İHA GÖRÜNTÜLERİNDEN ELDE EDİLEN OBJE ÖZNİTELİKLERİNİN DOĞRULUK DEĞERLENDİRMESİ ACCURACY ASSESSMENT OF UAV-DERIVED OBJECT ATTRIBUTES

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İHA GÖRÜNTÜLERİNDEN ELDE EDİLEN OBJE ÖZNİTELİKLERİNİN DOĞRULUK DEĞERLENDİRMESİ ACCURACY ASSESSMENT OF UAV-DERIVED OBJECT ATTRIBUTES"

Transkript

1 İHA GÖRÜNTÜLERİNDEN ELDE EDİLEN OBJE ÖZNİTELİKLERİNİN DOĞRULUK DEĞERLENDİRMESİ O. ÖZCAN 1, B. BİLGİLİOĞLU 2, S. AKAY 3, N. MUSAOĞLU 2 1 İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, İstanbul, 2 İstanbul Teknik Üniversitesi, İnşaat Fakültesi, Geomatik Mühendisliği Bölümü, İstanbul, 3 Yıldız Teknik Üniversitesi, Uzaktan Algılama ve CBS Programı, İstanbul, Özet Bu çalışma kapsamında öncelikle İnsansız Hava Aracı (İHA) görüntülerinden üretilen nokta bulutlarından yükseklik modeli oluşturulmuş ve farklı objelerin yüksekliklerinin doğruluğu belirlenmiştir. İkinci aşamada ise İHA görüntülerinden üretilen ortofoto obje tabanlı olarak sınıflandırılmış ve test alanı olarak seçilen obje boyutları vektör formda oluşturulmuştur. Çalışma sonunda seçilen objelerin hem yükseklik hem de alan belirlemede kullanılabilirliği irdelenmiştir. Yapılan değerlendirme sonunda yükseklik ve alan değerleri sırasıyla ortalama 5.2 cm ±2.36cm ve 5m 2 hata ile belirlenmiştir. Anahtar kelimeler: İHA, SfM, doğruluk analizi, segmentasyon, OTS ACCURACY ASSESSMENT OF UAV-DERIVED OBJECT ATTRIBUTES Abstract In the context of this study; primarily, the digital surface model (DSM) of a region within the Istanbul Technical University Campus is established from Unmanned Aerial Vehicle (UAV) derived point clouds and then, the accuracy of varied features are determined. In the second stage, object based classification is applied to UAV-generated orthomosaic and the feature dimensions which were chosen as test field are produced in vector format. At the end of the study, the usability of selected features for determining both elevation and area is examined. The preliminary results showed that, elevation and area values are determined by the average 5.2 cm ±2.36cm and 5m 2, respectively. Keywords: UAV, SfM, accuracy assessment, segmentation, OBC

2 2 1. Yöntem 1.1 Hareket Tabanlı Yapısal Algılama (SfM) tekniği ile çok yüksek çözünürlüklü yüzey modeli oluşturma Çalışmada, Hareket Tabanlı Yapısal Algılama (SfM) tekniği tabanlı çok yüksek çözünürlüklü yüzey modellerini üretmek için İHA ile görüntüler elde edilmiştir.. İHA tabanlı veri işleme yöntemleri ile oluşturulan ortofoto ve sayısal yüzey modelleri, SfM algoritması temel alınarak üretilmiştir. 3 boyutlu yüzeylerin üretilmesinde SfM algoritması temel olarak 3 temel adımdan oluşmaktadır (Jaud vd., 2016, Woodget vd., 2015, Javernick vd., 2014): i) Işın demetleri dengelemesi ile görüntü eşleştirme yapılır. ii) Nokta bulutunun oluşturulması ve yoğun nokta bulutuna bağlı olarak yüzeyi temsil eden 3 boyutlu poligon ağ modeli oluşturulur. iii) Yeniden oluşturulan ağ modeli ortofoto üretimi için kullanılır. Sayısal yüzey modeli, düzenli grid üzerine düzensiz poligonal ağ modelinin enterpolasyonu ile hesaplanır. Arazi çalışmaları sırasında uçuş yapılan bölgelerde uçuşlar ile eşzamanlı olarak DGPS ile hassas yer kontrol noktaları (YKN) elde edilmiştir. Çalışma alanında seçilecek her bir alanın yüzey morfolojisini temsil edecek olan modellerin yatay ve düşey doğrulukları DGPS ile alınan yer kontrol noktaları ile belirlenmiştir. Çalışma kapsamında kullanılan YKN lerin dağılımı ve üretilen SYM Şekil 1 de gösterilmektedir (a) (b) Şekil 1. YKN larının oluşturulan (a) sayısal yüzey modeli ve (b) ortomozaik üzerinde gösterimi.

3 3 1.2 Obje tabanlı sınıflandırma (OTS) yöntemi ile bina detayının çıkarımı OTS yöntemi segmentasyon ve segmentlerin sınıflandırılması olarak iki aşamadan oluşur. İlk aşamada seçilen kriterlere bağlı olarak, çıkarılması istenilen detaylar elde edilene kadar komşu pikseller birleştirilir ve ikinci aşamadaki sınıflandırma işlemi için uygun segmentler oluşturulur. Drăgut vd. (2010) görüntüye ait lokal varyansları kullanarak hızlı ve kolay bir şekilde ölçek parametresini hesaplayan ölçek parametresi tahmini (ESP) aracını geliştirmiştir. Bu çalışmada işlemleri otomatikleştirme amacı ile ESP yöntemi ile elde edilen segmentler sınıflandırma işlemi için kullanılmıştır. Obje tabanlı sınıflandırma işleminde segmentler oluşturulduktan sonra çeşitli band kombinasyonları oluşturularak gri renk tonunda elde edilen görüntüden ilgili aralıktaki objeler çıkartılır. Bu işlemin amacı, kullanılan band kombinasyonları ile görüntü içerisinde yer alan detaylara ait özelliklerin açığa çıkartılmasıdır. Sınıflandırmada 3 bandlı olarak (mavi, yeşil, kırmızı) İHA verilerinden üretilen ortofotodan oluşturulan kombinasyonlar ve şekil indeksi kullanılmıştır. Ayrıca bina verisi farklı karakteristik özellikleri taşıyan turuncu çatı, beton çatı ve çakıl çatı olmak üzere 3 ana sınıfa ayrılarak sınıflandırma işlemi gerçekleştirilmiştir (Şekil.2). GRVI (Green-Red Vegatation Index) ÇAKIL ÇATI GRVI< 0 SEGMENTASYON (ESP) BRI (Blue Ratio Index) KİREMİT ÇATI 0.40<BRI<0.45 SI (Shape Index) BETON ÇATI 8<SI<10 Şekil 1. Sınıflandırma işlem akış şeması. Sınıflandırma işleminde kullanılan band kombinasyonları ve bu band kombinasyonlarının görüntüye uygulanması sonucu oluşan gri renk tonundaki yeni görüntüler Şekil.3 de verilmiştir. Şekil 2. Band kombinasyon işlemleri sonucu oluşan gri renk tonu görüntüleri.

4 4 Segmentasyon işlemi ile elde edilen segmentlere uygulanan band kombinasyonları ve indeksler sonucunda oluşan 3 sınıfa ait (kiremit çatı, beton çatı ve çakıl çatı) sınıflandırma sonucu Şekil 4a da sunulmuştur. Sınıflandırma sonucu elde edilen bina verisine ait 3 farklı sınıf, birleştirilmiş ve genelleştirme uygulanarak sonuç veri vektör formda üretilmiştir (Şekil 4b). Çakıl Beton Kiremit (a) (b) Şekil 4. Sınıflandırma işlemi sonucu ve bina sonuç vektörü 2. Sonuç ve Öneriler Çalışma sonucunda alansal değerlendirme için, sınıflandırma sonucu üretilen vektör verisayısallaştırılmış vektör verile çakıştırılmıştır (Şekil 5). 1. Bölge olarak belirlenmiş alandaki yanlış sınıflandırmanın sebep olduğu hatanın, bina zeminindeki kaldırımların da bina verisi olarak algılanmasından kaynaklandığıgörülmektedir.. 2. bölgede ise hatanın nedeni arazideki eğimden kaynaklı olarak bina yan cephesinin de sınıflandırmaya dâhil olmasıdır. Ayrıca sayısallaştırma sonucu 419 m 2 bulunan bina toplam alanı, sınıflandırma sonucunda 424 m 2 bulunmuştur. Şekil 5. Sınıflandırma ve sayısallaştırma sonuçlarının vektörel olarak karşılaştırılması.

5 5 Yapılan çalışmada çok yüksek çözünürlüklü hava fotoğraflarının elde edilmesi amacıyla %90 örtüşme oranı ve 30 m uçuş yüksekliği ile gerçekleştirilen uçuş sonucunda ortalama 1.2 cm/piksel yer örnekleme aralığına (GSD) sahip ortomozaik görüntü üretilmiştir. Çözünürlüğün arttırılması ile sayısal yüzey modelinin doğruluğu artsa da yükseklik değerlerinin doğruluğu esas olarak DGPS ile kontrol edilmektedir (Jaud vd., 2016). Çalışmadafarklı obje yüksekliklerinin doğrulukları, arazide ölçülen farklı yüksekliklere sahip YKN ları ile belirlenmiştir. Çalışma sonucu üretilen profiller Şekil 6 da gösterilmektedir.yapılan değerlendirmede, yükseklik doğrulukları ortalama 5.2 cm ±2.36 hata ile belirlenmiştir. Yapılan değerlendirmede İHA görüntülerinin birçok mühendislik çalışmasında kullanılan alan ve yükseklik bilgisinin üretilmesi için yüksek doğruluklu veri sağladığı belirlenmiştir. YKN 2: z= m ± Fark: 3.9cm ±2.5 YKN 5: z= m ± Fark: 10.5 cm ±2.1 YKN 6: z= m ± Fark: 1.3 cm ±2.5 Şekil 6. Obje yüksekliklerinin üretilen nokta bulutu ve YKN ile karşılaştırılması.

6 6 Kaynaklar Drăgut, L., Tiede, D., Levick, S. R., ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), pp Jaud, M., vd Potential of UAVs for Monitoring Mudflat Morphodynamics (Application to the Seine Estuary, France), ISPRS International Journal of Geo-Information, 5, 50. doi: /ijgi Javernick, L., Brasington, J., Caruso, B Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry, Geomorphology, 213, pp Woodget, A.S., Carbonneau, P.E., Visser, F., Maddock, I.P Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry, Earth Surface Processes and Landforms, 40, pp

İNSANSIZ HAVA ARACI (İHA) İLE FARKLI YÜKSEKLİKLERDEN ÜRETİLEN SAYISAL YÜZEY MODELLERİNİN (SYM) DOĞRULUK ANALİZİ

İNSANSIZ HAVA ARACI (İHA) İLE FARKLI YÜKSEKLİKLERDEN ÜRETİLEN SAYISAL YÜZEY MODELLERİNİN (SYM) DOĞRULUK ANALİZİ 25 [1021] İNSANSIZ HAVA ARACI (İHA) İLE FARKLI YÜKSEKLİKLERDEN ÜRETİLEN SAYISAL YÜZEY MODELLERİNİN (SYM) DOĞRULUK ANALİZİ Orkan ÖZCAN 1, Semih Sami AKAY 2 1 İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri

Detaylı

İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI

İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI 319 [1054] İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI Resul Çömert 1, Uğur Avdan 2, Z. Damla Uça Avcı 3 1 Araş. Gör., Anadolu Üniversitesi, Yer ve Uzay Bilimleri Enstitüsü, 26555,Eskişehir,

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI Fotg.D.Bşk.lığı, yurt içi ve yurt dışı harita üretimi için uydu görüntüsü ve hava fotoğraflarından fotogrametrik yöntemlerle topoğrafya ve insan yapısı detayları

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

ArcGIS ile Tarımsal Uygulamalar Eğitimi

ArcGIS ile Tarımsal Uygulamalar Eğitimi ArcGIS ile Tarımsal Uygulamalar Eğitimi Kursun Süresi: 5 Gün 30 Saat http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr ArcGIS ile Tarımsal Uygulamalar Eğitimi Genel

Detaylı

Araştırma Görevlisi İSMAİL ÇÖLKESEN

Araştırma Görevlisi İSMAİL ÇÖLKESEN Araştırma Görevlisi İSMAİL ÇÖLKESEN ÖZGEÇMİŞ Adı Soyadı : İSMAİL ÇÖLKESEN Doğum Tarihi : 1981 Ünvanı : Dr. Öğrenim Durumu : Derece Alan Üniversite Lisans Yüksek Lisans Doktora Jeodezi ve Fotogrametri Müh.

Detaylı

İNSANSIZ HAVA ARACI İLE OLUŞTURULAN VERİLERİN DOĞRULUK ANALİZİ

İNSANSIZ HAVA ARACI İLE OLUŞTURULAN VERİLERİN DOĞRULUK ANALİZİ İNSANSIZ HAVA ARACI İLE OLUŞTURULAN VERİLERİN DOĞRULUK ANALİZİ Uğur AVDAN 1, Emre ŞENKAL 2, Resul ÇÖMERT 3 Serhan TUNCER 4 1 Yrd. Doç. Dr., Anadolu Üniversitesi, Yer ve Uzay Bilimleri Enstitüsü, 26555,

Detaylı

NESNE-TABANLI SINIFLANDIRMADA SEGMENTASYON KALİTESİNİN SINIFLANDIRMA DOĞRULUĞU ÜZERİNE ETKİSİ

NESNE-TABANLI SINIFLANDIRMADA SEGMENTASYON KALİTESİNİN SINIFLANDIRMA DOĞRULUĞU ÜZERİNE ETKİSİ NESNE-TABANLI SINIFLANDIRMADA SEGMENTASYON KALİTESİNİN SINIFLANDIRMA DOĞRULUĞU ÜZERİNE ETKİSİ H. Tonbul a,t. Kavzoğlu a a Gebze Teknik Üniversitesi, Harita Mühendisliği Bölümü, 41400, Kocaeli, Türkiye

Detaylı

Pınar KARAKUŞ 1, Hakan KARABÖRK 2

Pınar KARAKUŞ 1, Hakan KARABÖRK 2 782 [1113] ESP ILE NESNE TABANLI SINIFLANDIRMA KULLANILARAK ARAZI ÖRTÜSÜNÜN ÇIKARILMASI ÖZET Pınar KARAKUŞ 1, Hakan KARABÖRK 2 Tarımsal planlama yapanlar için bir bölgede bulunan ürün türünün belirlenmesi

Detaylı

Hasret AKTAŞ 1, Murat Can ÇINAR 1, Anıl Can BİRDAL 2, Tarık TÜRK 3*

Hasret AKTAŞ 1, Murat Can ÇINAR 1, Anıl Can BİRDAL 2, Tarık TÜRK 3* 305 [1014] İNSANSIZ HAVA ARAÇLARI (İHA) İLE ELDE EDİLEN VERİLERİN DEĞERLENDİRİLMESİNDE YAYGIN KULLANILAN YAZILIMLARIN KARŞILAŞTIRILMASI Hasret AKTAŞ 1, Murat Can ÇINAR 1, Anıl Can BİRDAL 2, Tarık TÜRK

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3

Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3 430 [1315] YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİSİ İLE NESNE TABANLI SINIFLANDIRMA UYGULAMASINDA MEVSİMSEL KOŞULLARIN ETKİSİ Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3 1 Araş.Gör., Boğaziçi Üniversitesi,

Detaylı

İHA ve Hava Kameralı Uçak İle Havadan Alınan Görüntüler Sonucu Elde Edilen Ürünlerin Karşılaştırılması

İHA ve Hava Kameralı Uçak İle Havadan Alınan Görüntüler Sonucu Elde Edilen Ürünlerin Karşılaştırılması TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3-6 Mayıs 2017, Ankara. İHA ve Hava Kameralı Uçak İle Havadan Alınan Görüntüler Sonucu Elde Edilen Ürünlerin

Detaylı

ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ İHA GÖRÜNTÜLERİNDEN OTOMATİK AĞAÇ TESPİTİ AUTOMATIC TREE DETECTION FROM VERY HIGH RESOLUTION UAV IMAGES

ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ İHA GÖRÜNTÜLERİNDEN OTOMATİK AĞAÇ TESPİTİ AUTOMATIC TREE DETECTION FROM VERY HIGH RESOLUTION UAV IMAGES ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ İHA GÖRÜNTÜLERİNDEN OTOMATİK AĞAÇ TESPİTİ Mehmet Fatih Gürbüz, Mustafa Türker Hacettepe Üniversitesi, Mühendislik Fakültesi, Geomatik Mühendisliği Bölümü, 06800 Ankara, Türkiye,

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

FARKLI UYDU GÖRÜNTÜLERİNDEN YIĞIN GÖRÜNTÜ EŞLEME YÖNTEMİYLE YÜKSEK ÇÖZÜNÜRLÜKTE SAYISAL YÜZEY MODELİ VERİSİ ÜRETİMİ: SPOT6 VE PLÉIADES UYGULAMASI

FARKLI UYDU GÖRÜNTÜLERİNDEN YIĞIN GÖRÜNTÜ EŞLEME YÖNTEMİYLE YÜKSEK ÇÖZÜNÜRLÜKTE SAYISAL YÜZEY MODELİ VERİSİ ÜRETİMİ: SPOT6 VE PLÉIADES UYGULAMASI FARKLI UYDU GÖRÜNTÜLERİNDEN YIĞIN GÖRÜNTÜ EŞLEME YÖNTEMİYLE YÜKSEK ÇÖZÜNÜRLÜKTE SAYISAL YÜZEY MODELİ VERİSİ ÜRETİMİ: SPOT6 VE PLÉIADES UYGULAMASI O. Eker a, *, B. Bayram b, M. Erdoğan a, T. Durğut a, A.

Detaylı

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://jeodezi.beun.edu.tr/marangoz 2012-2013 Öğretim Yılı Bahar Dönemi

Detaylı

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Modelleri Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Objelerin temsili Raster -- Grid Piksel Konum ve değeri Uydu görüntüleri ve hava fotoları bu formatta Vector -- Linear

Detaylı

İNSANSIZ HAVA ARACI (İHA) VE UÇAK PLATFORMLARINDAN ELDE EDİLEN GÖRÜNTÜLERİN ORTOFOTO ÜRETİMİNDE KARŞILAŞTIRILMASI

İNSANSIZ HAVA ARACI (İHA) VE UÇAK PLATFORMLARINDAN ELDE EDİLEN GÖRÜNTÜLERİN ORTOFOTO ÜRETİMİNDE KARŞILAŞTIRILMASI İNSANSIZ HAVA ARACI (İHA) VE UÇAK PLATFORMLARINDAN ELDE EDİLEN GÖRÜNTÜLERİN ORTOFOTO ÜRETİMİNDE KARŞILAŞTIRILMASI E. Ayyıldız*, L. Özmüş*, F. Ç. Açar, H. Tuna*, E. Özer*, B. Erkek*, S. Bakıcı* * Tapu ve

Detaylı

HASSAS ORMANCILIK. Prof.Dr. Abdullah E. Akay. BTÜ Orman Fakültesi Orman Mühendisliği Bölümü Osmangazi-Bursa

HASSAS ORMANCILIK. Prof.Dr. Abdullah E. Akay. BTÜ Orman Fakültesi Orman Mühendisliği Bölümü Osmangazi-Bursa HASSAS ORMANCILIK Prof.Dr. Abdullah E. Akay Osmangazi-Bursa HASSAS ORMANCILIK Son yıllarda artan tüketici talepleri doğal kaynaklar üzerindeki baskıyı artırmış ve bu durum özellikle orman kaynaklarının

Detaylı

İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ ACCURACY ASSESSMENT OF THE ORTHOPHOTO PRODUCED USING UNMANNED AERIAL VEHICLE

İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ ACCURACY ASSESSMENT OF THE ORTHOPHOTO PRODUCED USING UNMANNED AERIAL VEHICLE İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ V. Yılmaz, A. Akar, Ö. Akar, O. Güngör, F. Karslı, E. Gökalp KTÜ, Harita Mühendisliği, 61080, Trabzon, Türkiye (volkanyilmaz.jdz,

Detaylı

Hava Fotogrametrisi ve Jeodezik Yöntemler ile Sayısal Yükseklik Modeli Üretimi: Erzurum Aksu Köyü Örneği

Hava Fotogrametrisi ve Jeodezik Yöntemler ile Sayısal Yükseklik Modeli Üretimi: Erzurum Aksu Köyü Örneği TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3-6 Mayıs 2017, Ankara. Hava Fotogrametrisi ve Jeodezik Yöntemler ile Sayısal Yükseklik Modeli Üretimi: Erzurum

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ ACCURACY ASSESSMENT OF THE ORTHOPHOTO PRODUCED USING UNMANNED AERIAL VEHICLE

İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ ACCURACY ASSESSMENT OF THE ORTHOPHOTO PRODUCED USING UNMANNED AERIAL VEHICLE İNSANSIZ HAVA ARACI İLE ÜRETİLEN ORTOFOTO HARİTALARDA DOĞRULUK ANALİZİ V. Yılmaz, A. Akar, Ö. Akar, O. Güngör, F. Karslı, E. Gökalp KTÜ, Harita Mühendisliği, 61080, Trabzon, Türkiye (volkanyilmaz.jdz,

Detaylı

Curriculum Vitae. Degree Profession University Year. MSc Remote Sensing Gebze Institute of Technology 2009

Curriculum Vitae. Degree Profession University Year. MSc Remote Sensing Gebze Institute of Technology 2009 Curriculum Vitae Name, Surname: ISMAIL COLKESEN Date of birth: 1981 Title: Ph.D., Assistant Professor Education : Degree Profession University Year BSc Geodesy and Photogrammetry Karadeniz Technical University

Detaylı

Fethiye ÖÇK Bölgesi Arazi Örtüsü/Arazi Kullanımı Değişim Tespiti

Fethiye ÖÇK Bölgesi Arazi Örtüsü/Arazi Kullanımı Değişim Tespiti Fethiye ÖÇK Bölgesi Arazi Örtüsü/Arazi Kullanımı Değişim Tespiti Kurum adı: T.C. Çevre ve Orman Bakanlığı Bilgi İşlem Dairesi Başkanlığı, Özel Çevre Koruma Kurumu Başkanlığı Proje durumu: Tamamlandı. Proje

Detaylı

PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ

PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ Received:March 24, 2017 Accepted:March 27, 2017 PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ 1 *Ahmet Delen, 2 Füsun Balık Şanlı 1 Gaziosmanpasa University,

Detaylı

FARKLI BİNDİRME ORANLARININ SAYISAL YÜZEY MODELİ DOĞRULUĞUNA ETKİSİ-ANKARA 3 BOYUTLU ŞEHİR MODELİ ÖRNEĞİ

FARKLI BİNDİRME ORANLARININ SAYISAL YÜZEY MODELİ DOĞRULUĞUNA ETKİSİ-ANKARA 3 BOYUTLU ŞEHİR MODELİ ÖRNEĞİ FARKLI BİNDİRME ORANLARININ SAYISAL YÜZEY MODELİ DOĞRULUĞUNA ETKİSİ-ANKARA 3 BOYUTLU ŞEHİR MODELİ ÖRNEĞİ A. KAYI, G.ARASAN, A. YILMAZ, M. ERDOĞAN, O.ALP, A.OKUL HGK, Harita Genel Komutanlığı, 06260 Çankaya

Detaylı

KENTSEL ALANLARDA AĞAÇLIK VE YEŞİL ALANLARIN UYDU GÖRÜNTÜLERİNDEN NESNE-TABANLI ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE ENTEGRASYONU

KENTSEL ALANLARDA AĞAÇLIK VE YEŞİL ALANLARIN UYDU GÖRÜNTÜLERİNDEN NESNE-TABANLI ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE ENTEGRASYONU KENTSEL ALANLARDA AĞAÇLIK VE YEŞİL ALANLARIN UYDU GÖRÜNTÜLERİNDEN NESNE-TABANLI ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE ENTEGRASYONU Aycan Murat MARANGOZ, Serkan KARAKIŞ, Hakan AKÇIN, Murat ORUÇ Zonguldak

Detaylı

Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2

Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1078 [1025] LANDSAT 8'İN ADANA SEYHAN BARAJ GÖLÜ KIYI ÇİZGİSİNİN AYLIK DEĞİŞİMİNİN BELİRLENMESİNDE KULLANILMASI Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1 Arş. Gör., Erciyes Üniversitesi, Harita Mühendisliği

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

[1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ

[1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ 691 [1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ Taşkın KAVZOĞLU 1, Hasan TONBUL 2, Merve YILDIZ ERDEMİR 3, İsmail ÇÖLKESEN 4 1 Prof. Dr.,

Detaylı

INVESTIGATIONS OF USING THE HIGH RESULUTION DATA DERIVED FROM THE UN-MANNED AERIAL VEHICLE FOR LANDSLIDE MONITORING

INVESTIGATIONS OF USING THE HIGH RESULUTION DATA DERIVED FROM THE UN-MANNED AERIAL VEHICLE FOR LANDSLIDE MONITORING Doğal Afet ve Afet Yönetimi Sempozyumu (DAAYS 16), 2-4 Mart 2016, Karabük, Türkiye INVESTIGATIONS OF USING THE HIGH RESULUTION DATA DERIVED FROM THE UN-MANNED AERIAL VEHICLE FOR LANDSLIDE MONITORING HEYELANLARIN

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

Şehir Plancıları için İleri Seviye ArcGIS Eğitimi

Şehir Plancıları için İleri Seviye ArcGIS Eğitimi Şehir Plancıları için İleri Seviye ArcGIS Eğitimi Eğitim Süresi: 4 gün (28 Saat) /esriturkey /company/esri-turkey /EsriTurkiye egitim@esriturkey.com.tr Genel 3D Analyst, Spatial Analyst ve ModelBuilder

Detaylı

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi ISITES 2016 4 TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE TECHNOLOGIES IN ENGINEERING AND SCIENCE Dr. G. Çiğdem Çavdaroğlu ISITES,

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ ÜRÜNLER Ortofoto/görüntü, Sayısal Yüzey, Yükseklik ve Arazi Modeli Kavramları BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

2016 YILI AKADEMİK TEŞVİK BAŞVURUSU FAALİYET TÜRÜ HAM PUAN NET PUAN PROJE ARAŞTIRMA 0 0 YAYIN

2016 YILI AKADEMİK TEŞVİK BAŞVURUSU FAALİYET TÜRÜ HAM PUAN NET PUAN PROJE ARAŞTIRMA 0 0 YAYIN ALİ ÖZGÜN OK DOÇENT YILI AKADEMİK TEŞVİK BAŞVURUSU NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ/MÜHENDİSLİK-MİMARLIK FAKÜLTESİ/JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ BÖLÜMÜ/JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Sınıflandırma Sınıflandırma nedir Sınıflandırma türleri Kontrolsüz/Kontrollü (Denetimli, Eğitimli)

Detaylı

DÜŞÜK MALİYETLİ AKSİYON KAMERA İLE ELDE EDİLEN İNSANSIZ HAVA ARACI VERİLERİNİN NOKTA-BAZLI DOĞRULUK ANALİZİ

DÜŞÜK MALİYETLİ AKSİYON KAMERA İLE ELDE EDİLEN İNSANSIZ HAVA ARACI VERİLERİNİN NOKTA-BAZLI DOĞRULUK ANALİZİ 34 [1078] DÜŞÜK MALİYETLİ AKSİYON KAMERA İLE ELDE EDİLEN İNSANSIZ HAVA ARACI VERİLERİNİN NOKTA-BAZLI DOĞRULUK ANALİZİ Serkan KARAKIŞ, Umut Güneş SEFERCİK, Can ATALAY * ÖZET Bülent Ecevit Üniversitesi,

Detaylı

LAZER TARAMA VERİLERİNDEN BİNA DETAYLARININ ÇIKARILMASI VE CBS İLE ENTEGRASYONU

LAZER TARAMA VERİLERİNDEN BİNA DETAYLARININ ÇIKARILMASI VE CBS İLE ENTEGRASYONU TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon ÖZET LAZER TARAMA VERİLERİNDEN BİNA DETAYLARININ ÇIKARILMASI VE CBS İLE ENTEGRASYONU

Detaylı

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA)

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) Tunç Emre TOPTAŞ Teknik Hizmetler ve Eğitim Müdürü, Netcad Yazılım A.Ş. Bilkent, Ankara, Öğretim Görevlisi, Gazi Üniversitesi,

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı

Sahip oldukları mevcut arazilerini, -Taleplere, -İhtiyaçlara ve -Teknolojik gelişmelere bağlı olarak yasalar ve kurumsal düzenlemelerle yönetirler.

Sahip oldukları mevcut arazilerini, -Taleplere, -İhtiyaçlara ve -Teknolojik gelişmelere bağlı olarak yasalar ve kurumsal düzenlemelerle yönetirler. Eğik Resim Fotogrametrisi ve Arazi Yönetiminde Kullanım Alanları Nisan / 2015 1 / 43 Sunum İçeriği 1. Arazi Yönetimi 2. Eğik Resim Fotogrametrisi 3. Eğik Resim Fotogrametrisinin Arazi Yönetiminde Kulanım

Detaylı

AUTOMATIC EXTRACTION OF BUILDING OBLIQUE ROOF FROM DENSE IMAGE MATCHING POINT CLOUDS WITH HIGH RESOLUTION COLOUR- INFRARED IMAGES

AUTOMATIC EXTRACTION OF BUILDING OBLIQUE ROOF FROM DENSE IMAGE MATCHING POINT CLOUDS WITH HIGH RESOLUTION COLOUR- INFRARED IMAGES BİNA EĞİK ÇATILARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ RENKLİ-KIZILÖTESİ GÖRÜNTÜLERDEN ÜRETİLEN YOĞUN NOKTA BULUTLARINDAN OTOMATİK ÇIKARILMASI H. ACAR 1, M. ÖZTÜRK 2, F. KARSLI 1, M. DİHKAN 1 1 Karadeniz Teknik Üniversitesi,

Detaylı

İSKİ GENEL MÜDÜRLÜĞÜ SAHASININ İNSANSIZ HAVA ARACI YARDIMI İLE TRUE ORTOFOTO VE HALİHAZIR HARİTASININ YAPIMI

İSKİ GENEL MÜDÜRLÜĞÜ SAHASININ İNSANSIZ HAVA ARACI YARDIMI İLE TRUE ORTOFOTO VE HALİHAZIR HARİTASININ YAPIMI İSKİ GENEL MÜDÜRLÜĞÜ SAHASININ İNSANSIZ HAVA ARACI YARDIMI İLE TRUE ORTOFOTO VE HALİHAZIR HARİTASININ YAPIMI B. GENÇ 1, Ö. GÖKDAŞ 2, G.TAFTALI 3, S. EROĞLU 4 1 İSKİ, Harita İşleri Şube Müdürlüğü, İstanbul,

Detaylı

Metadata Tanımı. Bilgi hakkında bilgi Bilgisayarların yorumlayabileceği ve kullanabileceği standart, yapısal bilgi BBY 220

Metadata Tanımı. Bilgi hakkında bilgi Bilgisayarların yorumlayabileceği ve kullanabileceği standart, yapısal bilgi BBY 220 Metadata Tanımı Bilgi hakkında bilgi Bilgisayarların yorumlayabileceği ve kullanabileceği standart, yapısal bilgi BBY 220 Metadata Ne Değildir? Standart numaralar (ISBN, ISSN, SICI, DOI, vd.) BBY 220 Metadata

Detaylı

ORMANCILIKTA KULLANILAN FARKLI VERİ KAYNAKLARINA SAHİP SAYISAL YÜKSEKLİK MODELLERİNİN KARŞILAŞTIRILMASI

ORMANCILIKTA KULLANILAN FARKLI VERİ KAYNAKLARINA SAHİP SAYISAL YÜKSEKLİK MODELLERİNİN KARŞILAŞTIRILMASI ORMANCILIKTA KULLANILAN FARKLI VERİ KAYNAKLARINA SAHİP SAYISAL YÜKSEKLİK MODELLERİNİN KARŞILAŞTIRILMASI A. Ateşoğlu 1, T. Varol 2, M. Tunay 3 Bartın Üniversitesi, Bartın Orman Fakültesi, Orman Mühendisliği

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ İLERİ SEVİYE EĞİTİMLERİ 3D-SPATİAL ANALİZ ve MODEL BUİLDER

COĞRAFİ BİLGİ SİSTEMLERİ İLERİ SEVİYE EĞİTİMLERİ 3D-SPATİAL ANALİZ ve MODEL BUİLDER COĞRAFİ BİLGİ SİSTEMLERİ İLERİ SEVİYE EĞİTİMLERİ 3D-SPATİAL ANALİZ ve MODEL BUİLDER http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 40 Saat

Detaylı

QUICKBIRD PAN-SHARPENED GÖRÜNTÜSÜ ÜZERİNDEN OTOMATİK DETAY ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE UYGUNLUĞUNUN ANALİZİ

QUICKBIRD PAN-SHARPENED GÖRÜNTÜSÜ ÜZERİNDEN OTOMATİK DETAY ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE UYGUNLUĞUNUN ANALİZİ TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı Mart 2005, Ankara QUICKBIRD PAN-SHARPENED GÖRÜNTÜSÜ ÜZERİNDEN OTOMATİK DETAY ÇIKARIMI VE COĞRAFİ BİLGİ SİSTEMLERİNE

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

ZONGULDAK ORMANLIK ALANLARINDAKİ KAÇAK YAPILAŞMANIN UYDU GÖRÜNTÜLERİNDEN OTOMATİK NESNE ÇIKARIMI YAPILARAK CBS İLE ANALİZİ

ZONGULDAK ORMANLIK ALANLARINDAKİ KAÇAK YAPILAŞMANIN UYDU GÖRÜNTÜLERİNDEN OTOMATİK NESNE ÇIKARIMI YAPILARAK CBS İLE ANALİZİ ZONGULDAK ORMANLIK ALANLARINDAKİ KAÇAK YAPILAŞMANIN UYDU GÖRÜNTÜLERİNDEN OTOMATİK NESNE ÇIKARIMI YAPILARAK CBS İLE ANALİZİ * H. Akçın, A. M. Marangoz, S. Karakış, H. Şahin *Zonguldak Karaelmas Üniversitesi

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

BURSA YENI METROPOLITAN ALANI SAYISAL FOTOGRAMETRIK TEMEL PLANLARININ YAPILMASI PROJESI

BURSA YENI METROPOLITAN ALANI SAYISAL FOTOGRAMETRIK TEMEL PLANLARININ YAPILMASI PROJESI BURSA YENI METROPOLITAN ALANI SAYISAL FOTOGRAMETRIK TEMEL PLANLARININ YAPILMASI PROJESI H. Kutoğlu a,, M. Oruç a, Ç. Mekik a, A.M. Marangoz a, K.S. Görmüş a, F. Aliyazıcıoğlu a a BEU, Mühendislik Fakültesi,

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİ ÖZET Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi, Harita Mühendisliği Bölümü, 34220, Davutpaşa,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK ÜRÜNLER BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ GİRİŞ Giriş Ortofoto Ortofoto Ürün

Detaylı

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu nmusaoglu@ins.itu.edu.tr İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

LIDAR VE YERSEL LAZER TARAYICI SİSTEMLERİ. Yersel Lazer Tarayıcı Hakkında Genel Bilgi

LIDAR VE YERSEL LAZER TARAYICI SİSTEMLERİ. Yersel Lazer Tarayıcı Hakkında Genel Bilgi LIDAR VE YERSEL LAZER TARAYICI SİSTEMLERİ LIDAR (Light Detection and Ranging) bir hava taşıtı ya da yersel tarayıcılar tarafından elde edilir. Bazı uygulamalarda sayısal kamera görüntüleri ile birlikte

Detaylı

Mühendislikte Veri Tabanları Dersi Uygulamaları (ArcGIS-SQL)

Mühendislikte Veri Tabanları Dersi Uygulamaları (ArcGIS-SQL) Mühendislikte Veri Tabanları Dersi Uygulamaları (ArcGIS-SQL) İstanbul Teknik Üniversitesi, İnşaat Fakültesi, Geomatik Mühendisliği Bölümü 2014 2015 Güz Yarıyılı Uygulama 2 ArcGIS Yazılımı ile Mekânsal

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

İNSANSIZ HAVA ARAÇLARI İLE ELDE EDİLEN VERİLERDEN AĞAÇ YÜKSEKLİKLERİNİN TAHMİN EDİLMESİ

İNSANSIZ HAVA ARAÇLARI İLE ELDE EDİLEN VERİLERDEN AĞAÇ YÜKSEKLİKLERİNİN TAHMİN EDİLMESİ 15 [991] İNSANSIZ HAVA ARAÇLARI İLE ELDE EDİLEN VERİLERDEN AĞAÇ YÜKSEKLİKLERİNİN TAHMİN EDİLMESİ Anıl Can BİRDAL 1,Uğur AVDAN 2,Tarık TÜRK 3 ÖZET 1* Arş. Gör., Cumhuriyet Üniversitesi, Geomatik Mühendisliği

Detaylı

Veri toplama- Yersel Yöntemler Donanım

Veri toplama- Yersel Yöntemler Donanım Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN

Detaylı

OBJE TABANLI YAKLAŞIMDA MAKİNE ÖĞRENME ALGORİTMALARININ SINIFLANDIRMA PERFORMANSININ ANALİZİ

OBJE TABANLI YAKLAŞIMDA MAKİNE ÖĞRENME ALGORİTMALARININ SINIFLANDIRMA PERFORMANSININ ANALİZİ OBJE TABANLI YAKLAŞIMDA MAKİNE ÖĞRENME ALGORİTMALARININ SINIFLANDIRMA PERFORMANSININ ANALİZİ T. Kavzoğlu *, İ. Çölkesen, E.K. Şahin Gebze Teknik Üniversitesi, Jeodezi ve Fotogrametri Müh. Bölümü, 41400

Detaylı

Harita Mühendisleri için ArcGIS Eğitimi

Harita Mühendisleri için ArcGIS Eğitimi Harita Mühendisleri için ArcGIS Eğitimi http://facebook.com/esriturkey https://twiter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 4 Gün 24 Saat Harita Mühendisleri için ArcGIS Eğitimi Kursu

Detaylı

Su Üzerindeki Köpr ülerin Nesne Yönelimli Yöntemlerle Far klı Gör üntüler Kullanılarak Çıkarılması

Su Üzerindeki Köpr ülerin Nesne Yönelimli Yöntemlerle Far klı Gör üntüler Kullanılarak Çıkarılması TMMOB Harita ve Kadastro Mühendisleri Odası, 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25 28 Mart 2015, Ankara. Özet Su Üzerindeki Köpr ülerin Nesne Yönelimli Yöntemlerle Far klı Gör üntüler Kullanılarak

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI ÖZET

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI ÖZET III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010 Cilt: II Sayfa: 471-476 YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI Muhittin İNAN 1, Hakan

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

İnsansız Hava Araçları, Çeşitleri, uygulama alanları

İnsansız Hava Araçları, Çeşitleri, uygulama alanları İnsansız Hava Araçları, Çeşitleri, uygulama alanları Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı 61080 Trabzon ogungor@ktu.edu.tr 1 İHA

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

SU KEMERLERİNİN 3D MODELLENMESİNDE UZAKTAN ALGILAMA VE CBS KULLANIMI; KURŞUNLUGERME/İSTANBUL ÖRNEĞİ

SU KEMERLERİNİN 3D MODELLENMESİNDE UZAKTAN ALGILAMA VE CBS KULLANIMI; KURŞUNLUGERME/İSTANBUL ÖRNEĞİ 331 SU KEMERLERİNİN 3D MODELLENMESİNDE UZAKTAN ALGILAMA VE CBS KULLANIMI; KURŞUNLUGERME/İSTANBUL ÖRNEĞİ Cihan Uysal 1, Derya Maktav 1, James Crow 2 1 İstanbul Teknik Üniversitesi, Jeodezi ve Fotogrametri

Detaylı

Jeoloji Mühendisleri için ArcGIS Eğitimi

Jeoloji Mühendisleri için ArcGIS Eğitimi Jeoloji Mühendisleri için ArcGIS Eğitimi http://facebook.com/esriturkey https://twiter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 4 Gün 24 Saat Jeoloji Mühendisleri için ArcGIS Eğitimi Genel

Detaylı

Sayısal Ve Analog Hava Kameralarının Geometrik Potansiyellerinin Fotogrametrik Açıdan İrdelenmesi

Sayısal Ve Analog Hava Kameralarının Geometrik Potansiyellerinin Fotogrametrik Açıdan İrdelenmesi Harita Teknolojileri Elektronik Dergisi Cilt: 2, No: 2, 2010 (1-11) Electronic Journal of Map Technologies Vol: 2, No: 2, 2010 (1-11) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:xxx-xxx

Detaylı

NESNE TABANLI VE PİKSEL TABANLI SINIFLANDIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI ( IKONOS ÖRNEĞİ )

NESNE TABANLI VE PİKSEL TABANLI SINIFLANDIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI ( IKONOS ÖRNEĞİ ) NESNE TABANLI VE PİKSEL TABANLI SINIFLANDIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI ( IKONOS ÖRNEĞİ ) K. Kalkan 1, D. Maktav 2 1 İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul.

Detaylı

Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır.

Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır. Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır. İldeki madencilik faaliyetlerinin yapıldığı alanların çoğu orman

Detaylı

EFFECT OF SPATIAL RESOLUTION ON WATERSHED CHARACTERISTICS: AFYONKARAHISAR CAY STREAM WATERSHED

EFFECT OF SPATIAL RESOLUTION ON WATERSHED CHARACTERISTICS: AFYONKARAHISAR CAY STREAM WATERSHED EFFECT OF SPATIAL RESOLUTION ON WATERSHED CHARACTERISTICS: AFYONKARAHISAR CAY STREAM WATERSHED Afyon Kocatepe Üniversitesi emintas@aku.edu.tr ÖZET: Hidrol (DEM) edilmektedir. DEM 0 m Anahtar sözcükler:

Detaylı

İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava

İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava Kameralarının Sağlayacağı Faydalar.7 Pramit Oluşturma.10 Kolon

Detaylı

INSAR SYM Referanslığında Farklı Tekniklerle Üretilmiş SYM lerin Doğruluk Analizleri

INSAR SYM Referanslığında Farklı Tekniklerle Üretilmiş SYM lerin Doğruluk Analizleri INSAR Referanslığında Farklı Tekniklerle Üretilmiş lerin Doğruluk Analizleri Umut Güneş SEFERCİK Zonguldak Karaelmas Üniversitesi, Jeodezi ve Fotogrametri Mühendisliği Bölümü, Zonguldak ugsefercik@hotmail.com

Detaylı

STERO ASTER UYDU GÖRÜNTÜLERİNDEN SAYISAL YÜKSEKLİK MODELİ OLUŞTURMA VE DOĞRULUK ANALİZLERİ

STERO ASTER UYDU GÖRÜNTÜLERİNDEN SAYISAL YÜKSEKLİK MODELİ OLUŞTURMA VE DOĞRULUK ANALİZLERİ STERO ASTER UYDU GÖRÜNTÜLERİNDEN SAYISAL YÜKSEKLİK MODELİ OLUŞTURMA VE DOĞRULUK ANALİZLERİ Ali Özgün OK ve Mustafa TÜRKER Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeodezi ve Coğrafi Bilgi

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI Hazırlayan Müh. Uzm. İbrahim ÇETİN İst,2012 PHOTOMOD YAZILIMI İLE 3 BOYUTLU DEĞERLENDİRME 1. Proje Dosyası

Detaylı

HAVA FOTOĞRAFLARININ YÖNELTİLMESİNDE GPS/IMU İLE DOĞRUDAN COĞRAFİ KONUMLANDIRMA DOĞRULUĞUNUN ARAŞTIRILMASI

HAVA FOTOĞRAFLARININ YÖNELTİLMESİNDE GPS/IMU İLE DOĞRUDAN COĞRAFİ KONUMLANDIRMA DOĞRULUĞUNUN ARAŞTIRILMASI HAVA FOTOĞRAFLARININ YÖNELTİLMESİNDE GPS/IMU İLE DOĞRUDAN COĞRAFİ KONUMLANDIRMA DOĞRULUĞUNUN ARAŞTIRILMASI A.C. Kiracı, A.Yılmaz, O. Eker, H.H.Maraş L.İşcan Harita Genel Komutanlığı, Fotogrametri Dairesi,

Detaylı

Ö. Kayman *, F. Sunar *

Ö. Kayman *, F. Sunar * SPEKTRAL İNDEKSLERİN LANDSAT TM UYDU VERİLERİ KULLANILARAK ARAZİ ÖRTÜSÜ/KULLANIMI SINIFLANDIRMASINA ETKİSİ: İSTANBUL, BEYLİKDÜZÜ İLÇESİ, ARAZİ KULLANIMI DEĞİŞİMİ Ö. Kayman *, F. Sunar * * İstanbul Teknik

Detaylı

Arş.Gör.Hüseyin TOPAN - http://jeodezi.karaelmas.edu.tr 1

Arş.Gör.Hüseyin TOPAN - http://jeodezi.karaelmas.edu.tr 1 Mikrodalga radyometre UZAKTAN ALGILAMADA GÖRÜNTÜLEME SİSTEMLERİ Hüseyin TOPAN Algılayıcı Pasif amaçlı olmayan amaçlı Manyetik algılayıcı Gravimetre Fourier spektrometresi Diğerleri Optik Film tabanlı Dijital

Detaylı

İSTANBUL ANADOLU YAKASI 2B ALANLARININ UYDU GÖRÜNTÜLERİ İLE ANALİZİ

İSTANBUL ANADOLU YAKASI 2B ALANLARININ UYDU GÖRÜNTÜLERİ İLE ANALİZİ TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı 28 Mart - 1 Nisan 2005, Ankara İSTANBUL ANADOLU YAKASI 2B ALANLARININ UYDU GÖRÜNTÜLERİ İLE ANALİZİ N. Musaoğlu,

Detaylı

İHA İLE FOTOGRAMETRİK VERİ ÜRETİMİ

İHA İLE FOTOGRAMETRİK VERİ ÜRETİMİ 245 [972] İHA İLE FOTOGRAMETRİK VERİ ÜRETİMİ Ilgın ÖZEMİR 1, Melis UZAR 2 Harita Mühendisi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 34349, İstanbul, ilginozemir@gmail.com 2 Yrd. Doç. Dr.,

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

ArcGIS ile Su Yönetimi Eğitimi

ArcGIS ile Su Yönetimi Eğitimi ArcGIS ile Su Yönetimi Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Su Yönetimi Genel Bir platform olarak ArcGIS,

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA. (Photointerpretation and Remote Sensing)

FOTOYORUMLAMA UZAKTAN ALGILAMA. (Photointerpretation and Remote Sensing) FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 COĞRAFİ BİLGİ BİLGİSİSTEMİ İÇİN İÇİN ÖNEMLİ VERİ VERİTOPLAMA YÖNTEMLERİ YATAY YATAY ÖLÇMELER (X,Y) (X,Y) YATAY YATAY AÇILAR

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOGRAMETRİDE ALGILAMA SİSTEMLERİ, ÖZELLİKLERİ ve SAĞLADIKLARI VERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI. Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi

EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI. Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi Havza Veritabanının Oluşturulması (ArcHydro) Baraj ve gölet gibi

Detaylı

NESNE-TABANLI GÖRÜNTÜ ANALİZİ VE IKONOS PAN-SHARPENED GÖRÜNTÜSÜNÜ KULLANARAK YOL VE BİNALARIN ÇIKARIMI

NESNE-TABANLI GÖRÜNTÜ ANALİZİ VE IKONOS PAN-SHARPENED GÖRÜNTÜSÜNÜ KULLANARAK YOL VE BİNALARIN ÇIKARIMI TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı 28 Mart - 1 Nisan 2005, Ankara NESNE-TABANLI GÖRÜNTÜ ANALİZİ VE IKONOS PAN-SHARPENED GÖRÜNTÜSÜNÜ KULLANARAK YOL

Detaylı