, - ve -kuulu ışık, Feel kaayılaı, Kuulama (Bewe) açıı, Yaıma ve geçme kaayılaı koulaıda blg ahb olacakıız. 2

3 Bu bölümü öem, Geomek ok aa yüzeye gele ışığı bc ve kc oama geçş başaılı b şeklde açıklamaıa ağme, yaıya ve geçe ışığı yüzdele kouuda b blg vemez, Aa yüzeyde ışığı davaışı dalga özelğde dolayı kuulamaı le yakıda lgld, Işığı aa yüzeydek davaışıa dayaa b çok ooelekok uygulama vadı. Bula yaıma öleyc camla, ayala, fleled. 3

4 Yedc De: İçek Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kaayıı Geçme Kaayıı 4

5 Geomek Ok-Öze Kıılma dle faklı ola oamlaı aa yüzeyde ışığı davaışı aıl olu? θ θ θ 1. oam 2. oam θ C θ θ Yaıma Yaaı θ =θ Geomek ok blglemzde Sell Yaaı θ = θ İç Yaıma θ C = -1 ( / ) Gele ışığı e kadaı yüzeyde ge yaı, e kadaı 2. oama geçe? Işığı dalga özellkle kullaaak ışığı faklı kıılma de ah oam aa yüzeydek davaışıı celeyelm. 5

6 Gelş Düzlem Gelş düzlem aımı yaılaak ışığı, yüzeye göe kuulama doğuluuu aımlayablz. yz düzlem, kıılma dle ve ola k oamı ayıa aa yüzey olduğuu kabul edelm. Yüzey omale θ açıı le gele b elekomayek dalgayı (ışığı) düşüelm. o k, ω gelş düzlem 1. oam θ u z 2. oam y k = gele ışığı dalga veköü, ω = ışığı açıal fekaı o = gele ışığı gelğ k, ω ve o değele bldğmz kabul edelm. 6

7 Gelş Düzlem-2 Gelş Düzlem: k ve düzlem omal veköü u le aımlaa düzlemd. u alaıı yöelm φ : Gelş düzlem le elekk ala o yaığı açı Yüzeye gele ışığı kuulama doğuluu gelş düzleme göe aımlaabl. Gelş düzlem k o o φ o Hehag b doğuluda ola ala gelğ; 1-Gelş düzleme aalel o 2-Gelş düzleme dk bleşelee o ayılabl Ala gelg: = ( ) + ( ) 2 2 o o o Alaı gelş düzlem le yaığı açı: o aφ = o 7

8 - ve -Kuulu Işık Duum-I: -kuulamaı (ala veköü () gelş düzleme aalel) o k ( o 0, o = 0) o = o Tavee Magec (TM Kuulamaı) Duum-II: -kuulamaı (ala veköü() gelş düzleme dk) ( o = 0, o 0) o = o o k Tavee lecc (T Kuulamaı) Gelş düzlem le hehag b açıda ola elekk ala he zama - ve - bleşele cde fade edlebleceğ ç gele ışığı büü duumlaı adece ve -kuulu ışık le velebl. = a + b o o o 8

9 Feel şlkle Gelş düzlem ve olaı kuulama doğululaıı aımladıka oa ışığı aa yüzeydek davaışı celeebl. Aa yüzeye gele ( ), yaıya ( ) ve geçe ışık ( ) ç elekk ala veköle: = e o gele ışık (k. -ω ) y k, ω θ θ yaıya ışık = e o (k. -ω +φ ) θ = e geçe ışık (k. -ω +φ ) Aalz geelleşmek ç 1. ve 2. oamdak ışığı fekaı faklı olaak yazıldı. Doğual oamda feka değşmeyeceğ ç ω =ω olacakı ama e geel olaak doğual olmaya oamda fekalaı faklı olacağı öyleebl. 9 o

10 Feel şlkle-2 ve alalaıı aıl bulablz? Sıı değelede ve değele bulablz. lekomayek dalga ç ıı değe koşullaı: 1) lekk alaı eğeel bleşele k oamı ııı boyuca üekld. 2) D mayek akıı omal bleşele k oamı ııı boyuca üekld. 3) Mayek alaı H eğeel bleşele k oamı ııı boyuca üekld. 4) B mayek akıı omal bleşe k oamı ııı boyuca üekld. D = ε ve B = µ H 10

11 Feel şlkle-3 Yukaıdak şalaı maemakel olaak fade emeye çalışıak: k, ω y θ θ lekk alaı üekllğde 1) ( + ) y=0 = ( ) y=0 egeel egeel θ 2) ε ε ( + ) y=0 = ( ) y=0 omal omal Mayek alaı üekllğde 3) 4) 1 1 ( B + B ) y=0 = ( B ) y=0 µ µ egeel ( B + B ) y=0 = ( B ) y=0 omal omal egeel 11

12 Feel şlkle-4 ve H alalaıı bble cde fade edeek 1 H = B = µ c o v m = ışığı madde çdek hızı, =kıılma d µ = = µ = µ µ o Oamla mayek olmadığıda (kabul edyouz) Yukaıdak 3 ve 4 olu deklemle yede yazılabl: 3`) ( + ) y=0 = ( ) y=0 cµ o cµ o egeel egeel 4`) ( + ) y=0 = ( ) y=0 c c omal omal 12

13 y k, ω θ θ θ Feel şlkle-5 Aa yüzeyde gele, geçe ve yaıya dalgalaı ıı şalaıı ağlamaı geek. Işık dalgaı fadede hem gelk hem de faz em olduğuda aa yüzeyde dalgalaı ıı koşullaıı he k em de ayı ada ağlamaı geek. Aa yüzeyde dalgalaı ağlayacağı = oe = oe = e o (k. -ω ) (k. -ω +φ ) (k. -ω +φ ) gele ışık yaıya ışık geçe ışık Faz koşulu, geomek oğ ouçlaıı, yaıma ve kıılma (Sell Yaaı) Gelk koşulu e oamladak eej dağılımı (Feel şlkle) blg ve. İlk yaılacak ş, faz eşleme koşuluda geomek oğ ouçlaıı üemek, daha oak ş e gelk eşleme koşuluda Feel kaayılaı bulmakı. 13

14 Faz şleme-1 Faz eşleme şaıda (y=0 da gele, yaıya ve geçe dalgaı fazlaı eş olacağıda) y k, ω θ θ θ = oe = oe = e ( + ) y= 0 = ( ) y= 0 şlğ ağlamaı ç üel fadele eş olmaı geekmeked. ( k. ω) y= 0 = ( k. ω + φ ) y= 0 = ( k. ω + φ ) y= 0 o (k. -ω ) (k. -ω +φ ) (k. -ω +φ ) gele ışık yaıya ışık geçe ışık Bu fade öce zama emle eşlğe bakalım: ω = ω = ω = ω (doğual oam olduğu ç feka he oamda ayı) 14

15 Faz şleme-2 (k. ω) = (k. ω + φ ) = (k. ω + φ ) y= 0 y= 0 y= 0 Faz fade uzayal kımı-(gele ve Yaıya Işık) (k.) = (k. + φ ) (k k ). = φ y= 0 y= 0 y= 0 ( k k ). + ( k k ). z z = φ ( k - k ) = k aa yüzeye dk (k -k ) = ab=α (k -k ) z = ab=γ α+γz=φ Dalga veköü k ı büyüklüğü k =2π/λ d. k ve k ayı oamda olduğu ç k = k u bm veköü -z düzleme dk olduğuda (k -k ), u e aaleld. y k u k θ θ k u k k -k k -k 15

16 Yüzey omal (u ) ve dalga veköü y k θ θ k k -k u Faz şleme-3 ( k - k ) = k uˆ ( k - k ) = 0 uˆ ˆ k = u k uˆ. k (π -θ ) = uˆ. k (θ ) (π -θ ) = (θ ) bbe aalel olduğuda: (π -θ ) = (θ ) y θ θ k π-θ u k (θ ) = (θ ) θ = θ Yaıma Kauu Gele ve yaıya dalgalaı aa yüzeyde ağlamaı geeke faz koşulu, yaıma kauuu ved. Bu ouç, aa yüzeye gele dalgaı gelş açıı le ayı açıda yüzeyde yaıyacağıı, gele ve yaıya dalgaı ayı düzlemde (gelş düzlem) olacağıı öylemeked. y k θ θ k θ =θ =θ 16

17 Faz şleme-4 Faz fade uzayal kımı-(gele ve Geçe Işık) ( k. ) y= 0 = ( k. + φ ) y= 0 ( ). k k = φ y=0 Yüzey omal (u ) ve dalga veköü ( k bbe aalel olduğuda - k ) = k y uˆ ( k - k ) = 0 θ θ k k k u uˆ ˆ k = u k uˆ. (π -θ ˆ k -k k ) = u. k (θ ) k -k k k (θ ) = k (θ ) (π -θ ) = (θ ) Oamla faklı olduğuda ω ω (θ ) = (θ ) c c Gele ve kc oama geçe dalgalaı aa yüzeyde ağlamaı geeke faz koşulu, Sell kauuu ved. Bu ouç, aa yüzeye gele dalgaı oamlaı kıılma d le oaılı olaak kc oamda kıılacağıı ve ayı zamada gele ve kııla dalgaı ayı düzlemde (gelş düzlem) olacağıı öylemeked. k k k k ( ω c) ( ω c) (θ )= (θ ) Sell Yaaı = = k θ y θ k 17 u

18 Gelkle şlğ Şaıda Gelk şleme-1 -kuulu ışık: 1) 2) ( + ) = ( ) uˆ o o o egeel.( ε + ε ) = o o egeel ( ε o ). uˆ (-kuulamış dalgada hç omal bleşe yoku) B deklem ve k ae blmeye va. Dolayıı le b dekleme, k bu da mayek alaı çee deklem olacakı, daha hyacımız olacakı. (H alaıı eğeel bleşe üekl olacakı) 3) Bo Bo coθ + µ µ Bo coθ = coθ µ Oamla mayek olmadığı ç µ = c B = v = B o = o o c o 3 ) o coθ + o coθ = µ = µ µ o = θ =θ olduğuda => coθ = coθ o coθ 18

19 Gelk şleme-2 Yaıya ışığı gele ışığı gelğe oaı o o o o = = coθ coθ + 2 coθ + coθ coθ coθ Beze şlemle gele ve geçe ışık ç de yaılıa coθ -kuulu ışık: Beze şlemle gele ve geçe ışık ç de yaılıa elde edl. = o o = coθ coθ + coθ coθ = o o = 2 coθ + coθ coθ 19

20 - ve -Kuulu Işık-1 Feel Kaayılaıı Taımı: Feel Kaayılaı - ve -kuulu ışık ç yaıma ve geçş kaayılaıı ve. -kuulu ışık o o -kuulu ışık ç yaıma kaayıı o o -kuulu ışık ç geçme kaayıı -kuulu ışık o o -kuulu ışık ç yaıma kaayıı o o -kuulu ışık ç geçme kaayıı 20

21 - ve -Kuulu Işık-2 -kuulu ışık ç Feel kaayılaı: o o = coθ coθ + coθ coθ o o = 2 coθ + coθ coθ -kuulu ışık ç Feel kaayılaı: = = coθ - coθ coθ + coθ o o 2 coθ coθ + coθ o o 21

22 Yüzey omal θ Feel Kaayılaı, 1,0 0,8 k o = o, o = o -kuulu ışık 0-0,8 Hava-cam aayüzey -1,0 0 o θ (deece) θ B o = o o = o -kuulu ışık 90 o Hava-cam aa yüzey ç Feel kaayılaı gelş açııa göe gafğe geçlmş. Bu gafk, yaıya ve geçe ışığı gelkle, ayı zamada kuulama doğululaı hakkıda blg vemeked. - ve -kuulu ışık ç bu gafğ yakıda celeyelm. 22

23 -kuulu ışık (dış yaıma ( < ): yüzey omal, θ k -Kuulu Işık-1 1,0 0,8 0-0,8, o co θ = = 1 co θ o hava-cam aayüzey -1,0 0 o θ (deece) θ B değe (yaıya ışığı gelğ gele ışığı gelğe oaı) > olduğuda θ > θ d ve büü θ değele ç egaf. Negaf değe, gele ve yaıya ışık aaıda 180 o lk faz fakıı oluşacağıı, dolayıı le yüzeyde yaıya ışık le gele ışık aaıda he zama 180 o faz fakı olacağıı göemeked. değe e büü gelş açıı değelede he ozf (gele ve kc oama 23 o = geçe ışığı kuulama doğuluu he ayıdı), θ =90 o değede e ıfı olu. o 90 o

24 kaayıı, gelş açııı büü değelede egaf olduğuda, -kuulamış ışığı gele ve yaıya bleşele aaıda he zama 180 o faz fakı vadı. Bu özellk ooelekok ekolojde yaıma öleyc kalamalada ve DBR (*) aya yaımıda kullaılmakadı. 180 o φ φ -Kuulu Işık-2 k k o co θ = = 1 co θ < θ =0 o z o o = o 0 o 0 o θ (deece) θ B < 90 o k (*) Dağıılmış Bagg Yaııcıı-Ayaı (Dbued Bagg Refleco (DBR)) R d=λ/4 d=λ/4 Yaıma Öleyc Kalamala 1 λ λ k b k b N R =. = ( ) 2 2 * o ( o2 1 ) o N N 2N ( ) ( ) ( ) ( ) ( ) ( ) 2 b / k k / b b / k 1 R = = = N N 2N b / k + k / b b / k + 1 R=0 = = 2 1 o 2 1 o 2 d=λ/4 24

25 -kuulu ışık (dış yaıma ( < ): Yüzey omal, θ k -Kuulu Işık-1 1,0 0,8 0-0,8, Hava-cam aayüzey -1,0 90 θ o 0 o (deece) θ B değe, > olduğuda θ =0 o da ozf b değede başlayaak yavaşça azalı; özel b gelş açııda (θ Β ) ıfı olduka oa egaf değe alı ve θ =90 o da ıfıa eş olu Bu özel açı değee (θ B ) Bewe Açıı veya Kuulama Açıı de. Bu özel açı değede =0 olduğuda yaıya ışığı bleşe bulumayacakı. = 0 = 0 o o o Bu gelş açıı üüdek değelede e yaıya ışık le gele ışık aaıda 180 o faz fakı olacakı. = 1 = o o değe e büü gelş açıı değelede he ozf (gele ve kc oama geçe 25 ışığı kuulama doğuluu he ayıdı), θ =90 o değede e ıfı olu. o o

26 -Kuulu Işık-2 Faz (Yaıya ışık) 180 o φ φ 0 o 0 o θ (deece) θ B < 90 o -kuulu ışık, Bewe açııı üüdek gelş açıı değelede yaıya ve gele ışık aaıda 180 o faz fakı oluşu. =0 θ k k z θ k k z θ k k z - θ θ θ θ <θ B θ =θ B θ >θ B 26

27 Bewe Açıı ıfı olduğu özel gelş açııa kuulama açıı (veya Bewe açıı (θ B ) ) de. Bu açı değede yaıya ışık bleşe bulumaz. Bu özellğde dolayı bu açı değe ışığı kuulamada veya ışığı ümüyle 2. oama geçmek edğde kullaılı. 180 o φ =0 φ θ k k z θ k k z θ k k z - 0 o 0 o θ (deece) θ B < 90 o θ θ <θ B θ θ =θ B θ θ >θ B -kuulu gele ışı k θ B k yaıya ışık yok! z kuulamamış ışık -kuulu (T) -kuulu (TM) k z θ B k θ θ B açııda gele -kuulu ışığı yaıya bleşe olmayacakı. k -kuulu geçe ışı θ B açııda gele kuulamamış 27 ışık, yaıdıka oa kuulaacakı.

28 İç Yaıma ( > ) 1. oamı kıılma d kc oamı kıılma dde daha büyük olduğu duumda ç yaımada öz edl ( > ). İç yaıma duumuda ışığı gelş açııı bell b değe üüde kıılma açıı aaldı ve 2. oama geçe ışık bulumaz. Bu açı değee kk açı (θ C ) de. İç yaıma duumuda da Bewe açıı aımlaabl. Bu duumda Bewe açıı θ B = aca( ) İç ve dış yaımadak Bewe açılaı bb eşleğd. θ + θ = 90 B B o 1,0 Feel Kaayılaı 180 o Faz (Yaıya ışık) 0 φ φ -1,0 θ c > θ 0 o B θ (deece) 90 o 0 0 o > θ B θ c 90 o θ (deece) 28

29 Yaıma ve Geçme-1 Yaıma () ve geçme () kaayılaı, gele, geçe ve yaıya ışığı ala gelkle (kamaşık vekö) hakkıda blg ve. Pake e ışığı alaıı değl eej akııı (Poyg vekö) ölçez. Geçe ve yaıya ışığı şdde (alaklığı) hakkıda e öyleebl? I =<S > I =<S > θ θ y A z I =<S > olacakı. Bu ebee geçe ışığı şdde dek olaak Feel kaayııı kae değl, 29 θ Geçe ve yaıya ışığı şdde (alaklığı) le Feel kaayılaı aaıdak lşk gele, yaıya ve geçe eej akılaı aımlaaak buluabl. Yaıma (eej akı oaı) Geçme I coθ R = I coθ T I I I I coθ coθ R T = = 2 coθ coθ (eej akı oaı) Kıılma d faklı 2. oama geçe ışık kıılacağıda yüzey ala ke yaıya ışıka faklı kıılma dle ve açılaı çee b kaayıyı da çemeked. 2

30 Yaıma ve Geçme-2 ej kouumuda (gele ışığı eej 1 e omalze edle) 1,0 R + T = 1 T T R 0 0 o θ (deece) θ B R 90 o Nomal doğuluda gele ışık ç (θ=0 ) R ve R değele ayı değee yaklaşı: ( θ = 0 ) = ( θ = 0 ) = o o + R( θ = 0) = R = R = + 2 Nomal doğuluda gele ışık ç (θ=0 ) T ve T değele ayı değee yaklaşı: o ( θ = 0 ) = = = 2 ( + ) T ( θ = 0) = T = T = 4 ( + ) 2 30

31 Öze Işığı aa yüzeydek davaışı dalga özellğ göz öüe alıaak celed. Aa yüzeyde; gele, yaıya ve geçe dalgalaı ıı şalaıı b oucu olaak uygu bleşele gelk ve fazlaıı eş olmaı geek. Faz eşlğ geomek oğ ouçlaıı elde ememz, gelk eşlğ e gele ışığı yüzde olaak e kadaıı yaıyacağıı ve e kadaıı geçeceğ blgle bulmamızı ağla. Bu blgle Feel kaayılaı le fade edl. Ala veköüü, aa yüzey omal le ışığı dalga veköüü aımladığı gelş düzleme dk olduğu ışık -kuulu, aalel olduğu ışık e -kuulu ışık olaak adladıılı. Bu modla ç gelş açııa bağlı olaak Feel kaayılaı: o coθ coθ o 2 coθ -kuulu ışık = = o coθ + coθ o coθ + coθ o coθ - coθ o 2 coθ -kuulu ışık = = coθ + coθ o coθ + coθ Feel kaayılaı, yaıya ve geçe dalgaı elekk ala veköle le gele ışığı ala veköü aaıdak lşky vedğ ç dek olaak ölçüleble b celk değld. Pake ışığı şdde ölçüldüğüde Yaıma ve Geçgelk aımlaı yaılı. 2 Yaıma (eflecace) R Geçgelk (amace) T o R = coθ T = coθ ej kouumuda gele ışık (1 bm) yaıya (%R) ve geçe (%T) ışığa eş olacağıda: R + T = 1 Yüzeye dk gele ışığı Geçme ve Yaımaı oamı kıılma dlee bağlı olaak R( θ = 0) = R = R = T ( θ = 0) = T = T = 4 ( + ) 2 vel. 31

32 UADMK - Açık La Blg Bu de malzeme öğeme ve öğeme yaala aafıda açık la kaamıda ücez olaak kullaılabl. Açık la blg bölümü ya bu bölümdek, blglede değşme ve lme yaılmada kullaım ve gelşme geçekleşlmeld. İçeke gelşme değşme yaıldığı akdde kakıla bölümüe adece ekleme yaılabl. Açık la kaamıdak malzemele doğuda ya da üevle kullaılaak gel gec faalyelede buluulamaz. Belle kaam dışıdak kullaım açık la aımıa aykıı olduğuda kullaım yaadışı olaak kabul edl, lgl açık la ahle ve kamuu azma hakkı doğmaı öz kouudu. 32

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Temel Kavram ve İfadeler : Helisel alın dişlilerin düz dişlinin vida helisinde kaydırılması ile hasıl olduğu düşünülebilir.(şekil 5).

Temel Kavram ve İfadeler : Helisel alın dişlilerin düz dişlinin vida helisinde kaydırılması ile hasıl olduğu düşünülebilir.(şekil 5). 8 HELİSEL ALIN DİŞLİ ÇARKLAR Temel Kavam ve İfadele : Heliel alı dişlilei düz dişlii vida heliide kaydıılmaı ile haıl olduğu düşüüleili.(şekil 5). Şekil 5 Heliel Alı Dişli Çak Diş doğuluu ile diş ekei

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE DOKTORA TEZİ Dez UÇAR DANIŞMAN Doç. Dr. Yaşar BOLAT MATEMATİK ANABİLİM DALI TEMMUZ AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

Ü İ İ İ Ğ öğ İ İ öğ İ Ü İ ö ç ö ö Ü ö Ö ö ö ö ç ö ö ö ç ö ö ö İ ç ö ç ö ç ö ö ö ö ç ç ö ç ç ç ö Ç ç ç ö ö ç ç ö ö ç ö ç ö Ö ö ö ö ö Ç ö ç ç ç ö ö Ö Ö Ö ö ö ç Ç Ö ö ö ö ç ö ç ö ç ö ö ö ç ç ç ö ö ö Ü ç Ö

Detaylı

SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ. Müh.

SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ. Müh. ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ Mü. Sela ġahġn Aabl

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö ş ü ş ü ü üü ü ş ö ş ş ö Ü ş ş ş ö Ç ö öü ö ö Ç ş ş ş ö ç ç ş ş ş ş ü ç ş ö ü ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ 30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

ğ İ Ü Ü İĞ Ğİ İ İ Ü Ü Ü Ü ğ ğ öğ ğ ö Ö ğ ç ğ ş ğ ğ ç ç ğ ğ ö ğ ş ğ ğ ç ö ş ö ş ş ğ İ ş ğ ğ ç Ö ö ö ş ş ğ ğ ğ ğ ö ş ö ş ğ ğ ğ ğ Ü ğ ç Ş ç Ü ğ ş ş ç ş ş ö ö ş ç ş ş ğ ş ş ğ ğ İ ş ğ ç ğ ç ç ö öğ Ü ğ ç ş ğ

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 29, Sayı: 1, 2015 187

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 29, Sayı: 1, 2015 187 Atatük Üvete İktad ve İda Blle Deg Clt: 29 Saı: 25 87 VZA SÜPER ETKİNLİK MODELLERİ İLE ETKİNLİK ÖLÇÜMÜ: KAPADOKYA DA FAALİYET GÖSTEREN BALON İŞLETMELERİ ÜZERİNE BİR UYGULAMA Nu Özgü DOĞAN Alıış Tah: 8

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

11. Ders Doğrusal Olmayan Optik

11. Ders Doğrusal Olmayan Optik 11. Des Dğusal Olmayan Opik I() I() z n() düzlem dalga daklanmış dalga 1 Bu bölümü biidiğinizde, Dğusal lmayan pik, Opik dğulma, Dalga hamanlama, Kendiliğinden daklanma, Slin knulaında bilgi sahibi lacaksınız.

Detaylı

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla

Detaylı

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3:

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3: FZM45 letr-opt 4.Hafta Işığı letrmaet Taımlaması-3: Krstal İçde letrmaet algaı İlerleş 8 HSarı 1 4. Hafta ers İçerğ Işığı rstal çde lerleş İtrp lmaa rstaller Küb rstaller Te sel Krstaller Çft sel Krstaller

Detaylı

İ İ İ İ İ İ İ İ İ İ İ İ ö ç ç ü Ş ö ö ç ç ö ç Ö ö ç ü Ö ö İ ü ö Ö İ ü ö ç ö ö ç ö ö ö ü ü ü ç ö ö ü ö ü ü ü ü ü ö ü ö ü ö ö Ö ö ü ö ç ü ö ö ö ö Ö Ö ç ç ç ü ö İ İç çü ö ç ü ö ç ö ö ö İ ç ç ç ç ç ö ö ö ç

Detaylı

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ BÖLÜ 3 ŞANS DĞİŞKNLRİNİN BKLNN DĞR ONTLRİ atematsel belet avamı şas oyulaıda doğmuştu. yalı bçmyle, b oyucuu azaableceğ mta le azama olasılığıı çapımıdı. Sözgelm büyü ödülü 4800TL olduğu b çelşte 0.000

Detaylı

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI İstabul Tcaet Üvestes Sosyal Blmle Degs Yıl: Sayı: Baha 0 / s.455-468 AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI Üal H. ÖZDEN 6 ÖZET Çalışmada, AB ye

Detaylı

ö ğ ç ğ ğ ğ ö ğ ö ö ğ ç ö ö ç ğ ğ ğ ğ ç ö ö Ü Ş Ç ö ö ö Ş ö ç ğ ğ Ş Ç ğ Ç ç Ş ö ö ö ö ö ç ğ ö ç ö Ş çö ç Ş ğ ğ ğ Ş Ç ğ ö ö ğ ö ö ç ç Ç ğ ğ ğ ö ğ Ö Ş ğ ğ Ş ğ ö ç ğ ö ç ğ ç ç ğ Ş ç ö ö ğ ç ç ğ ç ç ğ ç ç

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ğ ç ğ ğ ğ ö ğ ğ ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ç ğ ğ ğ ç ğ ç ğ ğ ö ğ ğ ç ğ ğ ç ğ ğ

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ üm aı alaı of. D. Büle Yeşilaa a aii. İisi çoğalılama.. İEİM İE ISI RANSFERİNE GİRİŞ. Isı ileimi deei e delemi Şeil. de göseile a üei allmış silidii bi çubua, falı A, Δ e Δ değelei ullaılaa apıla deele

Detaylı

Ğ Ş Ğ

Ğ Ş Ğ Ğ ç ç ö ç ö ç ö ç ö ç ç ö ç ç ç ç ö ç ç ç ö ç ç ç ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö Ğ Ş Ğ ç Ğ Ğ öğ Ğ Ğ Ğ Ğ Ğ öğ Ğ Ğ ç Ö ö ç ö ç ç Ö «ç ö ç ö ç ö ö ç ç ç ç Ö Ç ö Ğ Ö Ö ç Ç Ş ç Ö Ö ö ö ö ç ö ç Ğ ö ç ç ö ç ç

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü

Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü İ Ç Ü ö ğ ö ğ Ü öğ ç Ç İ ğ ö İ ğ ç ğ Ğ İ ç ç ö ç İ Ğ İ ö Ğ ç Ü ö Çö çö Ü ğ ö ö ö ç ö ğ Ç ö ö ç ö ö ğ Çö ğ çö ö İç ç ö İ İ İ

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü üç ü ö ü ç Ş ö çü ü ü ö ü ü ö ö ö İ

ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü üç ü ö ü ç Ş ö çü ü ü ö ü ü ö ö ö İ ç ü ü ü ö ü ö ü ç ö ü ö ü ü ü ç ö ö ü ü ü ü ü üü ü ü ü ö ü ö üü ü Ü ü ü ö ö ö ü ü Ş ö ç ü ü ö ü ö çö ü ü üç ü Ş ö ü ö çü ü ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü

Detaylı

Müh. Mehmet ÖZAKINCI. Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ

Müh. Mehmet ÖZAKINCI. Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ İTANUL TEKNİK ÜNİVERİTEİ FEN İLİMLERİ ENTİTÜÜ TAAKALI KOMPOZİT PLAKLARIN TİTREŞİM ANALİZİ YÜKEK LİAN TEZİ Mü. Memet ÖZAKINCI Anablm Dalı : MAKİNA MÜHENDİLİĞİ Pogamı : MAKİNA DİNAMİĞİ TİTREŞİM VE AKUTİĞİ

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

ç Ğ İ Ş Ç ğ Ü ö İ ğ İ ç ğ ğ ç Ç İ İ ö ğ İ ğ ğ ğ ö ç ğ ö ö Ü ğ ç ç ğ ç ğ ğ ğ Ç ğ Ü ö Ö İ ğ Öğ ğ İ Öğ ğ İ ö ö ö Ç ö ö ç ö ç ö İ ğ öğ «öğ ğ ö İ ö ğ öğ ö çö ğ ç ğ ö öğ ç İ öğ ğ Ş ğ ğ ğ öğ ö Öğ İ ğ Ö öğ ç Ü

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve nelenmes. ÖN HAZIRLIK 1. TEMEL TANIMLAR Açı modülasyonu, az ve rekans modülasyonunu kasamakadır. Taşıyıının rekansı veya

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

alan ne kadardır? ; 3 3

alan ne kadardır? ; 3 3 - -. Doğa saıa kümeside f(k)=(k+) -k foksiou kuaaak k, k, k topamaı buuuz. ( + ) ( + )( + ) ( + ) 6. Topam fomüei kuaaak uzuuğu oa homoje bi çubuğu ucua göe ağıık mekezi buuuz.. Topam fomüei kuaaak uzuuğudaki

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Ğ öğ Ğ ü ü üğü Ğ Ğ ş ş İ ü ü ü ş İ ü ü üü ö ö ş ş İ ş ç Ç ş ü ü ü ç Ç ş ü ş ş İ ü ü üü İ ü ü İ ü ü üü İ ü ü üü İ Ç ş ü ü İ ü ş İ ö ş ş İ ç ş ş ö ö ş İ ş ş ö ü ü ş İ İ ç ç İ İ ü ü ç İ ş Ş ü ü üü ü Ş ö ş

Detaylı

Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö

Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö Ş Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö Ş Ö Ğ Ç Ç Ğ ç Ç «ö ç Ğ Ç ö Ö Ğ ö ö ö Ü ç Ğ Ğ ö ç ö ö Ü ç Ö Ü Ü ç Ş Ç Ü ö ö ö Ş Ü ç Ç ö Ü ç ö ç ö ö Ü ö ö ö ö Ü Ü ö ö Ğç Ç ö Ş Ğ ö ö ö ö ç ö ö ö ö ç ç ö

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde .9. Smth Katı Blgsayala gelştlmeden önce letm hattı poblemlen çömek çn bçok abak gelştlmşt. Smth katı veya abağı gelştlen en yaygın patk hesaplama yöntemne sahp olup hala letm hatlılaının gafk olaak analnde

Detaylı

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma Paçacıklaın Kinetiği Impuls-Momentum Yöntemi: Çapışma İki kütle bibii ile kısa süe içeisinde büyük impulsif kuvvetlee yol açacak şekilde temas edese buna çapışma (impact) deni. Çapışma 1. Diekt mekezcil

Detaylı

5. Ders Işığın Kutuplanması

5. Ders Işığın Kutuplanması 5. Des Işığın Kutuplanması H = H +z Bu bölümü bitidiğinizde, Işığın utuplanma özelliği, Doğusal, daiesel, elipti utuplu ışığın özellilei, Kutuplaıcıla, Jones vetö ve matis gösteimi onulaında bilgi sahibi

Detaylı

İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ D R O L İ K D E R S İ Model Benzeşimi

İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ D R O L İ K D E R S İ Model Benzeşimi İ.. Ü İ N Ş A A F A K Ü E S İ - H İ D R O İ K D E R S İ Model Benzeşii Model benzeşii, fiziksel bi olayın laboatuvada yaılan benzeine o olayın fiziksel odeli deni. Geoetik benzeşi, odel ve ototite bibiine

Detaylı

MÜHENDİSLİK YANGIN OTOMASYON SİSTEMLERİ SAN. TİC.

MÜHENDİSLİK YANGIN OTOMASYON SİSTEMLERİ SAN. TİC. Tubojts Nozzls BRASS COMPANY 442 Sok. No: 2-D İşaat İş Mk. Yşh - İZMİR Tl: 0 232 457 27 00-0 Fax: 0 232 457 27 02 w w w. o t o k o. c o m. t f o @ o t o k o. c o m. t Cco Ako ayalaabl hacml Tubojt Nozul,

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

ü ü ü ü Ö Ş Ü ö ü ü ö ü Ğ ü ü ü ü ü ü ü Ö ü ü ü ü «ü ü ü ü ü Ü ç ö ç ç ö ü ü

ü ü ü ü Ö Ş Ü ö ü ü ö ü Ğ ü ü ü ü ü ü ü Ö ü ü ü ü «ü ü ü ü ü Ü ç ö ç ç ö ü ü Ö Ğ ö ü ü Ğ «ü Ö Ö ü ö» ü ü ü ü ç ü ü ç ü ü ü ü ü Ö Ş Ü ö ü ü ö ü Ğ ü ü ü ü ü ü ü Ö ü ü ü ü «ü ü ü ü ü Ü ç ö ç ç ö ü ü ü ü Ğ Ü ç Ö ü ü ü ü ü ü Ö ü ç Ü ü Ü ç ö ö ü ö ü ö ü ç ç ö ö ü ü ü Ö ç Ğ ü ö Ö Ğ ö

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL Süleyma Demel Üvestes Sosyal Blmle Esttüsü DegsYıl: 203/, Sayı:7 Joal of Süleyma Demel Uvesty Isttte of Socal ScecesYea: 203/, Nme:7 YENİ Bİ BOÇ ÖDEME MODELİ ÖZET Allah EOĞLU Bakala taafıa e çok kllaıla

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir. KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

İ İ İ İ İç ğ ş ğ ş ğ İ Ğ ğ ğ ğ ç ş Ğ ş İ ş Çğ ğ ğ İ İş ğ İ İ ÖÜ ç ç ş Ü Ü ğ ç ş Ü ş ğ ş ğ ç ş öğ ğ öğ ğ ş ş ğ öğ ğ ş ç ş Öğ ç Öğ ğ Öğ ö ö ğ ğ ş İ ç Ç İ İİİ ğ Ü Ü İ İ İ İİ Ü Ü öğ ş öğ ş öğ ş ş ğ ç ç Ü İ

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Ü Ğ Ç Ç Ğ

Ü Ğ Ç Ç Ğ Ü Ğ Ç Ç Ü Ğ Ç Ç Ğ Ö Ü Ç Ö Ç Ü Ö Ç Ö Ç Ç Ç Ç Ç Ç Ü Ü Ü Ü Ü Ö Ç Ç Ü Ç Ç Ç Ö Ç Ç Ç Ç Ü Ç Ö Ç Ğ Ğ Ğ Ğ Ü Ü Ğ Ğ Ç Ü Ğ Ğ Ç Ç Ç Ç Ç Ğ Ğ Ç Ğ Ğ Ç Ç Ç Ü Ğ Ç Ü Ç Ğ Ğ Ç Ü Ğ Ğ Ç Ğ Ğ Ç Ç Ç Ö Ü Ç Ç Ç Ç Ö Ç Ö Ö Ç Ç Ç

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

Yard. Doç. Dr. (Mimar) Şahabettin OZTURK. Bitlis Merkez Meydan Camii

Yard. Doç. Dr. (Mimar) Şahabettin OZTURK. Bitlis Merkez Meydan Camii Yad. Doç. D. (Mima) Şahabettin OZTURK Bitlis Mekez Meydan Camii YARD. DOC. DR. fmimar) SAHABETTİN ÖZTIJRK bi keme içinde ye alan yuvalak bi ozet ye almaktadı. Minae güney cephede zeminden 2.21 cm. diğe

Detaylı