Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:"

Transkript

1 OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi seçilen örneklerin şansa bağlı olarak farklılıklar göstermesi ve bunun sonucunda her deneyde farklı sonuçlarla karşılaşılmasıdır. Olasılık, herhangi bir deneyin sonucunda gözlenebilecek farklı durumlar ile hangi sıklıkla karşılaşılacağı bir başka ifadeyle ortaya çıkan olayların belirsizliğinin incelenmesi anlamına gelir. 1

2 Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: Madeni paranın atılması sonucu tura gelme olasılığı, Bir deste iskambil kağıdından çekilen 2 kağıdın en az birinin papaz olma olasılığı, Bir kutuda bulunan 5 sarı 6 yeşil bilye içerisinden çekilen iki bilyenin de sarı olma olasılığı. 2

3 Temel Tanımlar ve Kavramlar-I Deney: Sonucu kesin olarak kestirilemeyen bir tek çıktı (şans değişkeni) oluşturan bir eylem, gözlem ya da süreçtir. Sonuç: deney gerçekleştiğinde ortaya çıkan gözlemlere deneyin sonucu adı verilir. Örneklem Uzayı: Bir deneyin sonucunda elde edilen tüm mümkün basit olaylarının oluşturduğu kümedir. Genellikle S ile tanımlanır. 3

4 DENEY Paranın atılması Zarın atılması Örnekler SONUÇ Yazı,tura 1,2,3,4,5,6 ÖRENEKLEM UZAYI S={Yazı,Tura} S={1,2,3,4,5,6} Bir memurun bir haftada işe geç kaldığı gün sayısı Kan grupları 1,2,3,4,5 0, AB, A, B S={1,2,3,4,5} S={ 0, AB, A, B} 4

5 Olay: Bir deneyin bir yada daha fazla sonucunun bir araya gelmesi olarak ifade edilir. Basit Olay: Herhangi bir deneyin nihai sonuçlarına basit olay adı verilir. Bir basit olay sadece bir sonuç içerir. Örnek: bir zar atıldığında 2 gelmesi. Bileşik Olay: İki veya daha fazla basit olayın bir araya gelmesi ile oluşan olaylardır. Örnek: bir zar atıldığında çift sayı gelmesi. 5

6 Olasılığın İki Temel Kuralı; 1) Bir olayın olasılığı her zaman 0 ile 1 arasındadır. 2) Bir deneydeki tüm basit olayların olasılıkları toplamı toplamı 1 e eşittir. DİKKAT!!!! Hiç bir olayın OLASILIĞI 1 den büyük ve negatif bir sayı OLAMAZ!!!! Bir A olayın ortaya çıkma olasılığı; P(A) şeklinde gösterilir. 6

7 Olasılığa Üç Kavramsal Yaklaşım Klasik Olasılık: Sonuçların ortaya çıkma olasılıları eşit ise buna eşit olasılıklı sonuçlar denir. Klasik olasılık kuralı, tüm sonuçları eşit olasılıklı olan deneylerin sonuçlarına ilişkin olasılıkları hesaplamada kullanılır. Klasik olasılık kuralına göre bir deneydeki basit bir olayın olasılığı 1 in tüm sonuçların sayısına bölünmesiyle bulunur. A bileşik olayının olasılığı ise A olayında içerilen sonuç sayısının toplam sonuç sayısına bölünmesiyle elde edilir. 7

8 Olasılığın Göreli Sıklık Kavramı Sonuçları eşit olasılıklı olmayan deneylerde deney defalarca tekrar edilerek veri üretilmektedir. Böylesi durumlarda olasılıkları hesaplamak için ya eski verilerden yaralanılmakta ya da deney çok kez tekrarlanarak yeni veri türetilmektedir. Bu verilerden yaralanarak bir olaya ilişkin (yaklaşık) olasılık değeri için göreli sıklıklardan yaralanılmaktadır. Bu yönteme olasılığın göreli sıklık kavramı adı verilir. Yaklaşık olasılık için göreli sıklık: Eğer bir deney n kez tekrarlanmış ve f kez bir A olayı gözlenmiş ise olasılığını göreli sıklık kavramına göre olasılık aşağıdaki gibi hesaplanır. P( A) f n 8

9 Örnek: Bir kapta 5 sarı, 5 lacivert ve 5 adet yeşil bilye bulunmaktadır. Çekilen bir bilyenin sarı olma olasılığı nedir? A: Çekilen bir bilyenin sarı olması n(s): Örneklem uzayı eleman sayısı = 15 n(a): Örneklem uzayındaki A elemanı sayısı = 5 n( A) 5 P( A) n( S) 15 Büyük Sayılar Yasası: Bir deney çok (sonsuz) kez tekrarlanırsa, bir olayın göreli sıklıkları kuramsal olasılığa yaklaşır

10 ÖZNEL OLASILIK KAVRAMI Olasılığın matematiksel teorisini tanımlar. Bu teorinin oluşturduğu ideal modeller yaşadığımız dünyanın problemlerini çözmede kullanılır. Olasılığın iki genel tipinin sahip olduğu önemli ortak nokta: Her ikisinin de, benzer koşullarda (teorik olarak aynı koşullarda) uygulanan deneylere gereksinim duymasıdır. Benzer koşullarda tekrarlı olarak uygulanamayan durumlarda olasılıkların hesaplanmasında öznel olasılık kavramı yardımcı olur. 10

11 Örnekler İzmir ilinde Şubat ayı içinde 5 şiddetinden büyük bir deprem meydana gelme olasılığı, Karşıyaka Altınyol da 1 saatlik süre içinde en az iki adet trafik kazası olma olasılığı, 70 yaşındaki birinin en az 2 yıl daha yaşaması olasılığı, Nişanlı bir çiftin evlenme olasılığı. 11

12 Örneklem Uzayı ve Olay Sayısını Belirleyen Sayma Yöntemleri Klasik olasılığın diğer bir ifade ile eşit olasılıklı olayların geçerli olduğu durumlarda: Örnek uzayının eleman sayısı, İlgilenilen olayın eleman sayısının belirlenmesi gereklidir. Eğer bir deneyde, ilk aşamada m tane, ikinci aşamada n tane ve üçüncü aşamada k tane sonuç olmak üzere üç aşama bulunuyorsa, bu deneydeki toplam sonuç sayısı m.n.k olarak hesaplanır. 12

13 k farklı sonuç veren bir deney r kez tekrar edilirse ortaya çıkan tüm durumların sayısı; olarak hesaplanır. k r Örnek: Bir zarı 3 kez attığımızda ortaya çıkabilecek tüm mümkün durumların sayısı sayısı; 6 3 = 216 adettir. Örneklem uzayının eleman sayısı 216 dır. 13

14 Bileşen(Marjinal) Olasılık Basit olasılık olarak da bilinen bileşen olasılık, herhangi başka bir olay dikkate alınmaksızın, sadece bir olaya ilişkin olasılıktır. İSTATİSTİK DERSİ BAY BAYAN BAŞARILI BAŞARISIZ P() BAY 0, ŞARISIZ P() BA 0,

15 Koşullu Olasılık A ve B gibi iki olaydan B olayının gerçekleştiği bilindiği durumda A olayının gerçekleşmesi olasılığına A olayının şartlı olasılığı denir. P( A / B ) ile gösterilir. B olayı olduğunda A olayının olması olasılığı biçiminde okunur. ŞARILI BAY şarılı bay sayısı ba 85 P( BA /) 0,85 toplam bay say 100 ŞARISIZ şarısız bayan şarısız sayısı ba 20 P( BAYAN /) BA 0,57 toplam ba 35 15

16 Ayrık Olaylar Aynı anda gerçekleşmesi mümkün olmayan olaylara ayrık olaylar adı verilir. Örnekler: Bir zarın atılmasında yazı veya tura gelmesi Bir dersten başarılı ya da başarısız olmak. 16

17 Ağaç Diyagramı Her birinin sonucunun sonlu sayıda olduğu birden fazla deneyin tüm mümkün sonuçlarını görsel bir şekilde ortaya koymak için kullanılır. 17

18 Bağımsız ve Bağımlı Olaylar Ele alınan olaylardan birinin gözlenip gözlenmemesinin olasılığı diğer bir olayın ortaya çıkıp çıkmama olasılığını etkilemiyorsa bu olaylara bağımsız olaylar denir. İki olayın bağımsız olabilmeleri için aşağıdaki koşulların gerçekleşmesi gereklidir. P ( A / B ) = P ( A ) ve P ( B / A ) = P ( B ) Yukarıdaki koşullardan herhangi biri gerçekleşmiyorsa A ve B olaylarına bağımsız olmayan ( bağımlı olaylar ) adı verilir ; P ( A / B ) P ( A) ve P ( B / A ) P ( B ) olur. 18

19 TAMAMLAYICI ( BÜTÜNLEYİCİ ) OLAY A olayının tamamlayıcısı gösterilir. A olarak P( A) 1 P(A) Bir A olayının gerçekleşme olasılığı 0,25 ise tamamlayıcısının gerçekleşme olasılığı P(A) 1 P(A)=1-0,25=0,75 19

20 OLAYLARIN ARA KESİTİ VE ÇARPMA KURALI A ve B gibi iki olayda hem A da hem B de mevcut sonuçlar iki olayın ara kesitini oluşturur. A ve B olaylarının ara kesiti ( kesi şimi ) A B ya da AB şeklinde gösterilir. Çarpma Kuralı: A ve B gibi birlikte ortaya çıkan olayların olasılığına bileşik olasılık adı verilir ve P ( A ve B ) şeklinde gösterilir. İki olayın ara kesitinin olasılığıi bir olayın bileşen olasılığı ile ikinci olayın koşullu olasılığından elde edilir ve bu kurala çarpma kuralı denir. A ve B olayının bileşik olasılığı P (A B ) ya da P ( AB ) olarak da gösterilir. 20

21 21 Koşullu Olasılık Eğer A ve B, P ( A ) 0 ve P ( B ) 0 olmak üzere iki olay ise bulara ilişkin koşullu olasılıklar aşağıdaki gibi elde edilir. ) ( ) ( ) / ( B P B A P B A P ) ( ) ( ) / ( A P A B P A B P

22 BAĞIMSIZ OLAYLAR İÇİN ÇARPMA KURALI A ve B olayları bağımsız ise bir başka ifadeyle B olayının meydana gelme olasılığı A olayının meydana gelme olasılığına bağlı değil ise ve iki olay aynı anda meydana gelebiliyor ise; P ( A / B ) = P ( A) ve P ( B / A ) = P ( B ) olur. Sonuç olarak A ve B olayları bağımsız iseler P ( A ve B ) = P ( A B ) = P ( A ). P ( B ) eşitliği elde edilir. Aynı şekilde P ( A B ) = P ( A ). P ( B ) ise A ve B olayları bağımsızdır denir. 22

23 Ayrık Olayların Bileşik Olasılığı İki ayrık olayın bileşik olasılığı her zaman 0 dır. Bu durum A ve B ayrık olaylar ise P ( A ve B ) = P ( A B ) = 0 olarak gösterilir. 23

24 OLAYLARIN BİLEŞİMİ VE ÇARPMA KURALI Aynı örneklem uzayında tanımlı A ve B olaylarının bileşimi A da ya da B de ya da A ve B de birlikte yer alan tüm olaylarının bileşkesi olup A ya da B biçiminde gösterilir. Toplama Kuralı: Olayların bileşimine ilişkin olasılık hesaplamada kullanılan yönteme, toplama kuralı denir ve aşağıdaki gibi tanımlanır. A ve B olaylarının bileşiminin olasılığı, P (A veya B ) = P ( A ) + P ( B ) - P ( A ve B ) biçiminde gösterilir. Ayrık Olaylar İçin Toplama Kuralı: P (A veya B ) = P ( A ) + P ( B ) biçiminde gösterilir. 24

25 Örnek: Bir üniversitede okuyan öğrencilerin % 70 i tiyatroya, % 35 ise sinemaya ilgi duymaktadır. a) Bir öğrencinin sinemaya ilgi duyduğu bilindiğinde tiyatroya ilgi duyma olasılığı 0,40 ise her iki aktiviteye birden ilgi duyma olasılığı nedir? b) Bir öğrencinin tiyatro veya sinemaya ilgi duyma olasılığı nedir? T:Tiyatroya ilgi duyma S:Sinemaya ilgi duyma P ( T ) = 0,70 P( S ) = 0,35 a) P ( T / S ) = 0,40 P (T S ) =? P(T/S) P(T S) P(S) P(T S) P(T/S) *P(S) 0,40*0,35 0,14 b) P(T U S) P(T) P(S) - P(T S) 0,70 0,35-0,14 0,91 25

26 Örnek: Ali ve Can isimli iki avcının bir hedefi vurma olasılıkları sırasıyla 0,65 ve 0,40 olarak verilmiştir. İki avcı hedefe birlikte ateş ettiğinde hedefin vurulma olasılığı nedir? A = Ali nin hedefi vurması P ( A ) = 0,65 C = Can ın hedefi vurması P ( C ) = 0,40 P ( A U C ) =? P( A U C ) = P ( A )+ P ( C ) P ( A C ) Ali ile Can nın hedefi vurmaları birbirinden bağımsız olduğundan; P ( A C ) = P ( A ). P ( C ) = 0,65 * 0,40 = 0,26 P( A U C ) = 0,65 + 0,40 0,26 = 0,79 26

27 1)Kusursuz bir madeni para 2 kez atılmıştır. Birinci para yazı iken, ikinci paranın da yazı olma olasılığı kaçtır? a)¼ b) 1/3 c) ½ d) 2/3 e) 3/4 2) 1 den 10 a kadar (10 dahil) olan tam sayılar arasından rastgele seçilen bir sayının 2 ve 3 ile bölünebilen bir sayı olma olasılığı kaçtır? a) 1/10 b) 1/5 c) 3/10 d) 1/2 e) 8/10 3) Bir işyerinde 3 erkek ve 20 kadın olmak üzere 50 kişi çalışmaktadır. Erkeklerin 1/3 ü ve kadınlarında 1/10 u gözlük takmaktadır. Rasgele seçilen birinin gözlük takan bir erkek olma olasılığı kaçtır? a) 1/10 b) 1/5 c) 3/10 d) 1/2 e) 8/10 27

28 4) Bir kutuda 5 tanesi beyaz, 10 tanesi siyah olmak üzere 15 tane top vardır. Bu kutudan çekilen topun yerine konulması şartıyla 3 kez top çekilmiştir. Çekilen toplardan ikisinin beyaz olma olasılığı nedir? a) 1/27 b) 4/27 c) 2/9 d) 4/9 e) 5/9 5) Kusursuz bir madeni paranın 3 kez atılması deneyinde hiç yazı gelmeme olasılığı kaçtır? a) 1/8 b) 1/4 c) 3/8 d) 5/8 e) 7/8 6) Kusursuz bir madeni para n kez atılmıştır. Buna göre toplam sonuç sayısı aşağıdakilerden hangisidir? a) 2n b) 2 n c) n 2 d) 2n 2 e) n 2 /2 28

29 7) P(B) = 0,60 ve P(A/B)= 0,75 değerleri için A ve B olaylarının bileşik olasılığı kaçtır? a) 0,40 b) 0,45 c) 0,50 d) 0,55 e) 0,60 8) Bir işletmede 15 kadın ve 25 erkek vardır. Uygulanan bir sınavda 5 kadın ve 15 erkek başarısız olmuştur. Bu işletmeden seçilen bir kişinin başarısız olduğu bilindiğine göre bu kişinin kadın olma olasılığı kaçtır? a) 1/2 b) 1/4 c) 1/2 d) 5/8 e) 7/8 9) Kusursuz iki madeni paranın aynı anda atılması deneyinde bir yazı bir tura gelmesi olasılığı kaçtır? a) 0,20 b) 0,25 c) 0,50 d) 0,75 e) 1,00 29

30 10) Hilesiz bir zarı ardı ardına iki kez atalım. Üste gelen sayıların toplamının 3 ten büyük olma olasılığı nedir? a) 25/36 b) 27/36 c) 30/36 d) 33/36 e) 35/36 11) Bir avcının arka arkaya yaptığı üç atışta hedefini vurma olasılıkları sırasıyla 0,2, 0,7 ve 0,9 olarak belirlenmiştir. Bu avcının en az bir hedefi vurma olasılığı nedir? a) 0,20 b) 0,70 c) 0,90 d) 0,976 e) 0,99 12) Bir torbada 4 siyah ve 5 beyaz bilye bulunmaktadır. Arka arkaya iadesiz seçim yöntemiyle rastgele seçilen iki bilyenin siyah olma olasılığı nedir? a) 0,20 b) 0,25 c) 0,50 d) 0,75 e) 1,00 30

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

Dr. Akarsu Hafta-4 11/16/2014 1

Dr. Akarsu Hafta-4 11/16/2014 1 Dr. Akarsu Hafta-4 11/16/2014 1 GİRİŞ Olasılık dolaylı istatistiğin önemli metotlarının temelini oluşturmaktadır. Örneğin, cinsiyet belirleyici bir prosedür belirlediğinizi iddia ediyorsunuz ve her seferinde

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome ÖLÜM : OLSLK Giriş: Olasılık kavramına. Fermat ile. ascal ın büyük katkıları olmuştur. ascal hesap makinesini geliştirerek Fermat ile birlikte olasılığın temellerini oluşturmuştur. Daha sonra Rus matematikçi

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

OLASILIK VE OLAY ÇEŞİTLERİ

OLASILIK VE OLAY ÇEŞİTLERİ OLASILIK VE OLAY ÇEŞİTLERİ KAZANIMLAR Örnek uzay Olasılık kavramı Bir olayın olasılığının hesaplanması Teorik olasılık kavramı Deneysel olasılık kavramı Öznel olasılık kavramı Bağımsız olay Bağımlı olay

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal Ağırlıklı ALES Puanınızın (ALES-SAY)

Detaylı

Olasılık Kavramı. Mühendislikte İstatistik Yöntemler

Olasılık Kavramı. Mühendislikte İstatistik Yöntemler Olasılık Kavramı Mühendislikte İstatistik Yöntemler KÜME KAVRAMI Birlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere de eleman, öğe veya üye denir. Kümenin elemanlerı (öğeleri,

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS - - - ÖYS PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK TEMEL SAYMA KURALLARI Örnek ( ) adet hediyeden üçü üç kişiye, her birine birer hediye vermek kaydıyla kaç değişik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Prof. Dr. İrfan KAYMAZ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ HEDEFLER İÇİNDEKİLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ Giriş İstatiksel Kavramlar Olasılık Şartlı Olasılık Rassal Değişken Beklenen Değer Varyans Histogram Kantitatif Risk Değerlendirme Teknikleri

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ SAYMA. Kazanım : Merkezi eğilim ve yayılım ölçüleri Aritmetik ortalama, ortanca, tepe değer, en büyük değer, en küçük değer ve açıklık

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır.

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. KONTROL TESTİ - 4. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. Bu galerilerden rastgele alınan bir aracın A markasından olduğu

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan 1) Bir laboratuarda belirsiz sayıda deney yapılıyor. Okutulan deney no ve sonuç verilerine göre (3 çeşit deney var.) a) Her bir deneyden kaç tane yapılmıştır. b) Yapılan toplam deney sayısı ne kadardır.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4 T.. MİLLÎ EĞİTİM AKANLIĞI 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 MATEMATİK Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAYISI : 0 SINAV SÜRESİ :

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

ULUSLARARASI İLİŞKİLER BÖLÜMÜ A GRUBU İSTATİSTİK (2015-2016 BAHAR YARIYILI) VİZE SINAVI (24.11.2015)

ULUSLARARASI İLİŞKİLER BÖLÜMÜ A GRUBU İSTATİSTİK (2015-2016 BAHAR YARIYILI) VİZE SINAVI (24.11.2015) ULUSLARARASI İLİŞKİLER BÖLÜMÜ A GRUBU İSTATİSTİK (2015-2016 BAHAR YARIYILI) VİZE SINAVI (24.11.2015) Soru 1: ABD de Chicago şehrinde yapılan bir çalışmada, 586 adet itfaiye eri arasından şeflik sınavına

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66...

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66... İÇİNDEKİLER Sayfa No Test No 3-PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 0-03 FAKTÖRİYEL...65-66...

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Pokerin Matematiği açık oyun renk

Pokerin Matematiği açık oyun renk Pokerin Matematiği atrançta bir oyuncunun bilip de öbür oyuncunun bilmediği bilgi yoktur. Bu tür oyunlara açık oyun diyelim. STavlada da bir oyuncunun bildiğini öbür oyuncu bilir. Birinin öbüründen gizlisi

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ SAYMA. Kazanım : Merkezi eğilim ve yayılım ölçüleri Aritmetik ortalama, ortanca, tepe değer, en büyük değer, en küçük değer ve açıklık

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR 1 BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR İstatistik öğrenmelerinde sıklıkla karşılaşılacak olan temel bazı kavramlar, eğitim alanına yönelik örnekleriyle birlikte aşağıda açıklanmaktadır. 1.1.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız.

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. OLASILIĞA GİRİŞ IDERSİ ÖDEV 5 ÇÖZÜMLERİ 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. A B = A (B A) =A (B A c ) A B C = A (B A) (C (A B)) = A (B A c ) (C B

Detaylı

İKTİSAT SORU BANKASI ECONOMICUS TAMAMI ÇÖZÜMLÜ DİLEK ERDOĞAN KURUMLU TEK KİTAP

İKTİSAT SORU BANKASI ECONOMICUS TAMAMI ÇÖZÜMLÜ DİLEK ERDOĞAN KURUMLU TEK KİTAP ECONOMICUS İKTİSAT SORU BANKASI TAMAMI ÇÖZÜMLÜ Mikro İktisat Makro İktisat Para-Banka Kredi Uluslararası İktisat Büyüme ve Kalkınma Türkiye Ekonomisi İktisadi Doktrinler Tarihi KPSS ve kurum sınavları

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı