Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Save this PDF as:
Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:"

Transkript

1 OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi seçilen örneklerin şansa bağlı olarak farklılıklar göstermesi ve bunun sonucunda her deneyde farklı sonuçlarla karşılaşılmasıdır. Olasılık, herhangi bir deneyin sonucunda gözlenebilecek farklı durumlar ile hangi sıklıkla karşılaşılacağı bir başka ifadeyle ortaya çıkan olayların belirsizliğinin incelenmesi anlamına gelir. 1

2 Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: Madeni paranın atılması sonucu tura gelme olasılığı, Bir deste iskambil kağıdından çekilen 2 kağıdın en az birinin papaz olma olasılığı, Bir kutuda bulunan 5 sarı 6 yeşil bilye içerisinden çekilen iki bilyenin de sarı olma olasılığı. 2

3 Temel Tanımlar ve Kavramlar-I Deney: Sonucu kesin olarak kestirilemeyen bir tek çıktı (şans değişkeni) oluşturan bir eylem, gözlem ya da süreçtir. Sonuç: deney gerçekleştiğinde ortaya çıkan gözlemlere deneyin sonucu adı verilir. Örneklem Uzayı: Bir deneyin sonucunda elde edilen tüm mümkün basit olaylarının oluşturduğu kümedir. Genellikle S ile tanımlanır. 3

4 DENEY Paranın atılması Zarın atılması Örnekler SONUÇ Yazı,tura 1,2,3,4,5,6 ÖRENEKLEM UZAYI S={Yazı,Tura} S={1,2,3,4,5,6} Bir memurun bir haftada işe geç kaldığı gün sayısı Kan grupları 1,2,3,4,5 0, AB, A, B S={1,2,3,4,5} S={ 0, AB, A, B} 4

5 Olay: Bir deneyin bir yada daha fazla sonucunun bir araya gelmesi olarak ifade edilir. Basit Olay: Herhangi bir deneyin nihai sonuçlarına basit olay adı verilir. Bir basit olay sadece bir sonuç içerir. Örnek: bir zar atıldığında 2 gelmesi. Bileşik Olay: İki veya daha fazla basit olayın bir araya gelmesi ile oluşan olaylardır. Örnek: bir zar atıldığında çift sayı gelmesi. 5

6 Olasılığın İki Temel Kuralı; 1) Bir olayın olasılığı her zaman 0 ile 1 arasındadır. 2) Bir deneydeki tüm basit olayların olasılıkları toplamı toplamı 1 e eşittir. DİKKAT!!!! Hiç bir olayın OLASILIĞI 1 den büyük ve negatif bir sayı OLAMAZ!!!! Bir A olayın ortaya çıkma olasılığı; P(A) şeklinde gösterilir. 6

7 Olasılığa Üç Kavramsal Yaklaşım Klasik Olasılık: Sonuçların ortaya çıkma olasılıları eşit ise buna eşit olasılıklı sonuçlar denir. Klasik olasılık kuralı, tüm sonuçları eşit olasılıklı olan deneylerin sonuçlarına ilişkin olasılıkları hesaplamada kullanılır. Klasik olasılık kuralına göre bir deneydeki basit bir olayın olasılığı 1 in tüm sonuçların sayısına bölünmesiyle bulunur. A bileşik olayının olasılığı ise A olayında içerilen sonuç sayısının toplam sonuç sayısına bölünmesiyle elde edilir. 7

8 Olasılığın Göreli Sıklık Kavramı Sonuçları eşit olasılıklı olmayan deneylerde deney defalarca tekrar edilerek veri üretilmektedir. Böylesi durumlarda olasılıkları hesaplamak için ya eski verilerden yaralanılmakta ya da deney çok kez tekrarlanarak yeni veri türetilmektedir. Bu verilerden yaralanarak bir olaya ilişkin (yaklaşık) olasılık değeri için göreli sıklıklardan yaralanılmaktadır. Bu yönteme olasılığın göreli sıklık kavramı adı verilir. Yaklaşık olasılık için göreli sıklık: Eğer bir deney n kez tekrarlanmış ve f kez bir A olayı gözlenmiş ise olasılığını göreli sıklık kavramına göre olasılık aşağıdaki gibi hesaplanır. P( A) f n 8

9 Örnek: Bir kapta 5 sarı, 5 lacivert ve 5 adet yeşil bilye bulunmaktadır. Çekilen bir bilyenin sarı olma olasılığı nedir? A: Çekilen bir bilyenin sarı olması n(s): Örneklem uzayı eleman sayısı = 15 n(a): Örneklem uzayındaki A elemanı sayısı = 5 n( A) 5 P( A) n( S) 15 Büyük Sayılar Yasası: Bir deney çok (sonsuz) kez tekrarlanırsa, bir olayın göreli sıklıkları kuramsal olasılığa yaklaşır

10 ÖZNEL OLASILIK KAVRAMI Olasılığın matematiksel teorisini tanımlar. Bu teorinin oluşturduğu ideal modeller yaşadığımız dünyanın problemlerini çözmede kullanılır. Olasılığın iki genel tipinin sahip olduğu önemli ortak nokta: Her ikisinin de, benzer koşullarda (teorik olarak aynı koşullarda) uygulanan deneylere gereksinim duymasıdır. Benzer koşullarda tekrarlı olarak uygulanamayan durumlarda olasılıkların hesaplanmasında öznel olasılık kavramı yardımcı olur. 10

11 Örnekler İzmir ilinde Şubat ayı içinde 5 şiddetinden büyük bir deprem meydana gelme olasılığı, Karşıyaka Altınyol da 1 saatlik süre içinde en az iki adet trafik kazası olma olasılığı, 70 yaşındaki birinin en az 2 yıl daha yaşaması olasılığı, Nişanlı bir çiftin evlenme olasılığı. 11

12 Örneklem Uzayı ve Olay Sayısını Belirleyen Sayma Yöntemleri Klasik olasılığın diğer bir ifade ile eşit olasılıklı olayların geçerli olduğu durumlarda: Örnek uzayının eleman sayısı, İlgilenilen olayın eleman sayısının belirlenmesi gereklidir. Eğer bir deneyde, ilk aşamada m tane, ikinci aşamada n tane ve üçüncü aşamada k tane sonuç olmak üzere üç aşama bulunuyorsa, bu deneydeki toplam sonuç sayısı m.n.k olarak hesaplanır. 12

13 k farklı sonuç veren bir deney r kez tekrar edilirse ortaya çıkan tüm durumların sayısı; olarak hesaplanır. k r Örnek: Bir zarı 3 kez attığımızda ortaya çıkabilecek tüm mümkün durumların sayısı sayısı; 6 3 = 216 adettir. Örneklem uzayının eleman sayısı 216 dır. 13

14 Bileşen(Marjinal) Olasılık Basit olasılık olarak da bilinen bileşen olasılık, herhangi başka bir olay dikkate alınmaksızın, sadece bir olaya ilişkin olasılıktır. İSTATİSTİK DERSİ BAY BAYAN BAŞARILI BAŞARISIZ P() BAY 0, ŞARISIZ P() BA 0,

15 Koşullu Olasılık A ve B gibi iki olaydan B olayının gerçekleştiği bilindiği durumda A olayının gerçekleşmesi olasılığına A olayının şartlı olasılığı denir. P( A / B ) ile gösterilir. B olayı olduğunda A olayının olması olasılığı biçiminde okunur. ŞARILI BAY şarılı bay sayısı ba 85 P( BA /) 0,85 toplam bay say 100 ŞARISIZ şarısız bayan şarısız sayısı ba 20 P( BAYAN /) BA 0,57 toplam ba 35 15

16 Ayrık Olaylar Aynı anda gerçekleşmesi mümkün olmayan olaylara ayrık olaylar adı verilir. Örnekler: Bir zarın atılmasında yazı veya tura gelmesi Bir dersten başarılı ya da başarısız olmak. 16

17 Ağaç Diyagramı Her birinin sonucunun sonlu sayıda olduğu birden fazla deneyin tüm mümkün sonuçlarını görsel bir şekilde ortaya koymak için kullanılır. 17

18 Bağımsız ve Bağımlı Olaylar Ele alınan olaylardan birinin gözlenip gözlenmemesinin olasılığı diğer bir olayın ortaya çıkıp çıkmama olasılığını etkilemiyorsa bu olaylara bağımsız olaylar denir. İki olayın bağımsız olabilmeleri için aşağıdaki koşulların gerçekleşmesi gereklidir. P ( A / B ) = P ( A ) ve P ( B / A ) = P ( B ) Yukarıdaki koşullardan herhangi biri gerçekleşmiyorsa A ve B olaylarına bağımsız olmayan ( bağımlı olaylar ) adı verilir ; P ( A / B ) P ( A) ve P ( B / A ) P ( B ) olur. 18

19 TAMAMLAYICI ( BÜTÜNLEYİCİ ) OLAY A olayının tamamlayıcısı gösterilir. A olarak P( A) 1 P(A) Bir A olayının gerçekleşme olasılığı 0,25 ise tamamlayıcısının gerçekleşme olasılığı P(A) 1 P(A)=1-0,25=0,75 19

20 OLAYLARIN ARA KESİTİ VE ÇARPMA KURALI A ve B gibi iki olayda hem A da hem B de mevcut sonuçlar iki olayın ara kesitini oluşturur. A ve B olaylarının ara kesiti ( kesi şimi ) A B ya da AB şeklinde gösterilir. Çarpma Kuralı: A ve B gibi birlikte ortaya çıkan olayların olasılığına bileşik olasılık adı verilir ve P ( A ve B ) şeklinde gösterilir. İki olayın ara kesitinin olasılığıi bir olayın bileşen olasılığı ile ikinci olayın koşullu olasılığından elde edilir ve bu kurala çarpma kuralı denir. A ve B olayının bileşik olasılığı P (A B ) ya da P ( AB ) olarak da gösterilir. 20

21 21 Koşullu Olasılık Eğer A ve B, P ( A ) 0 ve P ( B ) 0 olmak üzere iki olay ise bulara ilişkin koşullu olasılıklar aşağıdaki gibi elde edilir. ) ( ) ( ) / ( B P B A P B A P ) ( ) ( ) / ( A P A B P A B P

22 BAĞIMSIZ OLAYLAR İÇİN ÇARPMA KURALI A ve B olayları bağımsız ise bir başka ifadeyle B olayının meydana gelme olasılığı A olayının meydana gelme olasılığına bağlı değil ise ve iki olay aynı anda meydana gelebiliyor ise; P ( A / B ) = P ( A) ve P ( B / A ) = P ( B ) olur. Sonuç olarak A ve B olayları bağımsız iseler P ( A ve B ) = P ( A B ) = P ( A ). P ( B ) eşitliği elde edilir. Aynı şekilde P ( A B ) = P ( A ). P ( B ) ise A ve B olayları bağımsızdır denir. 22

23 Ayrık Olayların Bileşik Olasılığı İki ayrık olayın bileşik olasılığı her zaman 0 dır. Bu durum A ve B ayrık olaylar ise P ( A ve B ) = P ( A B ) = 0 olarak gösterilir. 23

24 OLAYLARIN BİLEŞİMİ VE ÇARPMA KURALI Aynı örneklem uzayında tanımlı A ve B olaylarının bileşimi A da ya da B de ya da A ve B de birlikte yer alan tüm olaylarının bileşkesi olup A ya da B biçiminde gösterilir. Toplama Kuralı: Olayların bileşimine ilişkin olasılık hesaplamada kullanılan yönteme, toplama kuralı denir ve aşağıdaki gibi tanımlanır. A ve B olaylarının bileşiminin olasılığı, P (A veya B ) = P ( A ) + P ( B ) - P ( A ve B ) biçiminde gösterilir. Ayrık Olaylar İçin Toplama Kuralı: P (A veya B ) = P ( A ) + P ( B ) biçiminde gösterilir. 24

25 Örnek: Bir üniversitede okuyan öğrencilerin % 70 i tiyatroya, % 35 ise sinemaya ilgi duymaktadır. a) Bir öğrencinin sinemaya ilgi duyduğu bilindiğinde tiyatroya ilgi duyma olasılığı 0,40 ise her iki aktiviteye birden ilgi duyma olasılığı nedir? b) Bir öğrencinin tiyatro veya sinemaya ilgi duyma olasılığı nedir? T:Tiyatroya ilgi duyma S:Sinemaya ilgi duyma P ( T ) = 0,70 P( S ) = 0,35 a) P ( T / S ) = 0,40 P (T S ) =? P(T/S) P(T S) P(S) P(T S) P(T/S) *P(S) 0,40*0,35 0,14 b) P(T U S) P(T) P(S) - P(T S) 0,70 0,35-0,14 0,91 25

26 Örnek: Ali ve Can isimli iki avcının bir hedefi vurma olasılıkları sırasıyla 0,65 ve 0,40 olarak verilmiştir. İki avcı hedefe birlikte ateş ettiğinde hedefin vurulma olasılığı nedir? A = Ali nin hedefi vurması P ( A ) = 0,65 C = Can ın hedefi vurması P ( C ) = 0,40 P ( A U C ) =? P( A U C ) = P ( A )+ P ( C ) P ( A C ) Ali ile Can nın hedefi vurmaları birbirinden bağımsız olduğundan; P ( A C ) = P ( A ). P ( C ) = 0,65 * 0,40 = 0,26 P( A U C ) = 0,65 + 0,40 0,26 = 0,79 26

27 1)Kusursuz bir madeni para 2 kez atılmıştır. Birinci para yazı iken, ikinci paranın da yazı olma olasılığı kaçtır? a)¼ b) 1/3 c) ½ d) 2/3 e) 3/4 2) 1 den 10 a kadar (10 dahil) olan tam sayılar arasından rastgele seçilen bir sayının 2 ve 3 ile bölünebilen bir sayı olma olasılığı kaçtır? a) 1/10 b) 1/5 c) 3/10 d) 1/2 e) 8/10 3) Bir işyerinde 3 erkek ve 20 kadın olmak üzere 50 kişi çalışmaktadır. Erkeklerin 1/3 ü ve kadınlarında 1/10 u gözlük takmaktadır. Rasgele seçilen birinin gözlük takan bir erkek olma olasılığı kaçtır? a) 1/10 b) 1/5 c) 3/10 d) 1/2 e) 8/10 27

28 4) Bir kutuda 5 tanesi beyaz, 10 tanesi siyah olmak üzere 15 tane top vardır. Bu kutudan çekilen topun yerine konulması şartıyla 3 kez top çekilmiştir. Çekilen toplardan ikisinin beyaz olma olasılığı nedir? a) 1/27 b) 4/27 c) 2/9 d) 4/9 e) 5/9 5) Kusursuz bir madeni paranın 3 kez atılması deneyinde hiç yazı gelmeme olasılığı kaçtır? a) 1/8 b) 1/4 c) 3/8 d) 5/8 e) 7/8 6) Kusursuz bir madeni para n kez atılmıştır. Buna göre toplam sonuç sayısı aşağıdakilerden hangisidir? a) 2n b) 2 n c) n 2 d) 2n 2 e) n 2 /2 28

29 7) P(B) = 0,60 ve P(A/B)= 0,75 değerleri için A ve B olaylarının bileşik olasılığı kaçtır? a) 0,40 b) 0,45 c) 0,50 d) 0,55 e) 0,60 8) Bir işletmede 15 kadın ve 25 erkek vardır. Uygulanan bir sınavda 5 kadın ve 15 erkek başarısız olmuştur. Bu işletmeden seçilen bir kişinin başarısız olduğu bilindiğine göre bu kişinin kadın olma olasılığı kaçtır? a) 1/2 b) 1/4 c) 1/2 d) 5/8 e) 7/8 9) Kusursuz iki madeni paranın aynı anda atılması deneyinde bir yazı bir tura gelmesi olasılığı kaçtır? a) 0,20 b) 0,25 c) 0,50 d) 0,75 e) 1,00 29

30 10) Hilesiz bir zarı ardı ardına iki kez atalım. Üste gelen sayıların toplamının 3 ten büyük olma olasılığı nedir? a) 25/36 b) 27/36 c) 30/36 d) 33/36 e) 35/36 11) Bir avcının arka arkaya yaptığı üç atışta hedefini vurma olasılıkları sırasıyla 0,2, 0,7 ve 0,9 olarak belirlenmiştir. Bu avcının en az bir hedefi vurma olasılığı nedir? a) 0,20 b) 0,70 c) 0,90 d) 0,976 e) 0,99 12) Bir torbada 4 siyah ve 5 beyaz bilye bulunmaktadır. Arka arkaya iadesiz seçim yöntemiyle rastgele seçilen iki bilyenin siyah olma olasılığı nedir? a) 0,20 b) 0,25 c) 0,50 d) 0,75 e) 1,00 30

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK. Olasılık sonucu önceden kestirilemeyen gözlem ya da denemelerde ortaya çıkabilecek her bir mümkün durum için:

OLASILIK. Olasılık sonucu önceden kestirilemeyen gözlem ya da denemelerde ortaya çıkabilecek her bir mümkün durum için: ölüm 4 OLASILIK 1 OLASILIK Anakütle hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1 Dr. Mehmet AKSARAYLI OLASILIK Ders 3 / 1 1 0 Kesin İmkansız OLASILIK; Bir olayın gerçekleşme şansının sayısal değeridir. N adet denemede s adet başarı söz konusu ise, da başarının nisbi frekansı lim (s/n)

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

ASTROİSTATİSTİK 9. KONU

ASTROİSTATİSTİK 9. KONU ASTROİSTATİSTİK 9. KONU Hazırlayan: Doç. Dr. Tolgahan KILIÇOĞLU 9. OLASILIK HESABI Ortaya çıkacağı önceden kesin olarak bilinmeyen olayların gerçekleşmesinin ne derece olanaklı olduğunu tahmin etmeye olasılık

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 2303 İstatistik-I Bölüm 1: İstatistiğe Giriş: Temel kavramlar ve Olasılık Teorisi Dr. Öğr. Üyesi Kemal SUBULAN http://kisi.deu.edu.tr/kemal.subulan/

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

BAYES KURAMI. Dr. Cahit Karakuş

BAYES KURAMI. Dr. Cahit Karakuş BAYES KURAMI Dr. Cahit Karakuş Deney, Olay, Sonuç Küme Klasik olasılık Bayes teoremi Permütasyon, Kombinasyon Rasgele Değişken; Sürekli olasılık dağılımı Kesikli - Süreksiz olasılık dağılımı Stokastik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

Olasılık: Klasik Yaklaşım

Olasılık: Klasik Yaklaşım Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)

Detaylı

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir.

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. 04 8. SINIF MATEMATiK OLASILIK OLASILIK Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. Bir zarın atılması, bir torbadan top çekilmesi, bir paranın yazı veya

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Olasılık Föyü KAZANIMLAR

Olasılık Föyü KAZANIMLAR Olasılık Föyü KAZANIMLAR Bir olaya ait olası durumları belirler. Daha fazla, eşit, daha az olasılıklı olayları ayırt eder, örnek verir. Eşit şansa sahip olan olaylarda her bir çıktının olasılık değerinin

Detaylı

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150) PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan

Detaylı

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir.

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. OLASILIK (İHTİMAL) TEORİSİ 1 DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. SONUÇ:Deneylerin tamamlanması ile elde edilen verilerdir.

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Biyoistatistik V. HAFTA

Biyoistatistik V. HAFTA Biyoistatistik V. HAFTA Olasılık Olasılık: Bir olayın gerçekleşme ihtimalinin matematiksel değeridir. p= Başarı sayısı / olanaklı durumlar Yazı gelmesi ihtimali p=1/2=0.5 Olasılığın özellikleri: Daima

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 3.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI

BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI BÖLÜM 6 KESİKLİ ŞANS DEĞİŞKENİ DAĞILIMLARI KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı 2. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı 5. Geometri Dağılım

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

( B) ( ) PERMÜTASYON KOMBİNASYON BİNOM OLASILIK

( B) ( ) PERMÜTASYON KOMBİNASYON BİNOM OLASILIK PERMÜTASYON KOMBİNASYON BİNOM OLASILIK.... n = n! olmak üzere, ( n + )! = 0 n! + n! ise, n kaçtır? (A) ( ) A)0 B) C) D) E). ( n +,) = 6 C olduğuna göre, n kaçtır? (B) A) B)6 C) D)8 E)9. ( n, ). C( n,)

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

Şartlı Olasılık. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Şartlı Olasılık. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Şartlı Olasılık Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr Şartlı Olasılık ir olayın olasılığından söz edebilmek için bir alt kümeyle temsil edilen bu olayın içinde bulunduğu örnek uzayının

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL SAÜ BÖLÜM. OLASILIK Prof. Dr. Mustafa AKAL 0 İÇİNDEKİLER.KAVRAMLAR.. Rassal Deney, Örneklem Uzayı ve Olay.. Olayların Biçimlenmesi.3. Olasılık Tanımı.PERMÜTASYON VE KOMBİNASYON..Permütasyon... Sıralı Permütasyon...

Detaylı

OLASILIĞA GİRİŞ P( )= =

OLASILIĞA GİRİŞ P( )= = OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması olasılığı %85 dir. Olasılık modelleri; Sıvı içindeki moleküllerin davranışlarını

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

TARAMA TESTİ 1 PERMÜTASYON KOMBİNASYON OLASILIK

TARAMA TESTİ 1 PERMÜTASYON KOMBİNASYON OLASILIK TARAMA TESTİ PERMÜTASYON KOMBİNASYON OLASILIK. Üç basamaklı doğal sayıların kaç tanesinde ve 2 bulunmaz? A) 24 B) 4 C) 42 D) 448 E) 472 2. Üç basamaklı doğal sayıların kaç tanesinde bulunur? A) 22 B) 260

Detaylı

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)

Detaylı

OLASILIK. ihtimali Seçeneği durumu. Bir zar atma olayı. Basit kesirdir. Tüm durum. Sonuçlardan biri Çıktılardan biri. Diğer sayfaya geçiniz

OLASILIK. ihtimali Seçeneği durumu. Bir zar atma olayı. Basit kesirdir. Tüm durum. Sonuçlardan biri Çıktılardan biri. Diğer sayfaya geçiniz OLASILIK ihtimali Seçeneği durumu Bir zar atma olayı Basit kesirdir. Tüm durum Sonuçlardan biri Çıktılardan biri 1 Soruyu DİKKATLİ OKU, soruyu ANLA, basit örnek kur. Cevabı işaretlemeden öce tekrar soruyu

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

b) Aşağıda verilen tanımlamalardan herhangi 5 adeti yazılabilir. Aritmetik Ortalama: Geometrik Ortalama:

b) Aşağıda verilen tanımlamalardan herhangi 5 adeti yazılabilir. Aritmetik Ortalama: Geometrik Ortalama: C S D Ü M Ü H E N D İ S L İ K F A K Ü L E S İ - M A K İ N A M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü MAK-307 OM317 Müh. İstatistiği İstatistik ÖĞRENCİNİN: ADI - SOADI ÖĞREİMİ NOSU İMZASI 1.Ö 2.Ö A B Soru -

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Dr. Akarsu Hafta-4 11/16/2014 1

Dr. Akarsu Hafta-4 11/16/2014 1 Dr. Akarsu Hafta-4 11/16/2014 1 GİRİŞ Olasılık dolaylı istatistiğin önemli metotlarının temelini oluşturmaktadır. Örneğin, cinsiyet belirleyici bir prosedür belirlediğinizi iddia ediyorsunuz ve her seferinde

Detaylı

B İ L G İ Tanım: Rasyonel olmayan, yani a b şeklinde yazılamayan sayılara irrasyonel sayı denir. İrrasyonel sayılar kümesi I harfi ile gösterilir.. Aşağıdakilerden kaç tanesi irrasyonel sayıdır? 4. x 8

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome ÖLÜM : OLSLK Giriş: Olasılık kavramına. Fermat ile. ascal ın büyük katkıları olmuştur. ascal hesap makinesini geliştirerek Fermat ile birlikte olasılığın temellerini oluşturmuştur. Daha sonra Rus matematikçi

Detaylı

10SINIF MATEMATİK. Sayma ve Olasılık Fonksiyonlar

10SINIF MATEMATİK. Sayma ve Olasılık Fonksiyonlar 0SINIF MATEMATİK Sayma ve Olasılık Fonksiyonlar YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim

Detaylı

11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC)

11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC) 11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC) Hatırlanacağı üzere, bir anakütleye ait olan sayısal değerlere (örneğin

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK)

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK) İST65-0-02-OLASILIK I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK). A ve B olayları ayrık olaylar ve olasılıkları sıfırdan farklı ise, bu olayların bağımlı olduklarını tanıtlayınız. A ve

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar

Detaylı

OLASILIK TEORİSİ VE İSTATİSTİK

OLASILIK TEORİSİ VE İSTATİSTİK OLASILIK TEORİSİ VE İSTATİSTİK İki Değişkenli Olasılık Bu bölümde yapılan bir deneyin iki değişkene bağlı olan sonuçları dikkate alınacaktır. Örneğin: Bir gazete yöneticisi, politikasını belirlemek için

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 6: Kesikli Olasılık Dağılımları

Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

MANTIK. Test Aşağıdaki ifadelerden hangisi yanlış bir önermedir?

MANTIK. Test Aşağıdaki ifadelerden hangisi yanlış bir önermedir? 1. p : 1 gün 2 saattir. q : Aydın Ege nin en güzel kentidir. r : Hepimiz sinemaya gidelim. s : Haftada gün vardır. Yukarıdaki ifadelerden hangisi veya hangileri önermedir? A) Yalnız p B) Yalnız q C) Yalnız

Detaylı

Ders 4: Olasılık Aksiyomları ve Bazı Olasılık Kuralları

Ders 4: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Ders 4: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Olasılık aksiyomları Bazı olasılık kuralları Bağımsız olaylar Koşullu olasılık Bayes theoremi Bir olayın gerçekleşme ihtimalinin sayısal değerine

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

Ders 3: Olasılık Aksiyomları ve Bazı Olasılık Kuralları

Ders 3: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Ders 3: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Olasılık aksiyomları Bazı olasılık kuralları Bağımsız olaylar Koşullu olasılık Bayes theoremi Bir olayın gerçekleşme ihtimalinin sayısal değerine

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

Kosullu Olasılık & Bayes Teoremi

Kosullu Olasılık & Bayes Teoremi Kosullu Olasılık & Bayes Teoremi 0 {\} /\ Suhap SAHIN Olasılık Deneyi Olasılık problemlerinde gerçeklestirilen eylemler Zar atılması Para atılması Top Çekme Bir zar atıldıgında üst yüze çift gelme ihtimali

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

TAM SAYILARLA TOPLAMA İŞLEMİ

TAM SAYILARLA TOPLAMA İŞLEMİ . Sınıf Matematik AD SOYAD C E V A P L A R I M NUMARAM A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D TAM SAYILARLA TOPLAMA İŞLEMİ.

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor.

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor. Olasılık. Sınıf Matematik Soru Bankası TEST. Havaya atılan hilesiz bir paranın yere düşmesi ile karşılaşılacak olası durumlar kaç tanedir?. A) 0 B) C) D) Hilesiz bir çift madeni para havaya atılıyor. Olası

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

OLASILIK VE OLAY ÇEŞİTLERİ

OLASILIK VE OLAY ÇEŞİTLERİ OLASILIK VE OLAY ÇEŞİTLERİ KAZANIMLAR Örnek uzay Olasılık kavramı Bir olayın olasılığının hesaplanması Teorik olasılık kavramı Deneysel olasılık kavramı Öznel olasılık kavramı Bağımsız olay Bağımlı olay

Detaylı