YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ"

Transkript

1 YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ

2 İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık problemlerin çözümünde önemli bir başarı oranı elde etmiştir. Yapay zeka teknikleri günden güne yeni bir uygulama alanı kazanmakta ve gelişmektedir. Yapay zeka teknikleri arasında henüz yeni diyebileceğimiz Yapay Bağışıklık Sistemi, başlangıçta tıp alanındaki araştırmacıların bağışıklık sistemini daha kolay kavrayabilmeleri için sistemi modellemeleri ile ortaya çıkmış, daha sonra bağışıklık sisteminin tanıma, hafızaya sahip olma, yabancı organizmaları yok etme gibi özellikleri farklı alanlarda çalışan araştırmacıların ilgisini çekmiştir.

3 YAPAY BAĞIŞIKLIK SİSTEMİ

4 Antijenler ve antikorlar için gerçel değerli koordinatlar kullanıldığında Öklid ya da Manhattan uzaklığı kullanılır. Gerçel değerli vektörler yerine ikili(binary) sembollerle ifade edilirlerse farklı bir uzaklık ölçütü olan Hamming uzaklık ölçütü kullanılır.

5

6

7 Algoritmanın çalışması şu şekildedir: Aday çözümlerden oluşan bir populasyon oluşturulur (P). Bu populasyon, hafıza hücreleri (M) ve geri kalan populasyondan (P r ) oluşur (P=P r +M). Duyarlılık ölçütüne bağlı olarak populasyondaki en iyi n tane eleman seçilir ve P n populasyonu oluşturulur. Seçilen bu en iyi bireyler antijene olan duyarlılıklarına bağlı olarak klonlanırlar (çoğalırlar). Duyarlılığı yüksek olan bireylerin oluşturacağı klon sayısı yüksek, duyarlılığı düşük olan bireylerin klon sayısı ise düşük olacaktır. Böylelikle bir C klon kümesi oluşturulmuş olur. Klonlardan oluşan C populasyonu bir hipermutasyon işlemine tabi tutulur. Hipermutasyon işleminde de duyarlık ile doğru orantı söz konusudur. Hipermutasyondan sonra oluşan sete ise C* populasyonu denir. Klonlama ve hipermutasyondan sonra gelişmiş bireyleri populasyona eklemek için tekrar bir seçme işlemi yapılır ve M hafıza seti oluşturulur. Bu seçme işleminden sonra P populasyonundaki bazı hücrelerin yerlerini C* setindeki bazı hücrelere bırakmaları olasıdır. Populasyonda çeşitliliği sağlamak amacıyla P populasyonundaki d tane birey yeni üretilen bireyler ile yer değiştirir. Düşük duyarlılıklı bireylerin yer değiştirme ihtimali daha fazladır.

8 KLONAL SEÇIM ALGORITMASı ÖRNEK Aşağıda verilen gözlem tablosunda X1 ve X2 niteliklerinden Y sınıfı oluşmaktadır. Bu gözlem değerlerine bağlı olarak yeni bir gözlem olan X1=8, X2=4 değerlerinin hangi sınıfa dahil olduğunu bulalım.

9

10

11

12

13

14 Duyarlılık yani affinity değeri 1-D formülü ile bulunmaktadır. Dolayısı ile uzaklık ne kadar küçük olursa duyarlılık o kadar yüksek olur. (5,8),(9,7),(6,3) en yüksek duyarlılığa sahip elemanlarımızdır yani P n kümesini oluştururlar. Seçilen bu en iyi bireyler antijene olan duyarlılıklarına bağlı olarak klonlanırlar (çoğalırlar). Duyarlılığı yüksek olan bireylerin oluşturacağı klon sayısı yüksek, duyarlılığı düşük olan bireylerin oluşturacağı klon sayısı düşük olacaktır. Böylece C klon kümesi oluşturulmuş olur. Bu örnekte tüm bireyler eşit sayıda klonlandı.

15 Klonlardan oluşan C kümesi hipermutasyona uğratılır ve C* popülasyonu oluşturulur. Mutasyon oranı, kaç sütunun mutasyona uğrayacağını belirten değerdir. Burada mutasyon oranı 1 olarak alındı yani 1 sütun mutasyona uğratıldı. Mutasyon random olarak yapılmalıdır.

16 Klonlama ve hipermutasyondan sonra gelişmiş bireyleri popülasyona eklemek için yeniden seçme işlemi yapılır ve M hafıza seti oluşturulur. Bu seçme işleminden sonra P popülasyonundaki bazı hücrelerin yerlerini C* setindeki bazı bireylere bırakmaları olasıdır (P popülasyonundaki düşük duyarlılıklı bireyler C* setindeki yüksek duyarlılıklı bireylerle yer değiştirebilir). C* ile Ag arasındaki uzaklıklar Öklid formülü ile hesaplandığında, (7,9) antijenine en yakın antikorun (6,8), (D=1,41) (11,7) antijenine en yakın antikorun (9,8), (D= 2,23) (10,2) antijenine en yakın antikorun (9,3) (D= 1,41) olduğu görülür ve bu değerler P popülasyonuna dahil edilir. P popülasyonundaki (2,4) değeri 3 antijene de en uzak değer olduğu için P popülasyonundan çıkartılır.

17 Yapılan bu işlemler sonucunda verilerimiz klonal seçim algoritması ile eğitilmiştir. Klonlama ve mutasyon işlemleri antikorların antijenlere olan duyarlılıklarını arttırmış olup (daha fazla sayıda ve daha sağlıklı veriler elde edilmesi ile) sınıflandırma başarısında artış olacaktır.

18 En yakın k-komşu algoritması ile k=3 alarak (7,9),(11,7) ve (10,2) değerlerini test edelim:

19

20

21

22 Daha önce hiç karşılaşılmamış veri ile karşılaşıldığı zaman da başarılı bir sınıflandırma yapmak mümkündür: (8,4) gözleminin hangi sınıfa dahil olduğunu bulabiliriz: (8,4) noktası ile P popülasyonundaki değerlerin uzaklıklarını Öklid formülü ile hesaplarsak; (8,4)-(3,6) arası uzaklık 5,38 (8,4)-(3,4) arası uzaklık 5 (8,4)-(4,10) arası uzaklık 7,21 (8,4)-(5,8) arası uzaklık 5 (8,4)-(6,3) arası uzaklık 2,23 (8,4)-(9,7) arası uzaklık 3,16 (8,4)-(6,8) arası uzaklık 4,47 (8,4)-(9,8) arası uzaklık 4,12 (8,4)-(9,3) arası uzaklık 1,41 En yakın olan değerler (6,3),(9,7),(9,3) değerleridir ve bunların ait olduğu sınıflar İYİ, KÖTÜ, KÖTÜ olduğu için (8,4) gözlemi KÖTÜ sınıfına dahildir.

23 AŞAĞIDAKİ EĞİTİM VE TEST VERİ SETLERİNİ KULLANARAK KLONAL SEÇİM ALGORİTMASI İLE İYİLEŞTİRME YAPINIZ. SINIFLANDIRICI OLARAK KNN (K-EN YAKIN KOMŞU) ALGORİTMASINI K=3 İÇİN KULLANINIZ. EĞİTİLMİŞ YENİ EĞİTİM SETİ İÇİN TEST SETİNİN KARAR PERFORMANSINI İNCELEYİNİZ. Eğitim Seti Gözlem X1 X2 Karar DOĞRU YANLIŞ DOĞRU YANLIŞ DOĞRU Test Seti Gözlem X1 X2 Karar DOĞRU YANLIŞ DOĞRU

24 (9,1) (1,9) (5,5) 3 5 D 7,2 4, Y 9,4 3 4, D 7,07 4,2 1, Y 6 8,24 4, D 11,4 1,41 5,8 Pn 3 1 Y 2 10 D 4 6 D

25 C klon 3 1 Y 3 1 Y 2 10 D 2 10 D 4 6 D 4 6 D C* 3 10 Y 3 6 Y 2 1 D 2 6 D 4 10 D 4 1 D

26 C* (9,1) (1,9) (5,5) 3 10 Y 10,81 2,23 5, Y 7,81 3,60 2, D 7 8, D 8,60 3,16 3, D 10,29 3,16 5, D 5 8,54 4,12

27 knn algoritması ile k=3 için sınıflandırma: Eğitilmiş Veri (9,1) (1,9) (5,5) 3 5 D 7,21 4, Y 9,43 3 4, D 7,07 4,24 1, Y 6 8,24 4, D 11,40 1,41 5, Y 10,81 2,23 5, Y 7,81 3,60 2, D 5 8,54 4,12 Test Eğitilmemiş veri (%66) Eğitilmiş veri (%100) (9,1) D D (D, D, Y) D (D, Y, D) (1,9) Y D (Y, D, D) Y (Y, D, Y) (5,5) D D (D, Y, D) D (D, D, Y)

28 Teşekkürler

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Yapay Bağışık Sistemler ve Klonal Seçim Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Bağışık Sistemler Bağışıklık sistemi insan vücudunun hastalıklara karşı savunma mekanizmasını oluşturan

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ

GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ Engin Sansarcı İ.T.Ü. İşletme Fakültesi, İSTANBUL enginsansarci@gmail.com Abdullah Aktel İ.T.Ü. İşletmeFakültesi, İSTANBUL abdullahaktel@gmail.com

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

Türkçe Dokümanlar Ġçin Yazar Tanıma

Türkçe Dokümanlar Ġçin Yazar Tanıma Türkçe Dokümanlar Ġçin Yazar Tanıma Özcan KOLYĠĞĠT, Rıfat AġLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Matematik Bölümü Bölümü, Aydın okolyigit@gmail.com, rasliyan@adu.edu.tr, kgunel@adu.edu.tr Özet:

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

Çok-öbekli Veri için Aradeğerlemeci Ayrışım

Çok-öbekli Veri için Aradeğerlemeci Ayrışım Interpolative Decomposition for Data with Multiple Clusters Çok-öbekli Veri için Aradeğerlemeci Ayrışım İsmail Arı, A. Taylan Cemgil, Lale Akarun. Boğaziçi Üniversitesi, Bilgisayar Mühendisliği 25 Nisan

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

YAPAY BAĞIŞIKLIK TABANLI SINIFLANDIRMA YÖNTEMİYLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI

YAPAY BAĞIŞIKLIK TABANLI SINIFLANDIRMA YÖNTEMİYLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI YAPAY BAĞIŞIKLIK TABANLI SINIFLANDIRMA YÖNTEMİYLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI T. Kavzoğlu 1, İ. Çölkesen 2 Gebze Yüksek Teknoloji Enstitüsü, Jeodezi ve Fotogrametri Mühendisliği Bölümü,

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ

Detaylı

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser

Detaylı

ADIM ADIM YGS LYS Adım DOLAŞIM SİSTEMİ 5 İNSANDA BAĞIŞIKLIK VE VÜCUDUN SAVUNULMASI

ADIM ADIM YGS LYS Adım DOLAŞIM SİSTEMİ 5 İNSANDA BAĞIŞIKLIK VE VÜCUDUN SAVUNULMASI ADIM ADIM YGS LYS 177. Adım DOLAŞIM SİSTEMİ 5 İNSANDA BAĞIŞIKLIK VE VÜCUDUN SAVUNULMASI İNSANDA BAĞIŞIKLIK VE VÜCUDUN SAVUNULMASI Hastalık yapıcı organizmalara karşı vücudun gösterdiği dirence bağışıklık

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ - 150110046 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 14 Yarışmacı Çözümleme Kendini Düzenleyen Listeler Öne Taşıma - Buluşsal Yaklaşım Öne Taşımanın Yarışmacı Çözümlemesi Prof. Charles E. Leiserson Kendini Düzenleyen

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU

Elbistan Meslek Yüksek Okulu Güz Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU Elbistan Meslek Yüksek Okulu -2016 2017 Güz Yarıyılı Öğr. Gör. Murat KEÇECĠOĞLU Dünyada en yaygın kullanılan hesap tablosu programı Microsoft firması tarafından üretilen Excel programıdır. Farklı dillerde

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

ADIM ADIM YGS LYS Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ

ADIM ADIM YGS LYS Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ ADIM ADIM YGS LYS 108. Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ Belirli bir bölgede yaşayan aynı türlerin oluşturduğu topluluğa popülasyon denir. Popülasyon genetiği, popülasyonu temel alan genetik koludur.

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

KALITIM #12 MODERN GENETİK UYGULAMALARI (BİYOTEKNOLOJİ) SELİN HOCA

KALITIM #12 MODERN GENETİK UYGULAMALARI (BİYOTEKNOLOJİ) SELİN HOCA KALITIM #12 MODERN GENETİK UYGULAMALARI (BİYOTEKNOLOJİ) SELİN HOCA BİYOTEKNOLOJİ Canlılara temel bilimlerin ve mühendislik ilkelerinin uygulanmasıdır. Gen mühendisliği, genetik madde lan DNA üzerinde yapılan

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri VERİ MADENCİLİĞİ Farklı Sınıflandırma Yöntemleri Yrd. Doç. Dr. Şule Gündüz Öğüdücü Örnek tabanlı yöntemler ken Yakın Komşu Yöntemi Genetik Algoritmalar Karar Destek Makinaları Bulanık Küme Sınıflandırıcılar

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/ Dr. Y. İlker TOPCU www.ilkertopcu.net www.ilkertopcu.org www.ilkertopcu.info facebook.com/yitopcu twitter.com/yitopcu instagram.com/yitopcu Dr. Özgür KABAK web.itu.edu.tr/kabak/ Dr. Y. İlker Topcu (www.ilkertopcu.net)

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri Konular VERİ MADENCİLİĞİ Farklı Sınıflandırma Yöntemleri Yrd. Doç. Dr. Şule Gündüz Öğüdücü Örnek tabanlı yöntemler ken Yakın Komşu Yöntemi Genetik Algoritmalar Bulanık Küme Sınıflandırıcılar Öngörü Eğri

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 1 Mayıs 01 Matematik Sorularının Çözümleri 1. 9! 8! 7! 9! + 8! + 7! 7!.(9.8 8 1) 7!.(9.8+ 8+ 1) 6 81 9 7. 4, π, π π,14

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

2. ETKİNLİK ÇALIŞMASI ÇÖZÜMLERİ. (2.öğretim A grubu)

2. ETKİNLİK ÇALIŞMASI ÇÖZÜMLERİ. (2.öğretim A grubu) 2. ETKİNLİK ÇALIŞMASI ÇÖZÜMLERİ (2.öğretim A grubu) Bir uzay mekiği bir uzay istasyonuna gönderilecektir. Bilim adamlarınca tasarlanan denemeler için 1400 kg lik bir yükleme sınırı vardır. Araştırmacılar

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

Kesirler. Kesirlere neden ihtiyaç duyulur?

Kesirler. Kesirlere neden ihtiyaç duyulur? Kesirlerin Öğretimi Kesirler Kesirlere neden ihtiyaç duyulur? Kesirler Kesirlere neden ihtiyaç duyulur? Doğal sayılar günlük yaşantımızda bazı problemlerin çözümünde yetersiz kalır. Kesirler Kesirlere

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi EN LİSELERİ, SOSYL İLİMLER LİSELERİ,SPOR LİSELERİ,NDOLU LİSELERİ ÖĞRETMENLERİNİN SEÇME SINVIN HZIRLIK DENEME SINVI. 2 HZIRLYN : İ:K(2008) idensu@gmail.com kuscuogluibrahim@gmail.com http://idensu.googlepages.com

Detaylı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ ELEMENTLER VE SEMBOLLERİ Elementler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Elementler çok sayıda

Detaylı

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme Yöntemleri & EBE Z Eğitimde Araştırma Yöntemleri (Fraenkel & Wallen, 1990), araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği, ancak ulaşması

Detaylı

ELEMENTLER VE BİLEŞİKLER

ELEMENTLER VE BİLEŞİKLER ELEMENTLER VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri a) ELEMENTLER Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Örnekleme Yöntemleri

Örnekleme Yöntemleri Örnekleme Yöntemleri Evren & Örneklem (Fraenkel & Wallen, 1990) Evren & Örneklem 2 Evren Evren, araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği,

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 1 MİCROSOFT EXCEL Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

Örnek: Demir, bakır, alüminyum, çinko, kurşun, altın gibi elementler atomik yapılıdır.

Örnek: Demir, bakır, alüminyum, çinko, kurşun, altın gibi elementler atomik yapılıdır. ELEMENT VE BİLEŞİKLER : 1- Elementler ve Elementlerin Özellikleri : a) Elementler : Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş Bellek Yönetimi (Memory Management) İşletim Sistemlerine Giriş - Ders10_02 1 Yazılım ile LRU Benzetimi Donanım kullanmadan LRU algoritmasının yazılım ile gerçekleştirimidir.

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama Eğitmen: Onur AĞIN 2016 Biz Kimiz? Kuruluş 9Eylül 2013 14 Kişilik bir Takım 11 Ar-Ge Mühendisi 2 Ar-Ge Koordinatörü 1 Müdür Yenilik Prototip

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

TEMEL BİLGİSAYAR. Ders Notları. Yrd. Doç. Dr. Seyit Okan KARA

TEMEL BİLGİSAYAR. Ders Notları. Yrd. Doç. Dr. Seyit Okan KARA TEMEL BİLGİSAYAR Ders Notları Yrd. Doç. Dr. Seyit Okan KARA İÇERİK Excel menü çubuğunda bulunan, Ekle menüsünün içerik ve uygulamaları Biçim menüsünün içerik ve uygulamaları Veri menüsünün içerik ve uygulamaları

Detaylı

Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR

Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR Sayılar; insanların ilk çağlardan beri ihtiyaç duyduğu bir gereksinim olmuştur; sayılar teorisi de matematiğin en eski alanlarından birisidir. Sayılar teorisi,

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı