Dr. Mehmet AKSARAYLI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Dr. Mehmet AKSARAYLI"

Transkript

1 Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans Süreli Şans Bl. 4 Değişenleri Değişenleri Bl. Dr. Mehmet AKSARAYLI Kesili Şans Değişenleri 1. Sayısal bir değerle ifade edilen bir olay ara atımındai tura sayısı, 1 yada tura gözlenmesi. Kesili şans değişeni ; Tam sayılar: (, 1,, 3 vb.) Sayara elde edilmiş sayılar Kesili Şans Değişeni Örneleri Deney Şans Değişeni Mümün Değerler 1 Satış araması yama Satış sayısı, 1,,..., 1 7 radyoyu muayene etme Kusurlu sayısı, 1,,..., 7 33 soruya ceva verme Doğru sayısı, 1,,..., 33 11: ile 13: arasında gişedei araba sayısı Gelen araba sayısı, 1,,..., 3 4 Kesili Olasılı Dağılımı Tüm mümün [ i, ( i ) ] çiftlerini içerir. i = Şans değişeninin değeri (çıtı) ( i ) = Değerlerle ilgili olasılılar, D tanım aralığına sahi esili bir şans değişeni olsun. () in e ait bir olasılı fonsiyonu olabilmesi için; Her için () ve () = 1 olmalıdır. Kesili olasılı dağılımı örneği: Olay: arayı atı turaları sayıyoruz. Olasılı Dağılımı Değerler, i Olasılılar, ( i ) 1/4 =. 1 /4 =. 1/4 =. 6 1

2 Kesili Olasılı Dağılımlarının Görselleştirilmesi Kesili Rassal Değişenin Ortalaması ve Standart Saması Listeleme { (,.), (1,.), (,.) } Tablo # Tura Fr. (i) in belenen değeri = = E() = in varyansı = D. ( ) E( ) E( ) V() = E[ ( i ( i f( i ) = ()... Grafi 1 Denlem n! ) ( 1 )!( n )! n 7 8 Örne: Bir otomobil bayisinin günlü araba satışlarının dağılımının aşağıdai gibi olduğunu ifade etmetedir ),,8,1,19,4,17,1,4,1 Bu dağılışa göre bayinin; a) ten fazla araba satması olasılığını bulunuz = 6) + P ( = 7 ) + P ( = 8 ) =,1 b) Satışların belenen değerini hesalayı yorumlayınız. E() = i ) = ()(,)+(1)(,8)+()(,1)+.+(8)(,1) =3,7 Bayinin 1 günde 37 araba satışı yaması belenir. c) Satışların varyansını bulunuz. E( ) = =( )(,)+(1 )(,8)+.+ (8 i ) )(,1) = 16,68 Var()= E( ) - [E()] = 16,68 - (3,7) =,84 9 Kesili Olasılı Dağılımları Kesili Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom (Pascal) Dağılımı Geometri Dağılım Hiergeometri Dağılım Poisson Dağılımı 1 Kesili Üniform Dağılımı Kesili bir şans değişeni tanımlı olduğu tüm notalarda eşit olasılı değerine sahi ise bir başa ifadeyle tanımlı olduğu değerlerin hesinde olasılı fonsiyonun aldığı değer sabit ise bu esili şans değişeni Kesili Uniform dağılımına uygundur. Kesili Uniform dağılımı gösteren bir şans değişeni farlı notada tanımlı ise olasılı dağılımı; 1 ) şelinde ifade edilir. 1,,3..., d. d Kesili Üniform Dağılımının Belenen Değer ve Varyansı 1 E( ) ) i i i 1 1 ( 1)( 1) Var( ) 1 1 ( 1)

