Fonksiyon Optimizasyonunda Genetik Algoritmalar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Fonksiyon Optimizasyonunda Genetik Algoritmalar"

Transkript

1 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu için minimum enerjili durumlar aranır. N değişkenli f( ) fonksiyonunun sayısal yöntemlerle minimumunu bulmak oldukça zor bir problemdir 1. Fonksiyonun alabileceği değerler uzayı büyük olduğunda bu problem daha da zorlaşır. Bu tip problemler için daha önce simulated annealing yöntemi incelenmişti ve orada minimizasyon probleminin numerik çözümündeki güçlüklerden de bahsedilmişti. f( ) fonksiyonunun minimumunu bulmak ile f( ) fonksiyonunun maksimumunu bulmak aynı şey olduğu için genel olarak fonksiyonun optimumunu bulma probleminden bahsedilebilir. 2 Temel Kavramlar Genetik Algoritma 1975 de[1] ortaya atılmış ve 90 ların ortasından itibaren çeşitli problemlerde ve disiplinlerde yaygın olarak kullanılmaya başlanmıştır. Temelde doğadaki evrim ile birebir benzerdir, temelini canlıların evriminden almıştır. Problemin aranan çözümü -simulated annealing de olduğu gibi- olası çözümlerin arasından probleme bağlı geliştirilen algoritma ile aranır. Bu arama, olası çözümlerin bulunduğu uzayda rasgele elemanlardan başlayan ve aranan elemana (çözüme) doğru giden bir harekettir. Hareketi algoritma belirler. Genetik algoritmada bu uzayın elemanları (olası çözümler) ikilik (binary) ya da başka bir sistemde (Gray vb.) yazılmış kromozom benzeri dizilerle temsil edilir. Problem çözümlerinin temsili problem bağımlıdır. Bu olası çözümlerin oluşturduğu topluluk popülasyondur. Algoritma ile popülasyon evrim geçirir ve ve her evrim basamağında popülasyon elemanları olan çözümler aranan çözüme biraz daha yaklaşır. Algoritmada iki şey belirlenmiş olmalıdır 1. Problem çözümlerinin kodlanması 2. Problem çözümlerinin aranan çözüme yakınlığının ölçüsü olan uygunluk fonksiyonu (fitness function) 2.1 Kodlama İkilik sistemdeki kodlama kullanılan kodlama yöntemlerinden biridir. Onluk sistem günlük hayatta genelde kullanılan sistemdir abcd = a 3 + b 2 + c 2 + d 0 (1) 1 Gezgin satıcı problemi de böyle bir problemdir, problemde N tane noktayı birleştiren en kısa kapalı yol aranır ve nokta sayısı arttıkça problemin kesin çözümü imkansız hale gelir 1

2 Burada a, b, c, d, [0, 9] aralığında rakamlardır. Benzer olarak ikilik sistemde yazılmış bir dizinin onluk sistemdeki değeri yzt = y2 2 + z2 2 + t2 0 (2) dir ve burada,y,z,t, [0, 1] aralığında rakamlardır. Genelde kullanılan onluk sistemdeki sayılar ikilik sisteme çevrilerek elde edilen diziler genetik algoritma ile çözümde kullanılabilir. Örneğin, 13 = , (3) 2.2 Uygunluk fonksiyonu Popülasyondaki bir elemanın (olası bir çözümün) aranan elemana (gerçek (aranan) çözüme) yakınlığının ölçüsünü verecek şekilde seçilmiş fonksiyondur. Optimizasyon problemlerinde bu fonksiyon, optimumu aranan fonksiyon olarak seçilebilir. f( ) fonksiyonunun maksimum değeri aranıyor olsun. Başlangıç popülasyonunda -çözüm aralığında rasgele seçilmiş- bulunan N tane eleman 1, 2,..., N { i },i = 1...N bulunsun. f i f( i ) olmak üzere, i. elemanın uygunluğu, olmak üzere f = N f i (4) ile verilir. Bu durumda f popülasyonun uygunluğunun bir ölçüsü olacaktır. f ī f i=1 (5) 3 Algoritma Algoritma, var olan bir popülasyonu (olası çözümleri) aşağıdaki adımlarla uygunluğu daha yüksek olan bir popülasyona (gerçeğe daha yakın olası çözümlere) evirir. Burada özel olarak genetik algoritmanın fonksiyon optimizasyonunda kullanımı verilecektir. f( ) fonksiyonunun [a,b] aralığında maksimumu aranıyor olsun. 1. Başlangıç popülasyonunun oluşturulması, ve uygunlukların hesaplanması { i },i = 1...N i [a,b] Tüm i ler seçilen kodlamaya göre kodlanır Tüm i ler için f i ve buradan da sistemin uygunluğu f (4) den hesaplanır, böylece popülasyondaki tüm elemanlar için uygunluklar (f i / f) hesaplanabilir 2. Popülasyonun evrimi Popülasyondaki uygunluğu yüksek elemanlar seçilerek ara popülasyon oluşturulur, bunun için bir yol şudur: (,y 0 9 arası rakamlar olmak üzere) uygunluğu.y olan elemandan 1.0 olasılığıyla tane eleman, 0.y olasılığıyla + 1 tane eleman ara popülasyona alınır. 2

3 Yani bu elemandan ara popülasyona tane alınır, bir tane daha alınma olasılığı 0.y dir. 2 Uygunluğu 0.y olan elemanda ara popülasyona 0.y olasılığıyla alınır Ara popülasyondan rasgele seçilen iki eleman p b olasılığıyla birleştirilerek iki yeni eleman oluşturulur (crossover) A,B iki eleman olmak üzere, her ikiside rasgele bir yerden bölünür. A dan, A 1,A 2 ve B den, B 1,B 2 olmak üzere iki parça oluşur. A 1 ile B 1, A 2 ile B 2 aynı uzunluktadır. Yeni iki eleman A 1 ile B 2 nin ve B 1 ile A 2 nin birleşiminden oluşacaktır. Örneğin ve 100 şeklindeki iki eleman 3. noktalarından birleştirilerek 000 ve 111 şeklinde iki yeni eleman oluşturur. Bu birleşmenin olup olmayacağı p b oalsılığıyla belirlenir, yani r, [0, 1] aralığında rasgele bir sayı olmak üzere r < p b ise birleşme olur, değilse olmaz. Son durumda iki eleman da aynen sonraki popülasyona alınacaktır. Oluşan elemanlar p m olasılığıyla mutasyona uğrar. Mutasyon sonucu bir elemandaki bir bit ters çevrilir. Örneğin şeklindeki bir eleman mutasyon sonucu şeklinde dönüşebilir. Burada 3. bit ters çevrilmiştir. 3. Ara popülasyondan yukarıdaki gibi oluşturulan N elemanlı sonraki popülasyon yine 2. deki işlemlerle evrilir. Seçilen durma kriteri gerçekleştiğinde elde edilen popülasyon elemanları aranan çözümü temsil eden elemanlar olacaktır. p b ve p m olasılıkları program boyunca sabittir ve tipik değerleri sırasıyla , civarındadır. 4 Bir Boyutlu Probleme Uygulama f = + cos( ) + fonksiyonunun (0, 31) aralığında tamsayı maksimumunu arayalım. Gerçek çözüm = 31 dir. Programda p b = 0.7,p m = 0.1, N = elemanlı popülasyonlar ve 0 evrim basamağı kullanılmıştır. Çözüm uzayı 32 elemanlıdır ve 0 31 arası tamsayıları içerir. Kodlama ikilik tabanda yapılmıştır ve 5 bitlik diziler kullanılmıştır. Uygunluk fonksiyonu olarak maksimumu aranan f fonksiyonu kullanılmıştır. Programda üretilen başlangıç poopülasyonu ve uygunluk değerleri tablodadır. ilk adımda uygunluk değeri yüksek olan 29(4), 26(2), 19(3), 13(1), (1) elemanlarından parantez içinde belirtiklen sayılarda ara popülasyona seçilmiş ve bunlardan rasgele seçilen elemanların p b olasılığıyla birleşmesi ve oluşan elemanların p m olasılııyla mutasyon geçirmesi sonucu bir sonraki popülasyon elemanları 31(1), 29(1), 27(2), 25(3), 21(1) yine parantez içinde belirtilen sayılarda oluşturulmuştur. Ilk adım sonrasında popülasyonun uygunluk değeri e yükselmiştir. İlk popülasyonda olmayan 31, 27, 25, 21, 18, 14 olası çözümlerinin ortaya çıkması birleşme ve mutasyon sonucudur, 1, 7 gibi ilk popülasyonda olan ve uygunluğu düşük olan çözümlerin de elenmiş olması yine algoritmadaki seçim ile olmuştur ve doğadaki doğal seleksiyon ile birebir benzerdir. 2 r [0, 1] arası üretilen rasgele sayı olmak üzere r < 0.y ise alınır 3

4 Şekil 1: f = + cos( ) + fonksiyonunun (0, 31) aralığındaki davranışı kodlama f i / f Tablo 1: Örnek problem için başlangıç popülasyonu ve elemanların uygunluk değerleri, popülasyonun uygunluk değeri.55 Program boyunca popülasyonun uygunluk değerinin değişimi aşağıdaki grafikte görülebilir. Evrim sürecinde zaman ilerledikçe popülasyondaki elemanların temsil ettiği çözümler de gerçek (aranan) çözüme yaklaşmaktadır. Popülasyonun içerdiği elemanların gerçek (aranan) çözüme yakınlığının ölçüsü olan popülasyonun uygunluk değerinin zamanla değişiminden (Şekil 2) bu görülebilir. Şekil 3 den de ilerleyen evrim basamaklarında, popülasyon elemanı olan olası çözümlerin (şekildeki siyah noktalar), gerçek çözüme yaklaştığı görülebilir. References [1] Holland J., Adaptation in natural and artificial systems, 1975, University of Michigan Pres. 4

5 Şekil 2: 0 adımlık evrim boyunca popülasyonların uygunluk değerlerinin zamanla değişimi 5

6 (a) t = (b) t = (c) t = (d) t = (e) t = (f) t = 0 Şekil 3: Evrim boyunca farklı zaman adımlarında popülasyondaki elemanların temsil ettiği çözümler 6

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

Self Organising Migrating Algorithm

Self Organising Migrating Algorithm OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com

Detaylı

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:

Detaylı

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Levent Gürel ve Özgür Ergül Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi, Ankara lgurel@bilkent.edu.tr

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri 2. SAYI SİSTEMLERİ VE KODLAR Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri 2. Kayan Noktalı Sayı Sistemleri 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük

Detaylı

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016 MS Excel Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde hesap yapabilme, tablolar içinde verilerle grafik oluşturma, verileri karşılaştırıp sonuç üretebilme

Detaylı

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Doğrudan erişimli dosya organizasyonu Sunum planı Doğrudan erişimli dosyalar Anahtar değerin tek adres olması durumu Anahtar

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel Formüller ve Fonksiyonlar Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel de Yapabileceklerimiz Temel aritmetik işlemler (4 işlem) Mantıksal karşılaştırma işlemleri (>,>=,

Detaylı

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme Giriş MİKROİŞLEMCİ SİSTEMLERİ Bilgisayar teknolojisindeki gelişme Elektronik öncesi kuşak Elektronik kuşak Mikroişlemci kuşağı Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 Bilgisayar Tarihi Elektronik Öncesi Kuşak

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

KODLAMA VE HATA BULMA TEKNİKLERİ

KODLAMA VE HATA BULMA TEKNİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Tasarım Laboratuvarı KODLAMA VE HATA BULMA TEKNİKLERİ Kodlama eleketronik dünyasında çok sık kullanılan, hatta

Detaylı

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept.

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı BÖL-1B Fatih University- Faculty of Engineering- Electric and Electronic Dept. İŞARETLİ SAYILAR Bilgisayar gibi

Detaylı

Formüller ÜNİTE 5. Bu üniteyi çalıştıktan sonra; Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama

Formüller ÜNİTE 5. Bu üniteyi çalıştıktan sonra; Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama Formüller ÜNİTE 5 Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama Bu üniteyi çalıştıktan sonra; Microsoft Excel hakkında temel işlemler öğrenildikten sonra hücrelere uygulanacak

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Şerif Okumuş Melih Orhan Bilgisayar Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta {serifokumus,melihorhan}@yahoo.com.tr

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E )

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E ) 1 4 5 2 3 6 Bir sınıfın öğrencilerinden her biri matematik, fizik ve kimya derslerinin yalnız birinden 5 almıştır. Bu sınıftaki öğrencilerin 1/8'i kimyadan 5 almıştır. 15 öğrenci fizikten 5 alamamıştır.

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI . 3007 (30 305) (3006 300) işleminin sonucu kaçtır? A) 304 B) 305 C) 306 D) 307 3. 8 kesri tanımsızdır. a b 5a 2b = 8 ise, a kaçtır? A) 3 B) 4 C) 5 D) 6 4. a değeri değiştikçe b değerinin de a ya bağlı

Detaylı

KLASİK ÇARPMA ALGORİTMALARININ DONANIMSAL SİMÜLASYONLARI VE PERFORMANS DEĞERLENDİRİMİ

KLASİK ÇARPMA ALGORİTMALARININ DONANIMSAL SİMÜLASYONLARI VE PERFORMANS DEĞERLENDİRİMİ KLASİK ÇARPMA ALGORİTMALARININ DONANIMSAL SİMÜLASYONLARI VE PERFORMANS DEĞERLENDİRİMİ R. Selami Özbey 1 ve Ahmet Sertbaş 2 1 TUBİTAK/UEKAE (Ulusal Elektronik ve Kriptoloji Araştırma Enstitüsü) 2 İstanbul

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

Veri Yapıları Laboratuvarı

Veri Yapıları Laboratuvarı 2013 2014 Veri Yapıları Laboratuvarı Ders Sorumlusu: Yrd. Doç. Dr. Hakan KUTUCU Lab. Sorumlusu: Arş. Gör. Caner ÖZCAN İÇİNDEKİLER Uygulama 1: Diziler ve İşaretçiler, Dinamik Bellek Ayırma... 4 1.1. Amaç

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ GAP IV. Mühendislik Kongresi Bildiriler Kitabı, 06-08 Haziran 2002, Şanlıurfa. Proceedings of the Fourth GAP Engineering Congress, 06-08 June 2002, Şanlıurfa. GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır)

ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır) Yasal Dayanak/Tebliğ ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır) Amaç ve kapsam MADDE 1 (1) Bu Tebliğin amacı uluslararası

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Dizgi Eşleme Algoritmaları

Detaylı

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı 2 6 Nisan 2007, Ankara ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

Fonksiyon Blokları Açıklamaları

Fonksiyon Blokları Açıklamaları Fonksiyon lokları Açıklamaları A İsim PWM Fonksiyonu Açıklama Sayısal girişi On/Off kontrole çevirir. Kullanım alanı aha çok PI kontrol sonrası çıkışın On/Off olarak yapıldığı proseslerde kullanılır. Kullanımı

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (*) (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır)

ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (*) (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır) Yasal Dayanak/Tebliğ Amaç ve kapsam ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ (*) (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır) MADDE 1 (1) Bu Tebliğin amacı

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

Access e Nasıl Ulaşılır. Araç çubuklarını yeniden düzenlemek için Görünüm komutunun Araç çubukları seçeneği kullanılır.

Access e Nasıl Ulaşılır. Araç çubuklarını yeniden düzenlemek için Görünüm komutunun Araç çubukları seçeneği kullanılır. 1 Access e Nasıl Ulaşılır Araç çubuklarını yeniden düzenlemek için Görünüm komutunun Araç çubukları seçeneği kullanılır. 2 Çeşitli araç çubukları arasında seçim yapılarak pencere üzerine eklenebilir. Bunun

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 8. HAFTA Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU*

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU* makale Ayşe KAHVEĐOĞLU * Yrd. Doç. Dr., Anadolu Üniversitesi ONAILABĐLĐ ELEMANLAA ÖNLEYĐĐ BAKIMIN EKĐSĐ VE OĐMĐZASYONU* GĐĐŞ Bakım faaliyetinin temel amacı, olabilecek muhtemel arızaların önlenmesi veya

Detaylı

Temel Matematik Testi - 8

Temel Matematik Testi - 8 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D008. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI TOLERANSLAR P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L I H O Ğ LU Tolerans Gereksinimi? Tasarım ve üretim

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır.

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. KONTROL TESTİ - 4. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. Bu galerilerden rastgele alınan bir aracın A markasından olduğu

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

ADC Devrelerinde Pratik Düşünceler

ADC Devrelerinde Pratik Düşünceler ADC Devrelerinde Pratik Düşünceler ADC nin belki de en önemli örneği çözünürlüğüdür. Çözünürlük dönüştürücü tarafından elde edilen ikili bitlerin sayısıdır. Çünkü ADC devreleri birçok kesikli adımdan birinin

Detaylı

Bilgi ve Bilgi Sistemleri. Bilgisayar Mühendisliğine Giriş 1

Bilgi ve Bilgi Sistemleri. Bilgisayar Mühendisliğine Giriş 1 Bilgi ve Bilgi Sistemleri Bilgisayar Mühendisliğine Giriş Sembol, Veri, Bilgi, Anlamlı Bilgi Anlamlı Bilgi (Knowledge) Bilgi, (Information) Veri(Data) Sembol (Symbol) Örnek: Semboller: 0,,2,.8,9,A,.,Y,Z,%,+,=,!

Detaylı

2. SAYI SİSTEMLERİ. M.İLKUÇAR - imuammer@yahoo.com

2. SAYI SİSTEMLERİ. M.İLKUÇAR - imuammer@yahoo.com Sayı Sistemleri İşlemci elektrik sinyalleri ile çalışır, bu elektrik sinyallerini 1/0 şeklinde yorumlayarak işlemcide olup bitenler anlaşılabilir hale getirilir. Böylece gerçek hayattaki bilgileri 1/0

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

d) Müşteri: Bankalardan hizmet alan gerçek ve tüzel kişileri

d) Müşteri: Bankalardan hizmet alan gerçek ve tüzel kişileri Türkiye Cumhuriyet Merkez Bankasından : ULUSLARARASI BANKA HESAP NUMARASI HAKKINDA TEBLİĞ 1 (Sayı: 2008/6) (10 Ekim 2008 tarih ve 27020 sayılı Resmi Gazete de yayımlanmıştır.) Amaç ve kapsam MADDE 1 (1)

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı