Dr. Mehmet AKSARAYLI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Dr. Mehmet AKSARAYLI"

Transkript

1 Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans Süreli Şans Bl. 4 Değişenleri Değişenleri Bl. Dr. Mehmet AKSARAYLI Kesili Şans Değişenleri 1. Sayısal bir değerle ifade edilen bir olay ara atımındai tura sayısı, 1 yada tura gözlenmesi. Kesili şans değişeni ; Tam sayılar: (, 1,, 3 vb.) Sayara elde edilmiş sayılar Kesili Şans Değişeni Örneleri Deney Şans Değişeni Mümün Değerler 1 Satış araması yama Satış sayısı, 1,,..., 1 7 radyoyu muayene etme Kusurlu sayısı, 1,,..., 7 33 soruya ceva verme Doğru sayısı, 1,,..., 33 11: ile 13: arasında gişedei araba sayısı Gelen araba sayısı, 1,,..., 3 4 Kesili Olasılı Dağılımı Tüm mümün [ i, ( i ) ] çiftlerini içerir. i = Şans değişeninin değeri (çıtı) ( i ) = Değerlerle ilgili olasılılar, D tanım aralığına sahi esili bir şans değişeni olsun. () in e ait bir olasılı fonsiyonu olabilmesi için; Her için () ve () = 1 olmalıdır. Kesili olasılı dağılımı örneği: Olay: arayı atı turaları sayıyoruz. Olasılı Dağılımı Değerler, i Olasılılar, ( i ) 1/4 =. 1 /4 =. 1/4 =. 6 1

2 Kesili Olasılı Dağılımlarının Görselleştirilmesi Kesili Rassal Değişenin Ortalaması ve Standart Saması Listeleme { (,.), (1,.), (,.) } Tablo # Tura Fr. (i) in belenen değeri = = E() = in varyansı = D. ( ) E( ) E( ) V() = E[ ( i ( i f( i ) = ()... Grafi 1 Denlem n! ) ( 1 )!( n )! n 7 8 Örne: Bir otomobil bayisinin günlü araba satışlarının dağılımının aşağıdai gibi olduğunu ifade etmetedir ),,8,1,19,4,17,1,4,1 Bu dağılışa göre bayinin; a) ten fazla araba satması olasılığını bulunuz = 6) + P ( = 7 ) + P ( = 8 ) =,1 b) Satışların belenen değerini hesalayı yorumlayınız. E() = i ) = ()(,)+(1)(,8)+()(,1)+.+(8)(,1) =3,7 Bayinin 1 günde 37 araba satışı yaması belenir. c) Satışların varyansını bulunuz. E( ) = =( )(,)+(1 )(,8)+.+ (8 i ) )(,1) = 16,68 Var()= E( ) - [E()] = 16,68 - (3,7) =,84 9 Kesili Olasılı Dağılımları Kesili Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom (Pascal) Dağılımı Geometri Dağılım Hiergeometri Dağılım Poisson Dağılımı 1 Kesili Üniform Dağılımı Kesili bir şans değişeni tanımlı olduğu tüm notalarda eşit olasılı değerine sahi ise bir başa ifadeyle tanımlı olduğu değerlerin hesinde olasılı fonsiyonun aldığı değer sabit ise bu esili şans değişeni Kesili Uniform dağılımına uygundur. Kesili Uniform dağılımı gösteren bir şans değişeni farlı notada tanımlı ise olasılı dağılımı; 1 ) şelinde ifade edilir. 1,,3..., d. d Kesili Üniform Dağılımının Belenen Değer ve Varyansı 1 E( ) ) i i i 1 1 ( 1)( 1) Var( ) 1 1 ( 1)

3 Bernoulli Deneyleri Örne: Hilesiz bir zar atıldığında şans değişeni ortaya çıabilece farlı durum sayısını ifade ettiğinegöre inolasılı dağılımı oluşturara belenen değerini ve varyansını bulunuz. S = { / 1,,3,4,,6 } Ortaya çıan olaylar eşit olasılılı olaylar şans değişeninin dağılımı = 6 olan esili üniform dağılımına uygundur. 1 ) E( ) 3, 1,,3,4,,6 d. d (6 1)(6 1) 3 Var( ) = ) : = olması olasılığı n : örne hacmi : başarı olasılığı : örnetei başarı sayısı ( =, 1) E() = V() =. q Sonuçlar ii ategoride tolanabilir. Aynı oşullarda terarlanabilirli özelliği vardır. Başarı olayı deneyden deneye değişmez. Bernoulli Dağılımı Te bir Bernoulli deneyinin sonucunu ele alır. Olasılı Yoğunlu Fonsiyonu: P ( ) ( 1) 14 1 Binom Dağılımı Binom Dağılımının Özellileri n deneme (gözlem) li bir örnetei başarı sayısı (n adet Bernoulli denemesi) birimden oluşan bir grutai usurlu sayısı 33 sorulu bir sınavdai doğru ceva sayısı Düana giren 1 müşteriden alışveriş yaanların sayısı İi farlı örneleme metodu Sonsuz oulasyonda yerine oymadan örneleme Sonlu oulasyonda yerine oyara örneleme n adet benzer deneme Her denemenin çıtısı var Başarı (İstenen çıtı) or Başarısızlı Sabit deneme olasılığı Denemeler birbirinden bağımsız 1 16 Binom Olasılı Dağılımı Örneği Binom Dağılımının Olasılı Fonsiyonu n! P n n (, ) ( 1!( )! ) = n,) : = olması olasılığı n : örne hacmi : başarı olasılığı : örnetei başarı sayısı ( =, 1,,..., n) 17 n Olay: Bir arayı ardarda 4 ez atalım. Yazıların sayısıyla ilgilenelim. 3 yazı gelme olasılığı nedir? n! P n n (, ) ( 1!( )! ) 4! P ( 3 4,. )!( )!. ( ). 18 n

4 Binom Dağılımının Karateristileri Başarı Olasılığı ve Binom Dağılımının Biçimi Aritmeti Ortalama E ( ) n Standart Sama n ( 1) ) ) n = = n = = N adetli bir denemede; 1. Eğer =. ise binom dağılımı simetri. Eğer <. ise binom dağılımı sağa çarı 3. Eğer >. ise binom dağılımı sola çarı 19 Negatif Binom (PASCAL) Dağılımı Örne: Bir işletmede üretilen ürünlerin % 6 sının hatalı olduğu bilinmetedir. Rasgele ve iadeli olara seçilen üründen, a)1 tanesinin hatalı olmasının olasılığını, b) En az 4 tanesinin hatalı olmasının olasılığını hesalayınız. =,6 1- =,94 n = a)p (=1)=? b)p ( 4)=? 4)= =4)+=) 1 4 1). (,6).(,94), (,6).(,94). (,6).(,94) Bernoulli deneyinin tüm varsayımları negatif binom dağılımı içinde geçerlidir. Binom dağılımında n denemede adet başarı olasılığı ile ilgileniliren, negatif binom dağılımında ise şans değişeni()ncıbaşarıyı elde edinceye adar yaılan deney sayısına arşılı gelir. Örneler: Bir arayı ez tura gelinceye adar attığımızda nci turayı elde ettiğimiz deneme sayısı, Bir basetbolcunun 3 sayılı atışlarda 1 ncu isabeti sağlaması için gereli olan atış sayısı. 1 :deneysayısı :başarı sayısı :başarı olasılığı S = { /, +1, +, +3 } Negatif Binom Dağılımının Belenen Değer ve Varyansı Binom dağılımını ullanara -1 denemede -1 adet başarı olasılığını hesalanır ve nci denemedei ncı başarıyı elde etme olasılığı ile bağımsız olaylar olduğundan çarılara aşağıdai olasılı fonsiyonu elde edilir. 1 1, 1,,... ) 1 d. d 3 E ) (1 ) Var( ) ( Yandai histogram =, ve = 8 arametreli negatif binom dağılım gösteren bir oulasyondan alınmış 1 hacimli bir örne için oluşturulmuştur , 1, 1, 14, 16, 18,,, 4 4, 4

5 Örne: Bir işinin hilesiz bir zarı 1 ez atması sonucunda, 1 ncu atışında nci ez 6 gelmesi olasılığını hesalayınız. =1/6 1-=/6 =1 = P ( 1 ; ).( ).( 6 Zarın açıncı ez atılması sonucu nci ez 6 gelmesini belersiniz? E( ) ) Geometri Dağılım Bernoulli deneyinin tüm varsayımları geometri dağılım içinde geçerlidir. Negatif Binom dağılımının özel bir durumudur. = 1 olduğunda negatif binom dağılımı geometri dağılımı olara ifade edilir. Geometri dağılım gösteren şans değişeni, il başarıyı elde edinceye adar yaılan deney sayısını ifade eder. Örneler: Bir arayı tura gelinceye adar attığımızda tura gelmesi için yaılan atış sayısı, Bir işletmenin deosundan il hatalı ürünü bulana adar alınan örne sayısı. 6 : deney sayısı : başarı olasılığı S={/1,,3,4..} Negatif Binom dağılımında = 1 alındığında; 1 E( ) Geometri Dağılımının Belenen Değer ve Varyansı 1 Var( ) 1 P ( ) 1 1 ) ) 1 1, 1,,... d. d 1,,3,... d. d Yandai histogram =, arametreli geometri dağılım gösteren oulasyondan alınmış hacimli bir örne için oluşturulmuştur Hiergeometri Dağılım Örne: Bir avcı hedefe isabet sağlayana adar ateş etmetedir. Avcının hedefi vurma olasılığı,7 olduğuna göre avcının hedefi il ez 8 nci ez atış yatığında isabet ettirmesinin olasılığını hesalayınız. =8 =8)=? ),71,7 1 1,,3... d. d Varsayımları, n deneme benzer oşullarda terarlanabilir. Her denemenin mümün sonucu vardır. Sonlu oulasyondan iadesiz örneleme yaılır. Örneleme iadesiz olduğundan başarı olasılığı ( ) deneyden deneye değişir. 8,7 1,7 1,7, 7 8) ÖDEV: Avcının hedefi il ez vurma olasılığı, den az olması için hedefe en az aç ez ateş etmelidir? 9 3

6 Hyergeometric Distribution Formula Hiergeometri Dağılımın Karateristileri (Two ossible outcomes er trial: success or failure) ) C N. n N Cn C Where N = oulation size = number of successes in the oulation n = samle size = number of successes in the samle n = number of failures in the samle = B/N için Yandai histogram N = 1 ve B = arametreli hiergeometri dağılım gösteren oulasyondan alınmış hacimli bir örne için oluşturulmuştur. E( ) n N n Var( ) n(1 ) N Örne: Yeni açılan bir bananın il 1 müşterisi içinde 6 tanesi mevduat hesabına sahitir. İadesiz olara rasgele seçilen 8 müşteriden tanesinin mevduat hesabına sahi olmasının olasılığı nedir? N= 1 B = 6 n = 8 = ,1,,3..., 8 P ( ) 1 8 d. d ) 1 8 ÖDEV: En ço 1 işinin mevduat hesabına sahi olmasının olasılığını hesalayınız. 33 Hyergeometric Distribution Eamle Eamle: 3 Light bulbs were selected from 1. Of the 1 there were 4 defective. What is the robability that of the 3 selected are defective? N = 1 n = 3 = 4 = N 6 Cn C C1 C ) N 1 C C n 3 4 (6)(6).3 1 Poisson Dağılımı Poisson Süreci 1. Bir zaman aralığında oluşan olayların sayısıyla ilgilenir. Birim başına olay Zaman, uzunlu, alan,vb.. Örneğin; daiada gelen müşteri sayısı Bir yıl içindei uça azalarının sayısı Bir metreare umaştai hata sayısı Sabit Olay Olasılığı Her aralıta 1 olay Bağımsız olaylar

7 Poisson Olasılı Dağılım Fonsiyonu Poisson Dağılımının Karateristileri P ( ) e -! = ) : = olma olasılığı = Belenen başarı sayısı e =.7188 = Birim başına başarı sayısı Aritmeti Ortalama E ( ) N i 1 ) Standart Sama i i ) ) = = Poisson Dağılımı Örneği Bir düana saatte 7 müşteri gelmetedir. 3 daia içinde 4 müşteri gelme olasılığı nedir? Saatte 7 müşteri = daiada 1. müşteri = 3 daiada 3.6 müş. - e P ( )! e P ( 436. ) ! 4 BİNOM Dağılımın POİSSON Dağılıma Yalaşımı, Binom dağılıma sahi bir şans değşieni olsun. Deney sayısı nço büyü ve ilgilenilen sonuçların anaütledei oranının ço üçü olduğu durumlarda, (yani n ve ien), n.= sabit bir sayı olma üzere Binom dağılımı Poisson dağılımına yalaşır. n ne adar büyü, ve ne adar üçü olursa bu yalaşım o adar iyi olur. = ÖRNEK:Türiye de maden ocalarında oluşan azalar sonucunda her yıl ortalama olara 1 maden işçisinden bir tanesi hayatını aybetmetedir. maden işçisinin çalıştığı bir maden ocağında bir yıl içinde a) Hiçbir işçinin hayatını aybetmemesi, b) 3 işçinin hayatın aybetmesi, c) den fazla işçinin hayatın aybetmesi olasılılarını bulunuz. ÇÖZÜM: n=, =.1 olduğundan, =n.=.1= alara Poisson dağılımıyla çözüm yaabiliriz. e e a) ).13!! 3 e b) 3).18 3! c) ) 1 ) 1 ) 1) ) e 1.3 1! 1 e ! 41 Örne: Bir mağazaya Cumartesi günleri daiada ortalama olara 4 müşteri gelmetedir. Bir Cumartesi günü bu mağazaya, a) daiaiçinde1müşteri gelmesi olasılığını, b)yarım saate den fazla müşteri gelmesi olasılığını, 4 1 e 4 4 a) 4 =1)=? e 1 4 4! e 4 1! 4 1 1) e 4 ÖDEV: 1 saatte en ço 1 müşteri gelmesinin olasılığını hesalayınız. 4 4! 1! 4e b) d da 4 müşteri gelirse, 3 d da 4 müşteri gelir. 4 P ( > ) =? > ) = 1 [=)+=1)+=)] 1 313e 4 7

8 SORU) Bir hastanenin çocu servisine saatte ortalama 3 hasta gelmetedir. a) Herhangi 1 daialı sürede; hiç hasta gelmeme, b) Herhangi 1 daialı sürede; den fazla hasta gelme, c) Herhangi yarım saatli sürede ten az hasta gelme olasılılarını bulunuz. SORU) Bir fabriada deolanan ürünlerin yüzde birinin bozu olduğu bilinmetedir. Bu fabriadan rassal olara seçilen birimden en az bir tanesinin bozu olması olasılığını Binom ve Poisson dağılımları ile bulunuz SORU: Hilesiz bir tavla zarı atılıyor. Anlaşmaya göre A, babasından her atışta aç gelirse o adar bin lira alacatır. Atış başına A nın belediği ara nedir? SORU: B üç ayrı iyangodan birer adet bilet almıştır. Bu iyangoların birincisinde 1 biletten 1 sine, iincisinde biletten 14 ına, üçüncüsünde ise biletten ine iramiye vardır. Birinci iyangoda azananlardan her biri 1 milyon, iincisinde 1 milyon ve üçüncüsünde milyon $ elde edecetir. B nin belenen iramiye tutarı nedir? 4 46 SORU: Bir işadamının yenibirişletmeden milyar lira aybetmesi olasılığı ( 1 )=,1 ve milyar lira azanması olasılığı ( )=, dir. Bu iş adamının azancı nedir? SORU: Ali hilesiz bir madeni arayı ii defa atıyor. Her ii atışta da yazı gelirse aradaşından bin lira alacatır. Diğer durumlarda ise 1 bin lira verecetir. Ali nin azancı ne olur?

9 SORU: Bir ara 4 ez atılıyor, a) İi tura, b) En az bir tura, c) Üçten az tura gelmesi olasılığı nedir? SORU: Bir futbol taımının yatığı maçlarda azanma olasılığının /3 olduğu biliniyor. Bu taımın yatığı 8 maçtan, a) Beşini, b) Birden fazla faat dört veya daha azını azanması olasılığı nedir? 49 SORU: İi tavla zarının 6defaatılmasında 9tolamının, a) Dört defa, b) En az üç defa elde edilmesi olasılığı nedir? SORU: Bir işletmede üretilen amullerin %6 sının usurluolduğu bilinmetedir. Buna göre, rassal olara seçilen amulden, a) İi tanesinin usurlu, b) Tamamının usursuz, c) En az ii tanesinin usurlu olması olasılıları nedir? 1 Aşağıdai soruları tabloya göre cevalayınız. Esi verilerden yararlanılara bir ce telefonunun yatığı arıza sayıları verilmiştir. () Haftalı Arıza 1 3 Olasılı ),,3,1,3 Soru: Dağılıma göre haftada esinlile ii arıza olma olasılığı açtır? A),1 B), C),3 D),4 E),6 Soru: Dağılıma göre haftada sıfır ile ii arasında arıza olma olasılığı - arıza) açtır? A), B),1 C),3 D),6 E),3 Soru: Dağılıma göre haftada birden ço arıza olma olasılığı açtır? A),3 B),7 C),4 D),1 E),3 Soru: Dağılıma göre haftada en ço ii arıza yama olasılığı açtır? A), B), C),6 D),4 E),1 Soru:Dayanılı tüetim malı satan bir mağazanın son 1 iş günündei günlü satışları aşağıdai tabloda verilmiştir. Satış sayıları Gün sayıları Yuarıdai tabloya göre günlü satışı gösterme üzere, <4) olasılığı açtır? A),4 B),17 C),1 D),33 E), 3 4 9

10 Soru: Bir itaevinin son 1 iş günüdei günlü ita satışları aşağıdai tabloda gösterilmiştir. Satış sayıları Gün sayıları Yuarıdai tabloya göre günlü satışları gösterme üzere, >4) olasılığı açtır? A),1 B),8 C),38 D),68 E),77 1

BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI

BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı 2. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı 5. Geometri Dağılım

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Kesikli Üniform Dağılımı

Kesikli Üniform Dağılımı 9.. KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı. Geometri Dağılım. Hiergeometri Dağılım 7. Poisson Dağılımı

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

A GRUBU SINAV YÖNERGESİ

A GRUBU SINAV YÖNERGESİ Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde urşun alem ullanınız. Soru ve cevap ağıtlarına numaranızı

Detaylı

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1 Dr. Mehmet AKSARAYLI OLASILIK Ders 3 / 1 1 0 Kesin İmkansız OLASILIK; Bir olayın gerçekleşme şansının sayısal değeridir. N adet denemede s adet başarı söz konusu ise, da başarının nisbi frekansı lim (s/n)

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0 SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi (1882-1969) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur.

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 6: Kesikli Olasılık Dağılımları

Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı SAB 101 OLASILIK DERS NOTLARI Prof.Dr. Fatih TANK Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Sigortacılık ve Aktüerya Bilimleri Bölümü Prof.Dr. Fatih TANK - Olasılık Ders Notları- Sayfa : 1/7 Haftalık

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi: İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

Ders 6: Sürekli Olasılık Dağılımları

Ders 6: Sürekli Olasılık Dağılımları Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

DENEY 3. HOOKE YASASI. Amaç:

DENEY 3. HOOKE YASASI. Amaç: DENEY 3. HOOKE YASASI Amaç: ) Herhangi bir uvvet altındai yayın nasıl davrandığını araştırma ve bu davranışın Hooe Yasası ile tam olara açılandığını ispatlama. ) Kütle yay sisteminin salınım hareeti için

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

Stokastik Süreçler. Bir stokastik Süreç ya da rastgele süreç şöyle tanımlanabilir.

Stokastik Süreçler. Bir stokastik Süreç ya da rastgele süreç şöyle tanımlanabilir. Stoasti Süreçler Bir stoasti Süreç ya da rastgele süreç şöyle tanımlanabilir. Zamanla değişen bir rastgele değişendir. Rastgele değişenin alacağı değer zamanla değişmetedir. Deney çıtılarına atanan rastgele

Detaylı

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ İSTATİSTİK Hafta 7.2 Kesikli Olasılık Dağılımları Simeon Poisson a atfen isimlendirilen dağılım, bir örnek uzayın belli bir bölgesi veya zamanındaki olayların sayısının incelendiği kesikli bir olasılık

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

Doç.Dr.İstem Köymen KESER

Doç.Dr.İstem Köymen KESER Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI SAKARYA UNIVERSITESI Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI Prof. Dr. Mustafa AKAL 1 İÇİNDEKİLER 1. BERNOULLİ DAĞILIMI 2. BİNOM DAĞILIMI 3. POİSSON DAĞILIMI 4. PASCAL DAĞILIMI 5. GEOMETRİK DAĞILIM 6. HİPERGEOMETRİK

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Deney Dizaynı ve Veri Analizi Ders Notları

Deney Dizaynı ve Veri Analizi Ders Notları Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM

Detaylı

X = 2 zarın üzerindeki sayıların toplamıdır. Bu durumda: ... Tüm olasılıkların toplamının 1 olması gerekmektedir. ...

X = 2 zarın üzerindeki sayıların toplamıdır. Bu durumda: ... Tüm olasılıkların toplamının 1 olması gerekmektedir. ... Rassal Değişkenler X = 2 zarın üzerindeki sayıların toplamıdır. Bu durumda P X = 2 = 36 P X = 3 = 2 36... P X = 2 = 36 Tüm olasılıkların toplamının olması gerekmektedir. Örnek p = Paranın tura gelme olasılığı

Detaylı

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987 99 ÖYS.,8 (, ), işleminin sonucu açtır? A) B) C) D) E) 7. Raamları sıfırdan ve birbirinden farlı, üç basamalı en büyü sayı ile raamları sıfırdan ve birbirinden farlı, üç basamalı en üçü sayının farı açtır?

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

SÜREKLİ DÜZGÜN DAĞILIM

SÜREKLİ DÜZGÜN DAĞILIM SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.

Detaylı

CHAPTER 5 & 6: DISCRETE AND CONTINUOUS PROB- ABILITY DISTRIBUTIONS

CHAPTER 5 & 6: DISCRETE AND CONTINUOUS PROB- ABILITY DISTRIBUTIONS CHAPTER 5 & 6: DISCRETE AND CONTINUOUS PROB- ABILITY DISTRIBUTIONS Ex: Iki zar ayn anda at yor olal m. E¼ger zarlar n toplam yla ilgileniyorsak, bu rassal bir de¼gişkendir ve X ile gösterilir. x=9 ise

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ Doç. Dr. İhsan KAYA Markov Analizi Markov analizi, bugün çalışan bir makinenin ertesi gün arızalanma olasılığının

Detaylı

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri) ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr BAĞIMLI İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi 9-11 Aralı 2009 Ço Yüse Mobiliteli Sönümlemeli Kanallardai OFDM Sistemleri için Kanal Kestirimi İstanbul Üniversitesi Eletri-Eletroni Mühendisliği Bölümü {myalcin, aan}@istanbul.edu.tr Sunum İçeriği Giriş

Detaylı