3 Bernoulli Deneyleri Örne: Hilesiz bir zar atıldığında şans değişeni ortaya çıabilece farlı durum sayısını ifade ettiğinegöre inolasılı dağılımı oluşturara belenen değerini ve varyansını bulunuz. S = { / 1,,3,4,,6 } Ortaya çıan olaylar eşit olasılılı olaylar şans değişeninin dağılımı = 6 olan esili üniform dağılımına uygundur. 1 ) E( ) 3, 1,,3,4,,6 d. d (6 1)(6 1) 3 Var( ) = ) : = olması olasılığı n : örne hacmi : başarı olasılığı : örnetei başarı sayısı ( =, 1) E() = V() =. q Sonuçlar ii ategoride tolanabilir. Aynı oşullarda terarlanabilirli özelliği vardır. Başarı olayı deneyden deneye değişmez. Bernoulli Dağılımı Te bir Bernoulli deneyinin sonucunu ele alır. Olasılı Yoğunlu Fonsiyonu: P ( ) ( 1) 14 1 Binom Dağılımı Binom Dağılımının Özellileri n deneme (gözlem) li bir örnetei başarı sayısı (n adet Bernoulli denemesi) birimden oluşan bir grutai usurlu sayısı 33 sorulu bir sınavdai doğru ceva sayısı Düana giren 1 müşteriden alışveriş yaanların sayısı İi farlı örneleme metodu Sonsuz oulasyonda yerine oymadan örneleme Sonlu oulasyonda yerine oyara örneleme n adet benzer deneme Her denemenin çıtısı var Başarı (İstenen çıtı) or Başarısızlı Sabit deneme olasılığı Denemeler birbirinden bağımsız 1 16 Binom Olasılı Dağılımı Örneği Binom Dağılımının Olasılı Fonsiyonu n! P n n (, ) ( 1!( )! ) = n,) : = olması olasılığı n : örne hacmi : başarı olasılığı : örnetei başarı sayısı ( =, 1,,..., n) 17 n Olay: Bir arayı ardarda 4 ez atalım. Yazıların sayısıyla ilgilenelim. 3 yazı gelme olasılığı nedir? n! P n n (, ) ( 1!( )! ) 4! P ( 3 4,. )!( )!. ( ). 18 n

4 Binom Dağılımının Karateristileri Başarı Olasılığı ve Binom Dağılımının Biçimi Aritmeti Ortalama E ( ) n Standart Sama n ( 1) ) ) n = = n = = N adetli bir denemede; 1. Eğer =. ise binom dağılımı simetri. Eğer <. ise binom dağılımı sağa çarı 3. Eğer >. ise binom dağılımı sola çarı 19 Negatif Binom (PASCAL) Dağılımı Örne: Bir işletmede üretilen ürünlerin % 6 sının hatalı olduğu bilinmetedir. Rasgele ve iadeli olara seçilen üründen, a)1 tanesinin hatalı olmasının olasılığını, b) En az 4 tanesinin hatalı olmasının olasılığını hesalayınız. =,6 1- =,94 n = a)p (=1)=? b)p ( 4)=? 4)= =4)+=) 1 4 1). (,6).(,94), (,6).(,94). (,6).(,94) Bernoulli deneyinin tüm varsayımları negatif binom dağılımı içinde geçerlidir. Binom dağılımında n denemede adet başarı olasılığı ile ilgileniliren, negatif binom dağılımında ise şans değişeni()ncıbaşarıyı elde edinceye adar yaılan deney sayısına arşılı gelir. Örneler: Bir arayı ez tura gelinceye adar attığımızda nci turayı elde ettiğimiz deneme sayısı, Bir basetbolcunun 3 sayılı atışlarda 1 ncu isabeti sağlaması için gereli olan atış sayısı. 1 :deneysayısı :başarı sayısı :başarı olasılığı S = { /, +1, +, +3 } Negatif Binom Dağılımının Belenen Değer ve Varyansı Binom dağılımını ullanara -1 denemede -1 adet başarı olasılığını hesalanır ve nci denemedei ncı başarıyı elde etme olasılığı ile bağımsız olaylar olduğundan çarılara aşağıdai olasılı fonsiyonu elde edilir. 1 1, 1,,... ) 1 d. d 3 E ) (1 ) Var( ) ( Yandai histogram =, ve = 8 arametreli negatif binom dağılım gösteren bir oulasyondan alınmış 1 hacimli bir örne için oluşturulmuştur , 1, 1, 14, 16, 18,,, 4 4, 4

5 Örne: Bir işinin hilesiz bir zarı 1 ez atması sonucunda, 1 ncu atışında nci ez 6 gelmesi olasılığını hesalayınız. =1/6 1-=/6 =1 = P ( 1 ; ).( ).( 6 Zarın açıncı ez atılması sonucu nci ez 6 gelmesini belersiniz? E( ) ) Geometri Dağılım Bernoulli deneyinin tüm varsayımları geometri dağılım içinde geçerlidir. Negatif Binom dağılımının özel bir durumudur. = 1 olduğunda negatif binom dağılımı geometri dağılımı olara ifade edilir. Geometri dağılım gösteren şans değişeni, il başarıyı elde edinceye adar yaılan deney sayısını ifade eder. Örneler: Bir arayı tura gelinceye adar attığımızda tura gelmesi için yaılan atış sayısı, Bir işletmenin deosundan il hatalı ürünü bulana adar alınan örne sayısı. 6 : deney sayısı : başarı olasılığı S={/1,,3,4..} Negatif Binom dağılımında = 1 alındığında; 1 E( ) Geometri Dağılımının Belenen Değer ve Varyansı 1 Var( ) 1 P ( ) 1 1 ) ) 1 1, 1,,... d. d 1,,3,... d. d Yandai histogram =, arametreli geometri dağılım gösteren oulasyondan alınmış hacimli bir örne için oluşturulmuştur Hiergeometri Dağılım Örne: Bir avcı hedefe isabet sağlayana adar ateş etmetedir. Avcının hedefi vurma olasılığı,7 olduğuna göre avcının hedefi il ez 8 nci ez atış yatığında isabet ettirmesinin olasılığını hesalayınız. =8 =8)=? ),71,7 1 1,,3... d. d Varsayımları, n deneme benzer oşullarda terarlanabilir. Her denemenin mümün sonucu vardır. Sonlu oulasyondan iadesiz örneleme yaılır. Örneleme iadesiz olduğundan başarı olasılığı ( ) deneyden deneye değişir. 8,7 1,7 1,7, 7 8) ÖDEV: Avcının hedefi il ez vurma olasılığı, den az olması için hedefe en az aç ez ateş etmelidir? 9 3

6 Hyergeometric Distribution Formula Hiergeometri Dağılımın Karateristileri (Two ossible outcomes er trial: success or failure) ) C N. n N Cn C Where N = oulation size = number of successes in the oulation n = samle size = number of successes in the samle n = number of failures in the samle = B/N için Yandai histogram N = 1 ve B = arametreli hiergeometri dağılım gösteren oulasyondan alınmış hacimli bir örne için oluşturulmuştur. E( ) n N n Var( ) n(1 ) N Örne: Yeni açılan bir bananın il 1 müşterisi içinde 6 tanesi mevduat hesabına sahitir. İadesiz olara rasgele seçilen 8 müşteriden tanesinin mevduat hesabına sahi olmasının olasılığı nedir? N= 1 B = 6 n = 8 = ,1,,3..., 8 P ( ) 1 8 d. d ) 1 8 ÖDEV: En ço 1 işinin mevduat hesabına sahi olmasının olasılığını hesalayınız. 33 Hyergeometric Distribution Eamle Eamle: 3 Light bulbs were selected from 1. Of the 1 there were 4 defective. What is the robability that of the 3 selected are defective? N = 1 n = 3 = 4 = N 6 Cn C C1 C ) N 1 C C n 3 4 (6)(6).3 1 Poisson Dağılımı Poisson Süreci 1. Bir zaman aralığında oluşan olayların sayısıyla ilgilenir. Birim başına olay Zaman, uzunlu, alan,vb.. Örneğin; daiada gelen müşteri sayısı Bir yıl içindei uça azalarının sayısı Bir metreare umaştai hata sayısı Sabit Olay Olasılığı Her aralıta 1 olay Bağımsız olaylar

7 Poisson Olasılı Dağılım Fonsiyonu Poisson Dağılımının Karateristileri P ( ) e -! = ) : = olma olasılığı = Belenen başarı sayısı e =.7188 = Birim başına başarı sayısı Aritmeti Ortalama E ( ) N i 1 ) Standart Sama i i ) ) = = Poisson Dağılımı Örneği Bir düana saatte 7 müşteri gelmetedir. 3 daia içinde 4 müşteri gelme olasılığı nedir? Saatte 7 müşteri = daiada 1. müşteri = 3 daiada 3.6 müş. - e P ( )! e P ( 436. ) ! 4 BİNOM Dağılımın POİSSON Dağılıma Yalaşımı, Binom dağılıma sahi bir şans değşieni olsun. Deney sayısı nço büyü ve ilgilenilen sonuçların anaütledei oranının ço üçü olduğu durumlarda, (yani n ve ien), n.= sabit bir sayı olma üzere Binom dağılımı Poisson dağılımına yalaşır. n ne adar büyü, ve ne adar üçü olursa bu yalaşım o adar iyi olur. = ÖRNEK:Türiye de maden ocalarında oluşan azalar sonucunda her yıl ortalama olara 1 maden işçisinden bir tanesi hayatını aybetmetedir. maden işçisinin çalıştığı bir maden ocağında bir yıl içinde a) Hiçbir işçinin hayatını aybetmemesi, b) 3 işçinin hayatın aybetmesi, c) den fazla işçinin hayatın aybetmesi olasılılarını bulunuz. ÇÖZÜM: n=, =.1 olduğundan, =n.=.1= alara Poisson dağılımıyla çözüm yaabiliriz. e e a) ).13!! 3 e b) 3).18 3! c) ) 1 ) 1 ) 1) ) e 1.3 1! 1 e ! 41 Örne: Bir mağazaya Cumartesi günleri daiada ortalama olara 4 müşteri gelmetedir. Bir Cumartesi günü bu mağazaya, a) daiaiçinde1müşteri gelmesi olasılığını, b)yarım saate den fazla müşteri gelmesi olasılığını, 4 1 e 4 4 a) 4 =1)=? e 1 4 4! e 4 1! 4 1 1) e 4 ÖDEV: 1 saatte en ço 1 müşteri gelmesinin olasılığını hesalayınız. 4 4! 1! 4e b) d da 4 müşteri gelirse, 3 d da 4 müşteri gelir. 4 P ( > ) =? > ) = 1 [=)+=1)+=)] 1 313e 4 7

8 SORU) Bir hastanenin çocu servisine saatte ortalama 3 hasta gelmetedir. a) Herhangi 1 daialı sürede; hiç hasta gelmeme, b) Herhangi 1 daialı sürede; den fazla hasta gelme, c) Herhangi yarım saatli sürede ten az hasta gelme olasılılarını bulunuz. SORU) Bir fabriada deolanan ürünlerin yüzde birinin bozu olduğu bilinmetedir. Bu fabriadan rassal olara seçilen birimden en az bir tanesinin bozu olması olasılığını Binom ve Poisson dağılımları ile bulunuz SORU: Hilesiz bir tavla zarı atılıyor. Anlaşmaya göre A, babasından her atışta aç gelirse o adar bin lira alacatır. Atış başına A nın belediği ara nedir? SORU: B üç ayrı iyangodan birer adet bilet almıştır. Bu iyangoların birincisinde 1 biletten 1 sine, iincisinde biletten 14 ına, üçüncüsünde ise biletten ine iramiye vardır. Birinci iyangoda azananlardan her biri 1 milyon, iincisinde 1 milyon ve üçüncüsünde milyon $ elde edecetir. B nin belenen iramiye tutarı nedir? 4 46 SORU: Bir işadamının yenibirişletmeden milyar lira aybetmesi olasılığı ( 1 )=,1 ve milyar lira azanması olasılığı ( )=, dir. Bu iş adamının azancı nedir? SORU: Ali hilesiz bir madeni arayı ii defa atıyor. Her ii atışta da yazı gelirse aradaşından bin lira alacatır. Diğer durumlarda ise 1 bin lira verecetir. Ali nin azancı ne olur?

9 SORU: Bir ara 4 ez atılıyor, a) İi tura, b) En az bir tura, c) Üçten az tura gelmesi olasılığı nedir? SORU: Bir futbol taımının yatığı maçlarda azanma olasılığının /3 olduğu biliniyor. Bu taımın yatığı 8 maçtan, a) Beşini, b) Birden fazla faat dört veya daha azını azanması olasılığı nedir? 49 SORU: İi tavla zarının 6defaatılmasında 9tolamının, a) Dört defa, b) En az üç defa elde edilmesi olasılığı nedir? SORU: Bir işletmede üretilen amullerin %6 sının usurluolduğu bilinmetedir. Buna göre, rassal olara seçilen amulden, a) İi tanesinin usurlu, b) Tamamının usursuz, c) En az ii tanesinin usurlu olması olasılıları nedir? 1 Aşağıdai soruları tabloya göre cevalayınız. Esi verilerden yararlanılara bir ce telefonunun yatığı arıza sayıları verilmiştir. () Haftalı Arıza 1 3 Olasılı ),,3,1,3 Soru: Dağılıma göre haftada esinlile ii arıza olma olasılığı açtır? A),1 B), C),3 D),4 E),6 Soru: Dağılıma göre haftada sıfır ile ii arasında arıza olma olasılığı - arıza) açtır? A), B),1 C),3 D),6 E),3 Soru: Dağılıma göre haftada birden ço arıza olma olasılığı açtır? A),3 B),7 C),4 D),1 E),3 Soru: Dağılıma göre haftada en ço ii arıza yama olasılığı açtır? A), B), C),6 D),4 E),1 Soru:Dayanılı tüetim malı satan bir mağazanın son 1 iş günündei günlü satışları aşağıdai tabloda verilmiştir. Satış sayıları Gün sayıları Yuarıdai tabloya göre günlü satışı gösterme üzere, <4) olasılığı açtır? A),4 B),17 C),1 D),33 E), 3 4 9

10 Soru: Bir itaevinin son 1 iş günüdei günlü ita satışları aşağıdai tabloda gösterilmiştir. Satış sayıları Gün sayıları Yuarıdai tabloya göre günlü satışları gösterme üzere, >4) olasılığı açtır? A),1 B),8 C),38 D),68 E),77 1

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan 1) Bir laboratuarda belirsiz sayıda deney yapılıyor. Okutulan deney no ve sonuç verilerine göre (3 çeşit deney var.) a) Her bir deneyden kaç tane yapılmıştır. b) Yapılan toplam deney sayısı ne kadardır.

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

BASINÇ BİRİMLERİ. 1 Atm = 760 mmhg = 760 Torr

BASINÇ BİRİMLERİ. 1 Atm = 760 mmhg = 760 Torr BASINÇ BİRİMLERİ - Sıı Sütunu Cinsinden anılanan Biriler:.- orr: C 'de yüseliğindei cıa sütununun tabanına yaış olduğu basınç bir torr'dur..- SS: + C 'de yüseliğindei su sütununun tabanına yaış olduğu

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

3-KOMPRESÖRLER. 3.1- Temel Esaslar. 3.1.1- Termodinamik Kayıplar:

3-KOMPRESÖRLER. 3.1- Temel Esaslar. 3.1.1- Termodinamik Kayıplar: 3-KOMPRESÖRLER 3.- Temel Esaslar 3..- Termodinami Kayılar: Aşağıdai şeilde, izotermi ve adiyabati sııştırmada omresör işleri aynı PV diyagramı üzerinde gösterilmiştir. Eğimi daha fazla olan eğri adiyabati,

Detaylı

Bir araştırma veya projenin içinde Veri Analizinin yeri:

Bir araştırma veya projenin içinde Veri Analizinin yeri: 1. Ders Veri Analizine Giriş Bir araştırma veya projenin içinde Veri Analizinin yeri: Araştırma-Proje * Araştırma Konusunun ortaya atılması olgu ile ilgili değişkenlerin (ölçülecek-gözlenecek özelliklerin)

Detaylı

İŞ, GÜÇ, ENERJİ BÖLÜM 8

İŞ, GÜÇ, ENERJİ BÖLÜM 8 İŞ, GÜÇ, EERJİ BÖÜ 8 ODE SORU DE SORUARI ÇÖZÜER 5 Cise eti eden sür- tüne uvveti, IFI0 ür F α F T W (F ür ) (Fcosα (g Fsinα)) düzle Ya pı lan net iş de ğe ri α, ve ütleye bağ lı dır G düzle 00,5 G0 0 I

Detaylı

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA 1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA Araştırmacı kişi ya da kurumlar birinci el veri elde etye yönelik araştırma yapmaya karar verdiklerinde çoğu zaman araştırma yapacağı grubun tüm

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Gebze Teni Üniversitesi Fizi Bölümü Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Doğan Erbahar 2015, Gebze Bu itapçı son biraç yıldır Gebze Teni Üniversitesi Fizi Bölümü nde lisans laboratuarları

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ ISSN:0- e-journal of New World Sciences Academy 009, Volume:, Number:, Article Number: A000 PHYSICAL SCIENCES Received: November 00 Acceted: June 009 Series : A ISSN : 0-0 009 www.newwsa.com Yüsel Öner,

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

BİYOİSTATİSTİK ÖRNEKLEME

BİYOİSTATİSTİK ÖRNEKLEME BİYOİSTATİSTİK ÖRNEKLEME B Doç. Dr. Mahmut AKBOLAT *Bir araştırmada, üzerinde çalışılan konu için gerekli olan bilginin elde edilebilmesi için konu ile ilgili bütün verilerin tek tek araştırılmasına tamsayım

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) S-1) Bir matematik dersinin sınavı aynı anda iki farklı gruba uygulansın. Bu gruplardan rasgele seçilen 15 öğrencinin sınav notları aşağıdaki

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

İSTATİSTİK II (İST202U)

İSTATİSTİK II (İST202U) İSTATİSTİK II (İST202U) KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ.

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı