Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü"

Transkript

1 Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1

2 Akışkan Statiğine Giriş Akışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla ilgili problemleri ele alır.

3 Akışkan Statiğine Giriş Bir yüzey akışkana daldırıldığı zaman akışkandan dolayı yüzeye bir kuvvet etkir. Depoların, gemilerin, barajların ve diğer hidrolik yapıların dizaynında bu kuvvetlerin bilinmesine gereksinim vardır.

4 Düzlem Yüzeye Etkiyen Hidrostatik Kuvvetler Hareketsiz akışkanlarda, kayma gerilmesi olmadığı için bu yüzeye dik olduğu bellidir. Ayrıca, eğer akışkan sıkıştırılamaz ise basıncın derinlikle lineer (doğrusal) olarak değiştiği bilinir.

5 Çoğunlukla düzlemsel yüzeyin bir yüzü atmosfere açık olduğundan atmosfer basıncı düzlemsel yüzeyin heriki yüzüne de etkiyerek sıfır bileşke kuvvet oluşturur. Bu tür durumlarda atmosferik basıncı çıkarmak ve sadece etkin basınçla çalışmak daha uygundur.

6 Şekil 2.2 Dalmış düz yüzeylere etkiyen kuvvetler.

7 Sıvı ile dolu tankın (Şekil 2.3a) taban yüzeyi gibi yatay yüzeyler için, bileşke kuvvetin büyüklüğü F P* A dır. Burada P tankın tabanına etkiyen üniform basınçtır ve a tankın taban alanıdır. Şekilde gösterilen açık tank için P * h dır. R

8 Şekil 2.3 a. Üstü açık bir tankın tabanına etkiyen hidrostatik kuvvet ve basınç dağılımı b. Üstü açık tankın yan yüzeylerindeki basınç dağılımı

9 Eğer tankın tabanının her iki yüzeyine de atmosferik basınç etkiyorsa tankın tabanına etkiyen bileşke kuvvet sadece tankın içindeki sıvıdan dolayı olur. Tabana etkiyen basınç sabit ve üniform olarak dağılmış olduğundan dolayı bileşke kuvvet Şekil 2.3.a da gösterilen alanın merkezine etkir. Şekil 2.3.b de gösterildiği gibi, tankın yan yüzeylerine etkiyen basınç üniform değildir. Bu durumda, bileşke kuvvetin belirlenmesi aşağıda izah edildiği gibi yapılır.

10 Şekil 2.4 Eğik olarak daldırılmış düzlem yüzeye etkiyen hidrostatik kuvvet

11 Şekil 2.4 de gösterilen, eğik olarak daldırılmış düzlem yüzeye etkiyen bileşke kuvveti belirleyelim. Akışkanın yüzeyinin atmosfere açık olduğunu kabul edelim. Şekil 2.4 de gösterildiği gibi, daldırılmış yüzeyin bulunduğu yüzey serbest yüzey ile 0 noktasında θ açısı ile kesişsin. 0 orijin olmak üzere x-y eksen sistemi tanımlansın. Yüzey şekilde gösterildiği gibi keyfi bir şekle sahip olsun. Sıvı ile temastan dolayı bu yüzeyin bir yüzüne etki eden bileşke kuvvetin yönünü, konumunu ve büyüklüğünü belirlemeye çalışalım.

12 Herhangi bir h derinliğinde, da ya (Şekil 2.4 diferansiyel alan) etkiyen kuvvet, olup yüzeye diktir. Böylece, tüm yüzey boyunca diferansiyel kuvvetler toplanarak bileşke kuvvetin büyüklüğü bulunabilir. Eşitlik şeklinde aşağıdaki şekilde ifade edilebilir. Burada df * h* da F * h* da * y*sin * da R A A h dır. Sabit ve icin, y * sin F R *sin y* da (2.7) A elde edilir. Denklem 2.7 de verilen integral, x eksenine göre alanın birinci momenti olduğu için A y* da y * A C

13 şeklinde yazılabilir. Burada y c, A alanının merkezinin y koordinatıdır. Böylece denklem 2.7, F R * A* y *sin şeklinde yazılabilir veya daha basit olarak F * h * A (2.8) R C C şeklinde ifade edilebilir. Yandaki şekilde gösterildiği gibi, h c akışkanın serbest yüzeyinden alanın merkezine olan dikey mesafedir. Kuvvetin büyüklüğünün, θ açısının bir fonksiyonu olmadığı, sadece akışkanın özgül ağırlığının, daldırılmış yüzey alanının ve bu alanın merkezinin derinliğinin bir fonksiyonu olduğu hususunu belirtmek gerekir. Bileşke kuvvet F R ı elde etmek için yüzeye etkiyen diferansiyel kuvvetler toplandığı için, bileşke kuvvet F R da daldırılmış yüzeye dik olacaktır.

14 Sezgilerimiz bileşke kuvvetin, alanın merkezinden geçeceği yönünde olmasına rağmen bu sezgi doğru değildir. Bileşke kuvvetin y koordinatı y R, x ekseni etrafında momentlerin toplanmasıyla belirlenebilir. Yani, bileşke kuvvetin momenti, yayılı basınç kuvvetinin momentine eşit olmalıdır. F R * A* y *sin C olduğundan, y 2 * da y R A y c * A

15 İntegralin pay kısmı, I x, daldırılmış yüzeyin bulunduğu yüzey ile serbest yüzeyin arakesiti tarafında oluşan eksene (x eksene) göre alanın ikinci momentidir (atalet momenti). Böylece y R y c I x * A yazılabilir. Paralel eksen teoremi kullanılarak I x 2 x xc * c I I A y şeklinde ifade edilebilir. Burada I xc, x eksenine paralel ve alanın merkezinden geçen eksene göre alanın ikinci momentidir. Böylece

16 olur. Denklem 2.9 ve aşağıdaki şekilde gösterildiği gibi, bileşke kuvvet merkezden geçmez. Ixc 0 olduğundan o daima merkezin altındaki bir yc * A noktadan geçer. Bileşke kuvvetin x koordinatı x R, y eksenine göre momentler benzer şekilde toplanarak belirlenebilir: Burada I xyc, alanın merkezinden geçen ve x- y koordinat sisteminin aktarımı ile oluşturulan dik koordinat sistemine göre çarpım atalet momentidir.

17 Eğer daldırılmış alan merkezde geçen bir eksene göre simetrik ise ve x veya y eksenine paralel ise I xyc = 0 olduğundan bileşke kuvvet x = x c doğrusu üzerinde olur. Bileşke kuvvetin etki ettiği nokta basınç merkezi olarak adlandırılır. Denklem 2.9 ve 2.10 dan görüldüğü gibi, y c arttıkça basınç merkezi, alanın merkezine doğru yaklaşır. yc hc sin olduğundan eğer batma derinliği h c artarsa veya verilen bir derinlik için daldırılmış yüzey döndürülerek θ açısı azalırsa y c mesafesi artar. Bu nedenle, yandaki şekilde gösterilen kapının sağ yüzeyine etkiyen hidrostatik kuvvet, sol yüzeyine etkiyen hidrostatik kuvvete göre alanın merkezine daha yakındır.

18 Şekil 2.5 Bazı yaygın kullanılan şekillerin geometrik özellikleri 18

19 Örnek : Şekilde verilen 4 m çapındaki dairesel kapı su ile dolu büyük bir rezervuarın eğik duvarı üzerine yerleştirilmiştir. Kapı onun yatay çapı boyunca yataklanmış olup yatağın üzerindeki su derinliği 10 m dir. Su tarafında kapıya uygulanan bileşke kuvveti ve eksentrisiteyi bulunuz. 19

20 Suyun kuvvetinin büyüklüğünü bulmak için denklem 2.8 i uygulayabiliriz. F * h * A R C Serbest yüzeyden alanın merkezine olan dikey mesafe 10 m olduğu için FR (9810N/m )*(10m)*( *2 m ) 20

21 y R y R y I c xc * A y 4* 2 10 sin 60 *( *2 ) y m R Eksentrisite = Basınç Merkezi Ağırlık Merkezi e = y R - y c c F R nin etki ettiği basınç merkezinin konumunu bulmak için denklem 2.9 kullanılırsa I xc 10 sin * R *2 4* 4 4 e y y m R c 21

22 Örnek : A noktasından mafsallı AB dikdörtgen kapağın genişliği 4 m dir. Kapağın açılmaması için B noktasına uygulanması gereken kuvvetin şiddet ve yönü ne olmalıdır? 22

23 Çözüm 1: y R F. h. A C C I xc y * A y C y R1 3 3 b* h 4*2,4 4, F 9810 * (2,1 1,2) * 4 * 2, ,8 N 1 F 9810 * (1,2) * 4 * 2, ,2 N 2 4,608 3,3 3, 445 m yr2 3,3*9, 6 I xc 4,608 1,2 1,6 m 1,2*9,6 m 4 M M FA 2 1 FA ,8*(3, 445 2,1) 418 knm , 2*(1, 6) 180,817 knm M 0 419,55 180,82 F B *2, 4 F 98.8 B kn 23

24 Çözüm 2: F1 (9810*2,1)*2,4* ,6 N M ,6*(2,4 / 2) F B *2,4 0 FB 98,8 kn 24

25 Örnek: Şekildeki A-B kapağı A noktasında mafsallı olup B noktasına N luk P kuvveti etkimektedir. Kapağın hareketsiz k alması için gerekli h yüksekliğini hesaplayınız. 25

26 F * h * A 9810*( h 1,5)*(3*8) F x x C *( h1,5) N 3 3 b* h 8*3 Ixc 18m y R y I C xc * A y C 18 0, 75 yr ( h 1,5) ( h 1,5) ( h1,5)*(3*8) ( h1,5) 26

27 0, *( h 1,5)* ( h 1,5) h *3 ( h 1,5) 0, *( h 1,5)* 1, ( h 1,5) 0, 75 ( h 1,5)*1,5 ( h 1,5)* 3, 625 ( h 1,5) 0,75+(h+1,5)*1,5=3,625 h= 0,42 m 27

28 2.5.4 Silindirik Yüzeylere Etki Eden Basınç Kuvvetleri Bir eğri yüzey düşünelim ve bu eğri yüzey, bir yönde eğriliğe sahip olsun. Bu yüzeyin şekil düzlemine dik uzunluğu l olsun. Bu yüzeye etkiyen yatay ve düşey itki bileşenlerini hesaplayalım. Bu yüzeyin alanı (ds.l ) olan elemanter parçasına gelen basınç p = p 0 + γ.h dır. Aynı parçaya yüzeyin dış tarafında p 0 atmosfer basıncı etkiyecektir. O halde bileşke basınç γ.h olacaktır. Bu parçaya etkiyen basınç kuvveti ise df = γ.h. (ds.l) dir. Bu kuvvetin bileşenleri, 28

29 df. h. ds..cos. h.. dh x df. h. ds..sin. h.. dx h olarak yazılabilir. Bütün alana gelen kuvvetin yatay ve düşey bileşenleri ise, F x H. h. dh 0. H 2 2 H F. h. dx.. Alan( OBAO) h 0 O halde bir eğri yüzeyi üzerine tesir eden herhangi bir yöndeki yatay basınç kuvvetinin değeri, bu yüzeyin bahis konusu yöne dik düzlem üzerindeki izdüşümü üzerine tesir eden kuvvete eşittir. 29

30 Örnek : Şekilde gösterilen ABC yüzeyine etki eden hidrostatik basınç kuvvetini hesaplayınız. Şekle dik derinliği 1 m olarak alınız. A B 2 m 6 m C 30

31 Eğrisel yüzeylere etkili hidrostatik basınç kuvveti iki aşamada hesaplanacağından a. Yatay kuvvetin hesabı (F x ) A F x1 F x2 F x C 6 Fx1. hc. Ax 9,81..(6.1) 176,58 kn 2 8 Fx 2. hc. Ax 9,81..(8.1) 313,92 kn 2 F F F 313,92 176,58 137,34 kn x x2 x1 31

32 b. Düşey kuvvetin hesabı (F h ) Kapağa sol taraftan gelen düşey kuvvetler A B C Kapağa sağ taraftan gelen düşey kuvvetler D A O B C 32

33 Düşey bileşke kuvvet O D A B F h C F h.. b A y A ( ABCOD) ( OBC) ( ODAB) F y h 9,81.1.(2.6) 117, 72 kn c. Bileşke kuvvet x h F F F 137,34 117,72 180,89 kn 33

34 Örnek : Şekildeki AG kapağının 1 m genişliğine gelen yatay ve düşey hidrostatik kuvvetleri bulunuz. A C 1,5 m D B 1 m 2 m E 0,5 m F G 34

35 Kapağa gelen yatay kuvvet, şekilde görüldüğü gibi soldan ve sağdan gelen yatay kuvvetlerin bileşkesi olarak aşağıdaki gibi bulunur: A B C D F x1 E F F x2 35

36 Düşey kuvvet : Kapağa gelen düşey kuvvet, aşağıda gösterilen düşey kuvvetlerin bileşkesi olarak bulunur. Şekilde görüldüğü gibi, eşit ve zıt yönlü düşey kuvvetlerin birbirini götürmesi sonucunda, geriye düşey kuvvet olarak, çeyrek dairesel hacmi dolduran suyun ağırlığı kalmaktadır, yani: Kapağa sol taraftan gelen düşey kuvvetler : A A B B C D C D + C C = C E E E E E F F F F F 36

37 Kapağa sağ taraftan gelen düşey kuvvetler A B C C C + D = E E E F F F 37

38 C + C = C E E E F F F 38

39 Örnek : Şekilde kesiti verilen düşey düzleme dik derinliği 1 m olan tankın içerisinde su bulunduğuna göre C-D kapağına etki eden hidrostatik basınç kuvvetinin düşey bileşenini hesaplayınız. 39

40 F h 2 * *5.1 4 F h = N =389kN 40

41 Rijit Cisim Hareketi Yapan Akışkanlar Süt ve benzin gibi çoğu akışkan tankerlerle taşınır. İvmelenen bir tankerde akışkan geriye hücum eder ve başlangıçta bazı çalkalanmalar oluşur. Ancak bunun ardından yeni bir serbest yüzey meydana gelir.

42 Rijit Cisim Hareketi Yapan Akışkanlar Bu esnada her bir akışkan parçacığı aynı ivmeye sahiptir ve tüm akışkan gövdesi sanki katı bir cisim gibi hareket eder. Herhangi bir şekil değiştirme olmadığından akışkan içerisinde bir kayma gerilmesi oluşmaz.

43 Rijit Cisim Hareketi Yapan Akışkanlar z ekseni düşey ve yukarı doğru olmak üzere x, y ve z yönlerindeki kenar uzunlukları sırasıyla dx, dy ve dz olan dikdörtgen şeklindeki diferansiyel bir akışkan elemanını dikkate alalım.

44

45 Rijit Cisim Hareketi Yapan Akışkanlar Akışkan elemanın rijit cisim hareketi yaptığı düşünülerek bu eleman için Newton un ikinci hareket yasası F m* a m * d * dx* dy * dz Elemanın merkezindeki basıncı P alarak, üst ve alt yüzeylerindeki basınçlar P dz P dz P, P z 2 z 2 olur. F = P*A dan hareketle z yönünde eleman üzerine etkiyen net kuvvet, alt ve üst yüzeylere etki eden basınç kuvvetlerinin farkıdır. P dz P dz P FSz, P dx* dy P dx* dy dx * dy * dz z 2 z 2 z

46 Rijit Cisim Hareketi Yapan Akışkanlar ve Benzer şekilde x ve y yönlerindeki net kuvvetler, P FSx, dx* dy * dz x P FSy, dx* dy * dz y Elemanın tamamına etkiyen yüzey kuvveti vektörel formda F F * i F * j F * k S S, x S, y S, z P P P FS i j k dx* dy * dz P * dx* dy * dz x y z P P P P i j k Basınç gradyeni x y z

47 Rijit Cisim Hareketi Yapan Akışkanlar Akışkan elemanı üzerine etkiyen tek kütle kuvveti, negatif z yönünde etkiyen kendi ağırlığı olup F, g * m * g * dx* dy * dz Bz veya vektörel formda F, g * m* k * g * dx* dy * dz * k Bz Akışkan elemanı üzerine etkiyen toplam kuvvet F F F ( P * g * k)* dx* dy * dz S B F m* a * dx* dy * dz * a yerine yazılıp dx* dy * dz sadeleştirilirse Genel hareket denklemi P * g * k * a

48 Rijit Cisim Hareketi Yapan Akışkanlar Vektörler bileşenlerine ayrılırsa P P P i j k * g * k ( axi ay j azk ) x y z Kartezyen koordinatlarda skaler formda P * P ax * a P y *( g az ) x y z Durgun halde veya doğrusal bir yörünge üzerinde sabit hızla hareket eden akışkanlar için P P P 0 0 * g x y z Durgun haldeki akışkanlarda basıncın herhangi bir yatay doğrultuda sabit kaldığını (P, x ve y den bağımsız) ve yerçekiminin bir sonucu olarak yalnızca düşey doğrultuda değiştiğini doğrulamaktadır.

49 Rijit Cisim Hareketi Yapan Akışkanlar Akışkan a z sabit ivmesi ile yukarı doğru hareket ederse Akışkan a z sabit ivmesi ile aşağı doğru hareket ederse a a x x a a y y 0 P P P 0 *( g az ) x y z 0 P P P 0 *( g az ) x y z

50 Rijit Cisim Hareketi Yapan Akışkanlar Doğrusal yörünge üzerinde ivmelenme

51 Rijit Cisim Hareketi Yapan Akışkanlar Doğrusal yörünge üzerinde ivmelenme tan g a x a z Tankın yüksekliği = h0 z tan z b 2

52 Örnek 2.11: Şekilde görülen 2x2 tabanlı bir tank 1,5 m derinliğinde su ile doludur. Aşağıdaki durumlar için tankın tabanına gelen kuvvetleri bulunuz. 52

53 3 tan ax 0,306 ga 9,810 z z b 2 tan z * tan z *0,306 0,306 b h = h z 1,5 0,306 1,81m A 0 h = h z 1,5 0,306 1,19 m B 0 53

54 P =.h *( g a )* h 1000*(9,81 0)*1, Pa A B z A P =.h *( g a )* h 1000*(9,81 0)*1, Pa z B 1,81 F 1 =.h G. A 9810* *(1,81*2)=32138 N veya 2 P * h 17756*1, A A şekilden F 1 =. b *2=32138 N P *h 11674*1, B B F 2 =. b *2=13892 N 54

55 (P P )* ( )*2 2 2 A B AB F 3 = * b *2=58860 N 55

56 P =P =.h *( g a )* h 1000*(9,81 3)*1, Pa A B z P A*h 19215*1,5 F 1= F 2= A. b *2=28823N

57 F = P *AB* b 19215*2*2=76860 N 3 A 57

58 P =P =.h *( g a )* h 1000*(9,81 3)*1, Pa A B z P A*h 10215*1,5 F 1= F 2= A. b *2=15323N

59 F = P *AB* b 10215*2*2=40860 N 3 A 59

60 P = *( g a )* h 1000*(9,81 1,5)*1, Pa A B z A P = *( g a )* h 1000*(9,81 1,5)*1, Pa z B P * h 19566*1, A A F 1 =. b *2=33849 N P *h 14364*1, B B F 2 =. b *2=18242 N 60

61 (P P )* ( )*2 2 2 A B AB F 3 = * b *2= N 61

62 Silindirik Bir Kapta Dönme Sıvıyla kısmen doldurulmuş düşey bir silindirik kabı göz önüne alalım. Şekilde gösterildiği gibi kapkendi ekseni etrafında ω açısal hızıyla döndürülmektedir. Başlangıçtaki geçici durumdan sonra sıvı, kapla beraber rijit cisim şeklinde hareket edecektir. Herhangi bir şekil değiştirme olmadığından bir kayma gerilmesi de oluşmaz ve her bir akışkan parçacığı aynı açısal hızla hareket eder.

63 Kabın şekli silindirik olduğundan ve akışkan parçacıkları dairesel hareket yaptığından dolayı bu problem en iyi silindirik koordinatlarda (r,θ, z) çözülür. z ekseni, kap tabanından serbest yüzeye doğru kabın orta çizgisi boyunca alınır. Dönme ekseninden r mesafede bulunan ve ω sabit açısal hızıyla dönen bir akışkan parçacığının merkezcil ivmesi rω 2 olup radyal olarak dönme eksenine doğru (negatif r yönü) yönlenmiştir. Diğer bir ifadeyle a r = - rω 2 dir. Dönme ekseni olan z ekseni etrafında simetri vardır ve bu yüzden θ ya bağımlılık yoktur. Bu durumda P = P (r,z) ve a θ = 0 olur. Ayrıca z ekseni doğrultusunda hareket olmadığından a z = 0 dır.

64 Bu eğrisel yüzey bir parabol şeklindedir ve serbest yüzey denklemi 2 2 zs = r h 2 g c h c h R 4g h c,serbest yüzeyin kap tabanından dönme ekseni boyunca mesafesi h 0,dönme olmadan önce kaptaki akışkan yüksekliği

65 Örnek 2.12: İçinde 3.5 m yüksekliğinde su bulunan şekildeki 1 m yarıçaplı silindirik kap 5 rad/s açısal hızla kendi ekseni etrafında döndürülüyor. Kaptaki suyun taşmaması için kap yüksekliği en az kaç metre olmalıdır? 65

66 z( x) = 2 2 x 2g h c h c h R 4g z( x) = x R h0 2g 4g r R z( r) H h0 2g 4g

67 zr ( )= 3,5 2g 4g z( r) H 4,14m

68 Kaynaklar Akışkanlar Mekaniği Ders Notları, Yrd. Doç. Dr. Serkan ŞENOCAK, Yrd. Doç. Dr. Selim ŞENGÜL, Atatürk Üniversitesi, Mühendislik Fak. İnşaat Müh. Bölümü Akışkanlar Mekaniği, Frank M. White Akışkanlar Mekaniği, Temelleri ve Uygulamaları, Yunus A. Çengel, John M. Cimbala Akışkanlar Mekaniği ve Hidrolik, Prof. Dr. Mehmet Berkun Akışkanlar Mekaniği ve Hidrolik, Prof. Dr. Yalçın Yüksel Akışkanlar Mekaniğine Giriş, Young, D.F., Munson, B.R., Okiishi, T.H., Huebsch, W.W. 68

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

HİDROSTATİK. PDF created with FinePrint pdffactory trial version http://www.fineprint.com

HİDROSTATİK. PDF created with FinePrint pdffactory trial version http://www.fineprint.com HİDRSTTİK Hidrostatik, hareketsiz yada durgun durumda bulunan sıvıların ve diğer ivmelerden doğan basınç ve kuvvetleri ile uğraşan bilim dalıdır. Hidrostatik, denge durumunda bulunan sıvıların denge koşullarını

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Bölüm 3: Basınç ve Akışkan Statiği

Bölüm 3: Basınç ve Akışkan Statiği Basınç Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvettir. Basıncın birimi pascal (Pa) olarak adlandırılan N/m 2 dir. Basınç birimi Pa,uygulamada çok küçük olduğundan daha çok kilopascal

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

1 AKIŞKANLARIN ÖZELLİKLERİ

1 AKIŞKANLARIN ÖZELLİKLERİ 1 AKIŞKANLARIN ÖZELLİKLERİ SORU 1: Şekilde görülen dairesel kesitli düşey bir tüpte 20 C deki suyun kapiler yüksekliğinin 1 mm den az olması için gerekli olan minimum yarıçap değeri nedir? (20 C de su

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

İnşaat Mühendisliği Bölümü. Basınç Kuvvetleri

İnşaat Mühendisliği Bölümü. Basınç Kuvvetleri İnşaat Mühendisliği ölümü kışkanlar Mekaniği asınç Kuvvetleri Soru 1 : Şekildeki mafsal altındaki yüzeylere etkiyen yatay ve düşey kuvvetleri bulunuz. (Şekil düzlemine dik derinlik 1 m dir.) h 1.5 m 1

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010. Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ

Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010. Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ John Ninomiya 72 helyum balon kümesi ile Nisan 2003 de Temecula,

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017 SORU-1) Dirençli bir ortamda doğrusal hareket yapan bir parçacığın ivmesi a=k V 3 olarak tanımlanmıştır. Burada k bir sabiti, V hızı, x konumu ve t zamanı sembolize etmektedir. Başlangıç koşulları x o

Detaylı

AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI

AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI 1 AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI AKIŞKANLARIN ÖZELLİKLERİ SORU 1: Şekilde görülen dairesel kesitli düşey bir tüpte 0 C deki suyun kapiler yüksekliğinin 1 mm den az olması için gerekli olan minimum

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. ÖDEV SETİ 4 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. 2) a) 3 kg lık b) 7 kg lık blok iki ip ile şekildeki gibi bağlanıyor, iplerdeki gerilme

Detaylı

ÇÖZÜMLER ( ) ( ) ( ) ( ) ( ) ( ) ( ) İnşaat Mühendisliği Bölümü Uygulama VII

ÇÖZÜMLER ( ) ( ) ( ) ( ) ( ) ( ) ( ) İnşaat Mühendisliği Bölümü Uygulama VII Soru 1 : Şekildeki hazne boru sisteminde; a- 1, 2, 3 noktalarındaki akışkanın basınçlarını bulunuz. b- Rölatif enerji ve piyezometre çizgilerini çiziniz. Sonuç: p 1=28.94 kn/m 2 ; p 2=29.23 kn/m 2 ; p

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4)

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4) YLDZ TEKNİK ÜNİVERSİTESİ İNŞT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK NBİLİM DL KŞKNLR MEKNİĞİ DERSİ (PROBLEMLER ).1) Şekilde görülen ve noktasından mafsallı dikdörtgen kaağın uzunluğu.5 m, şekle dik derinliği 1.

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Akışkanlar Mekaniği. Bölüm-II. Akışkanların Statiği

Akışkanlar Mekaniği. Bölüm-II. Akışkanların Statiği Akışkanlar Mekaniği Bölüm-II Akışkanların Statiği 1 2. AKIŞKANLARIN STATİĞİ 2.1. Akışkanlara Etki Eden Kuvvetler Birinci tip kuvvetler kütle (hacim) kuvvetleri ve ikinci tip kuvvetler yüzey kuvvetleri

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

AKIŞKANLAR MEKANİĞİ m 2 /s ve yoğunluğu 0.88 olan

AKIŞKANLAR MEKANİĞİ m 2 /s ve yoğunluğu 0.88 olan AKIŞKANLAR MEKANİĞİ SORU 1: Şekilde görülen dairesel kesitli düşey bir tüpte 20 C deki suyun kapiler yüksekliğinin 1 mm den az olması için gerekli olan minimum yarıçap değeri nedir? (20 C de su için yüzeysel

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK)

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK) BÖLÜM AKIŞKANLARIN STATİĞİ (HİDROSTATİK) Hidrostatik duran akışkanlar ile üniform olarak hareket eden ( akışkanın hızının her erde anı olduğu ) akışkanların durumunu inceler. 1 BİR NOKTADAKİ BASINÇ Hidrostatik

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı